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336 J. DUDDY

Theorem 4. (i) Let K be a convolution operator of type r for
r > 0. Then K extends from Ccœ(Fm) to a bounded operator from
Lp(Fm) to Lq(Fm') where 1 < p < Q/r and q'1 p'1 - r/Q.{ii)Let K
be a convolution operator of type 0. Then K extends from Cc°°(Fm)

to a bounded operator from S £(Fm) to S%(Fm).

Finally, we mention the interaction between the homogeneous convolution

operators and the left-invariant differential operators. Let D : C°°(Fm')

- C°°(Fm") be a left-invariant homogeneous differential operator of degree 1

and let K be a homogeneous convolution operator of type r, with r ^ 1.

Then DK is a homogeneous convolution operator of type r — 1. Moreover,
if r > 1 the kernel of DK is given by Dk(x).

4. The Hodge decomposition

Consider the complex (1) where Et R" x Fm<. Assume that each of the

Dt is a first order, left-invariant operator, homogeneous of degree 1. So
d

each entry of Dt is of the form £ aj^ij where aj is constant. Construct
j= i

the Laplacian, A, with respect to the euclidian inner products on

Fm£, i 1, 2, 3. Assume there exists a homogeneous convolution operator of

type 2, K, which inverts A. If f e Cf(Fm2) then f(x) AKf(x) KAf(x).

Theorem 5. Let feS l(Fm2). As distributions, A/ 0 if and only if

f o.

Proof Obviously, if / 0 then A/ 0.

Assume A/ 0. Let {ff be a sequence in Cf(Fmi) such that fj - /
in 52(Fm2). Then fj f in the sense of distributions. Moreover, Afj
-> A/ 0 in L2(Fm2). Let g e Cf(Fm2). Then

<f,g> lim <fj,g> lim <f},AKg> lim <Afj,Kg>
j->co • j~* oo j-*mo

Because geCf(FW2) it is in LP where p 2g/(g + 4). Therefore, by

Theorem 4(i), Kg e LP where

q'1 (ß + 4)/2ß - 2IQ - 1/2, i.e., Kg e L\Fm2).

For Q ^ 5, 1 < p < q < oo. So

I < f >
I ~ I < j, Kg> I ^ lim || Afj \\^2(Fm2| || Kg ||z>2(f^2) 0-
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So, as a distribution, / 0. This proves the theorem.

We have shown that the only harmonic element in S^F"12) is the zero

element. Let feS\{F"12) and let - / in Sj(F"12) with fjeC?(Fm2).
Then

/ - lim AX/,- « lim D.DfKf + lim D*2D2Kf DJ)\Kf + D\D2Kf
J ^ co j-^co jco

To complete the Hodge decomposition we must prove that

D^fKf ±D$D2Kf

We need the following notation. Let D(R) {jc e N : | x | < R} and

S(R) {xeN:\x \ R}. Endow each set with the left-invariant metric
induced by N. The metric gives rise to the corresponding volume elements

which, in the case of D(R), is the restriction of dx. Let d\iR denote the
volume element on S(R). For f,ge C(D{R), Fmf) define

(/(*)> g{xj)i,xdx
Dm

(/; S7)d(JJ), i

where )Uxis the metric on F"". Similarly for e C 'J(S(R), Fmi) define

(/> d)s(R), i ~ (f(x),
S(R)

By restriction, any element / eC°°(N, Fmi) gives rise to an element of
CX'(S(R),Fmi) or Cco(D(R), Fm'). In our notation, we will not distinguish /

from its restrictions.
We will be integrating by parts on D(R) which will involve a boundary

integral on S(R). To that end we define the symbol of our differential
operators. Define c,(x) [ x | - Randlet g eC\N,Fmi).Let x e S(R). Then
£(x) 0. The symbol of D, at x e S{R) acting on d.% and on g is given by

a(D„dtMx)
The integration by parts formula is

(13) {Did, Dom,,i+i {g,D*f)D(R)ti+ (ct(D,,

Theorem 6. Assume f e L2(Fm2) n L«(FM2) where q + 2.
Then f D1DfKf + D%D2Kfand D^Kf ± D$D2Kf.

Proof. We have already seen that/ + D *D2Kf. To prove the
orthogonality we restrict our attention to for R large.
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For brevity let h (D1DfKf,D%D2Kf)2. Also, let

h(R) (Z^D^X/, D%D2Kf)D{R)2

Then lim h(R) h. Note that DxDXK and D%D2K are type 0 operators.
-R-> 00

Since / g L2(Fm2) by theorem 4 (ii) we know that h is defined. Furthermore

h(R) is bounded for all R by || D^D^Kf ||L2(Rm2) || D%D2Kf \\l2{Rm2).

We can compute h(R) as follows :

h(R) (Dj^D *Kf, D 2D2{Kf))D(R)> 2 (D2D1D JX/, D2Kf)D{R) 3

+ {D.DfKf, c(Di,d(\x\))D2Kf)SiRh2

by (13). We now prove a sequence of lemmas.

Lemma 1. h(R) is continuous.

Proof. This follows from Lebesgue's dominated convergence theorem.

Lemma 2. Let R ^ 1, x e N and | a | R. Then

I o(D%, d\x\)g(x) \ ^ I

where C is a constant independent of g.

Proof Recall that X1,..., Xd is our orthonormal basis for rx1 where

d dim^). The entries of Df are linear combinations of the Xt,
i 1 ,...,d with coefficients in F. Let be the ij entry, 1 ^ i ^ m2,

d

1 ^ j ^ m3. Then Dtj £ C\jXk. Thus, for x g S(R)
k 1

m2 m3

\<j(D%,d\x\)g(x)\<C £ I £ Dy((|xt-Ä)^(x))|
i=i j i

< C X \CljXk((\x\-
ij.k

<cZI (Xk\x\)gj(x) I (since | x |

jk

«S C(max (A*|x|)) | g/x) |.
k

We must show Xk \ x\ is bounded. But | x | is Cœ away from the origin
and homogeneous of degree 1. So Xk | x | is homogeneous of degree 0.

Thus, it is determined by its values on {| x | 1}. It is C00 on this set

and, therefore, bounded. This proves the lemma.

Since h(R) - h as R oo we have
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Lemma 3. For e > 0, lim —
r-+ oo -^E

h(R)dR h.

We continue with the proof of our theorem. By the preceding lemma it

suffices for us to prove that lim —
r-* oo -^E

h{R)dR 0. But,

(14)

1

2s
(D,D*Kj\ a(D*2,d\x\)D2Kf)x

r-e^ |x| + s

because d\iRdR \\ d \ x \ \\ dx. We claim that d I x I || is bounded. Let
coi; be dual to Xtj where Xtj is our orthonormal basis. Then d \ x |

X (Xij\x\WJ- Since | x | is homogeneous of degree 1 and Xtj is

homogeneous of degree i we have XL is homogeneous of degree 1 — i.

Hence, for | x | ^ 1 each Xtj \ x | is bounded. So || d | x | || is bounded.

By assumption, / e Lq(Fm2\ q Q/Q + 2 and we know that D2K is

type 1. By Theorem 4(i) we know that D2Kf e L2(Fm2). Thus, by Lemma 2

I xr&{D f, d\x\)D2Kf I ^ C I xrD2Kf I where Xr is the characteristic function of
{r — s ^ I x I ^ r + e}. We conclude that Xr^i^i » à\x\)D2Kf e L2(Fm2). By
the Schwarz inequality and the fact that || d | x | | is bounded, we get, from (14)

1

2e
h(R)dR ^ ~ || XrD.DtKf ||L2(Fm2) || xrD2Kf ||L2(Fm3).

As r-* co, both || xrD1D^Kf||L2(Km2)and || %rD2Kf || L2(F-3) tend to 0. So

h lim
2e

h(R)dR 0. This proves the theorem.

This theorem together with Theorem 5 proves the Hodge decomposition.
A similar argument gives the solution to the problem of finding g such
that Dxg f for a given /.

Theorem 7. Letf e L2(FM2) n L"(Fm2) with q Q/Q + 2. Suppose
D2f 0. Then there exists g e L2(Fm') such that Dtg f.

Proof. We have / D^fKf + D$D2Kf. It suffices to prove
•/• D^D2Kf) 0 because this implies D%D2Kf 0 since

D.DXKf LD*2D2Kf
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We may set g DfKf. Using the same notation as in the preceding theorem

we have

(f,D*2D2Kf)2 lim (f,D*D2Kf)DIRu2
R-* oo

lim {(D2f,D2Kf)Dm3+

lim (f,a(D *2, d\x\)D2Kf)sm2(since 0).
R^x

The same argument as in Theorem 6 proves that the limit is zero. This

proves the theorem.
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