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Let H be the kernel of A in CZ®(E,). A Hodge decomposition for
CP(E,) 1s

C2(E;) = Dy(C(E,) @ DY(CZ2(E3) @ H .

Hodge studied the de Rham complex on a compact Riemannian manifold.
The Riemannian metric induced the metrics on the bundles APT*(M) as
well as the volume element.

In the next section we discuss abstract CR manifolds and look at the

Heisenberg group in detail. We write down the ¢, and [J, operators
explicitly and give Folland and Stein’s inverse to [],. In section 3 we
introduce the stratified Lie groups and the associated homogeneous structures.
We present the continuity theorems of Folland and Rothschild and Stein for
convolution operators. In section 4 we prove the decomposition theorem in
the general setting of stratified groups.

These results are an extension of the author’s dissertation [4]. We wish
to express our deep gratitude to M. Kuranishi. We would also like to thank
D. Tartakoff for his help and encouragement.

2. CR STRUCTURES AND THE HEISENBERG GROUP

Let M be a C* manifold of dimension 2n + 1. The complexified tangent
bundle of M, CT(M), is the bundle whose fiber is C ®g T, (M) where
T,(M) 1s the tangent space at m € M. When there is no confusion we will
drop reference to M in the notation for T(M), CT(M), etc. So, T(M) = T
and CT(M) = CT, for example.

A CR structure on M is a subbundle T, , = CT such that (i) T,
NT; o= {0}, (i) codim(T; o, ® Ty ) = 1, (iii) if X and Y are smooth
sections of Ty, then [X,Y] = XY — YX is a section T, ,. We set
To,y = Ty 0. If M has a CR structure it is called a CR manifold.

An example of a CR manifold is a real hypersurface M in a complex
manifold M', M = M'. Define T, (M) = CT(M) N T, o(M’) where T o(M)
is the holomorphic tangent bundle of M'.

If M is a CR manifold set T'° (resp., T*') to be the dual space to
Ty o (resp., Ty, ;). Let AP 9 be the space of C® sections of APT!'° ® ATO!.
Define the operator 5,,:A”"’—> AP471 as follows: Let ¢ e AP and let
Xy X, (resp, Y,,..,Y,,;) be sections of T, (resp., Ty ). Then




330 J. DUDDY

<5b¢’(X1 A see A Xp) ® (Y1 A ese A Yq+1)>

gt+1 . R
- (q+1)_1 Z (_1)}+1 YJ<¢;(X1 A eee A Xp) ® (Yl A e Yj ees A Yq+1)>
j=1
G+ S (=)< (X a e n X))@ [Y, Y1 Yyn e Vi Y a You)s,

i<j

The * symbol over a section means as usual that it is deleted from the
expression. One can show that

i) 92 = 0,
i) Oy A W) = ([Bpd) A U+ (—1Pd » 0 for b e AP,
i) <d,f,Y> =Yf for feA®°and Y a section of To. 1.
See [6] for details.

The Heisenberg group, H, is a Lie group with a natural CR structure.
The manifold is C" x R. Let (z,¢), (Z,t)e C" x R = H. The group law
1s defined by

(z, )+ (2, ¢) = (z+2, t+t'+2 Im(z - 2'))

wherez+z' = ) z J;; The identity element is (0, 0) and (z, t) ™! = (—z, —1).
j=1
Sometimes we will set u = (z, t).
Forj = 1,..,nif we set z; = x; + iy;, the mapping

(Z, 1) > (X1 s eer Xps Vi oo Vs )

defines a C® coordinate system on H. The left invariant vector fields
(i.e., the elements of the Lie algebra) are R-linear combinations of

2) X, =L vy ly, =% 2
. = — i, g = — — X‘—‘, = —,
e T A T ot

J

They satisfy the following commutation relations:

3) [X;,T] = [Y;,T] = [X;,X,] = [Y;, ¥,] = 0,
4) [X;, Y] = —45,T.

Let CT be the complexified tangent bundle of H. Define

- 0

1 _ 0

J
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Then Z;, Z;, and T form a basis (over R) of the space of left invariant
complex tangent vector fields. In particular, they form a global frame of
CT. From (3), (4) and (5) we easily see that

(6) I:Zjazk] = [Zjazk] = [st T] = [Z_ja T] = 0
(Z;,Z,] = —2i8;T.

Let T, , (resp., To ;) be the subbundle of CT spanned by the Zjs
(resp., Z;’s). Then

7_11,0 = T0,1
Ty on Ty = {O}
COdlm (Tl'o ® TO,l) — 1.

n
Also, if V,, V, are sections of T'° we can write V, = ) f;Z;,i = 1,2
j=1

where the f;; are C* functions on H. Then by (6),

[Vu Vz] = z (Z (flijka_fszjflk)) Zk-
k=1 \yj=1
So, the splitting of CT defines a CR structure on H.
Impose the left invariant Hermitian metric on CT which makes the Z’s,
Z’s and T an orthonormal frame. Let o’ and t be dual to Z; and T,

respectively. Then «/, ®’ and t form an orthonormal frame for CT*. The
volume element on H is

(7) du = 2”dx1 A e A dx,, A dy1 A e A dyn A dt.

Since H is nilpotent and, hence, unimodular, the volume element is both left
and right invariant. One can also verify this directly.
Let J = (j;, .. J,) be a multi-index with 1 <j; < n,i = 1, .., q. Define

/] = gand®’ = @’ 1 .. » @21 b e A¥(H)wemay write o = > ¢,0’
|J=q
where ¢, is a C* function from H to C. Let

GafJcb’:(—1)k®flA...A@A...A®fq if j=j, and ® 1 ®’' =0
k

otherwise. Folland and Stein prove that for ¢ € A% ¢

1) abd): Z iz—j‘bﬂbj'\a)],

[J[=q j=1
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i 0= % (- g 2) + =207 ) 40"
Define the function

—(l

Oz, 0) = (21 —it)~ (IZI +it)”

Let pe A2% g # 0, n. For an appropriate constant, ¢ 4> define

©) K, $(v) = IJI ( J Gru)®, 5 (" v)du>

Folland and Stein prove that for the appropriate c,

THEOREM 1. Let deAQ?, q#0,n Then [0,K,0 = K,[0,0 = ¢.

In [4] we prove a stronger version of the following Hodge decomposition
theorem.

THEOREM 2. Let e A%, q # 0,n. Then
1) Hp = 0 where H isthe orthogonal projection onto the kernel of [1,.

i) & = 8,08 K, 0 + 0F 0,K, 0.
We also prove

THEOREM 3. If $eA%% g #0,n and if 3,0 = O then = ¥K,0
satisfies 5,,\1! = o.

These two theorems are special cases of theorems 6 and 7 proven in
section 4.

3. DIFFERENTIAL COMPLEXES ON STRATIFIED GROUPS

We study a class of nilpotent Lie groups which we describe in terms of
their Lie algebras. A graded Lie algebra, n, is a finite dimensional nilpotent

r

algebra which has a direct sum decomposition, n = @ n; where the n; satisfy
i=1

1) [nw 1] - l+j lf l+] < ra 7

i) [n;,n;] = i +j>r. i
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