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HODGE DECOMPOSITION ON STRATIFIED LIE GROUPS

by John DuUDDY

1. INTRODUCTION AND HISTORY
The Hodge decomposition theorem is the following:

THEOREM. On a compact Riemannian manifold every p-form, =, can be
written as o = o, + %, + %3 where o = d¥*B,, 2, = dB, and A3 s
harmonic.

This result appears in Hodge’s book The Theory and Applications of
Harmonic Integrals (1941) [12]. Since the appearance of this result generaliza-
tions of the theorem have been proven in new settings. Kodaira (1949)
extended the result to certain forms on non-compact Riemannian manifolds
[13] and Dolbeault (1953) derived a similar decomposition for Hermitian
manifolds [5]. Atiyah and Bott (1967) defined an elliptic complex which
generalized the de Rham and Dolbeault complexes [1]. In a different vein
Spencer outlined a program to solve overdetermined equations (1963) [17].
The heart of his program was to obtain a Hodge decomposition paying
special attention to boundary values.

Boundary value problems in complex analysis led to the Eb complex. It
was first studied by H. Lewy (1957) [15] and generalized by Kohn and Rossi
(1965) [14] and by Greenfield (1968) [10]. The complex is not elliptic but it
does enjoy certain properties of elliptic complexes. For instance, its Laplacian,
[0y, (with respect to a Hermitian metric) is hypoelliptic, ie., if [,/ = g
and g 1s C* on an open set U, then f is C* in U. Folland and
Stein (1973, 1974) [7, 8] wrote down an explicit fundamental solution for
[, on the Heisenberg group. The group is not compact so Kodaira’s
arguments to obtain the decomposition do not apply. One of the aims of
this paper is to exploit the simple homogeneity properties to obtain a
fundamental solution. The technique generalizes to a class of nilpotent

groups called stratified groups introduced by Folland (1975) [9]. (Also see
Rothschild and Stein [16].)
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The Hodge decomposition for the 5,, complex on the Heisenberg group
appears in [11] by Harvey and Polking and in [4]. The second reference
motivates the technique used here. Harvey and Polking use complex analysis

to obtain their result (solving the 5,, problem first, then the [], problem).
Using their techniques Dadok and Harvey [2] have found a fundamental
solution for [J, on the sphere in C". A parametrix for [, on the sphere
also appeared in [4] but will not be presented here, due to the more
complete result of Dadok and Harvey.

Let us briefly review the Hodge decomposition. For the classical version
see [3] and [12]. Let M be an n-dimensional C* manifold and let E and
E' be vector bundles over M whose fibers are isomorphic to F™ and F™
respectively. (We let F = R or C.) We denote the space of smooth sec-
tions of E by C®(M, E) and when there is no confusion we abbreviate the
notation to C*®(E). A differential operator-is a map D:C%(E) - C*(E')
such that given any local trivializations of E and E’ over U (where U ¢ M
is open), D can be expressed by an m' x m matrix of differential operators
defined on F-valued functions on R". See [18] for details.

Suppose we are given three vector bundles, E,, E,, and E; over M
and differential operators D,: C*(E;) » C®(E,) and D,: C*(E,) —» C*(E,).
If D, - D; = 0 we say that the complex

(1) C*(E)) 3 C™(E,) 3 C™(E;)

is a differential complex. Examples of differential complexes are the de Rham, J

Dolbeault, and 5,, complex.

Assume there exists a measure dp on M and a metric on the E;
which we denote by (-, +); , where x e M. For f, g e C*(E;), one of which is
compactly supported, define

(fg) = J‘M (f(x), g(x));, dp(x) -

Define the formal adjoint, D%, of D, by the identity .

(f,D19), = (DY, 9

where f € C*(E,) and g € CP(E,). Note that CX(E;) is the subset of com-
pactly supported elements of C*(E;). Similarly, we define D%. The Laplacian
is given by
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Let H be the kernel of A in CZ®(E,). A Hodge decomposition for
CP(E,) 1s

C2(E;) = Dy(C(E,) @ DY(CZ2(E3) @ H .

Hodge studied the de Rham complex on a compact Riemannian manifold.
The Riemannian metric induced the metrics on the bundles APT*(M) as
well as the volume element.

In the next section we discuss abstract CR manifolds and look at the

Heisenberg group in detail. We write down the ¢, and [J, operators
explicitly and give Folland and Stein’s inverse to [],. In section 3 we
introduce the stratified Lie groups and the associated homogeneous structures.
We present the continuity theorems of Folland and Rothschild and Stein for
convolution operators. In section 4 we prove the decomposition theorem in
the general setting of stratified groups.

These results are an extension of the author’s dissertation [4]. We wish
to express our deep gratitude to M. Kuranishi. We would also like to thank
D. Tartakoff for his help and encouragement.

2. CR STRUCTURES AND THE HEISENBERG GROUP

Let M be a C* manifold of dimension 2n + 1. The complexified tangent
bundle of M, CT(M), is the bundle whose fiber is C ®g T, (M) where
T,(M) 1s the tangent space at m € M. When there is no confusion we will
drop reference to M in the notation for T(M), CT(M), etc. So, T(M) = T
and CT(M) = CT, for example.

A CR structure on M is a subbundle T, , = CT such that (i) T,
NT; o= {0}, (i) codim(T; o, ® Ty ) = 1, (iii) if X and Y are smooth
sections of Ty, then [X,Y] = XY — YX is a section T, ,. We set
To,y = Ty 0. If M has a CR structure it is called a CR manifold.

An example of a CR manifold is a real hypersurface M in a complex
manifold M', M = M'. Define T, (M) = CT(M) N T, o(M’) where T o(M)
is the holomorphic tangent bundle of M'.

If M is a CR manifold set T'° (resp., T*') to be the dual space to
Ty o (resp., Ty, ;). Let AP 9 be the space of C® sections of APT!'° ® ATO!.
Define the operator 5,,:A”"’—> AP471 as follows: Let ¢ e AP and let
Xy X, (resp, Y,,..,Y,,;) be sections of T, (resp., Ty ). Then
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<5b¢’(X1 A see A Xp) ® (Y1 A ese A Yq+1)>

gt+1 . R
- (q+1)_1 Z (_1)}+1 YJ<¢;(X1 A eee A Xp) ® (Yl A e Yj ees A Yq+1)>
j=1
G+ S (=)< (X a e n X))@ [Y, Y1 Yyn e Vi Y a You)s,

i<j

The * symbol over a section means as usual that it is deleted from the
expression. One can show that

i) 92 = 0,
i) Oy A W) = ([Bpd) A U+ (—1Pd » 0 for b e AP,
i) <d,f,Y> =Yf for feA®°and Y a section of To. 1.
See [6] for details.

The Heisenberg group, H, is a Lie group with a natural CR structure.
The manifold is C" x R. Let (z,¢), (Z,t)e C" x R = H. The group law
1s defined by

(z, )+ (2, ¢) = (z+2, t+t'+2 Im(z - 2'))

wherez+z' = ) z J;; The identity element is (0, 0) and (z, t) ™! = (—z, —1).
j=1
Sometimes we will set u = (z, t).
Forj = 1,..,nif we set z; = x; + iy;, the mapping

(Z, 1) > (X1 s eer Xps Vi oo Vs )

defines a C® coordinate system on H. The left invariant vector fields
(i.e., the elements of the Lie algebra) are R-linear combinations of

2) X, =L vy ly, =% 2
. = — i, g = — — X‘—‘, = —,
e T A T ot

J

They satisfy the following commutation relations:

3) [X;,T] = [Y;,T] = [X;,X,] = [Y;, ¥,] = 0,
4) [X;, Y] = —45,T.

Let CT be the complexified tangent bundle of H. Define

- 0

1 _ 0

J
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Then Z;, Z;, and T form a basis (over R) of the space of left invariant
complex tangent vector fields. In particular, they form a global frame of
CT. From (3), (4) and (5) we easily see that

(6) I:Zjazk] = [Zjazk] = [st T] = [Z_ja T] = 0
(Z;,Z,] = —2i8;T.

Let T, , (resp., To ;) be the subbundle of CT spanned by the Zjs
(resp., Z;’s). Then

7_11,0 = T0,1
Ty on Ty = {O}
COdlm (Tl'o ® TO,l) — 1.

n
Also, if V,, V, are sections of T'° we can write V, = ) f;Z;,i = 1,2
j=1

where the f;; are C* functions on H. Then by (6),

[Vu Vz] = z (Z (flijka_fszjflk)) Zk-
k=1 \yj=1
So, the splitting of CT defines a CR structure on H.
Impose the left invariant Hermitian metric on CT which makes the Z’s,
Z’s and T an orthonormal frame. Let o’ and t be dual to Z; and T,

respectively. Then «/, ®’ and t form an orthonormal frame for CT*. The
volume element on H is

(7) du = 2”dx1 A e A dx,, A dy1 A e A dyn A dt.

Since H is nilpotent and, hence, unimodular, the volume element is both left
and right invariant. One can also verify this directly.
Let J = (j;, .. J,) be a multi-index with 1 <j; < n,i = 1, .., q. Define

/] = gand®’ = @’ 1 .. » @21 b e A¥(H)wemay write o = > ¢,0’
|J=q
where ¢, is a C* function from H to C. Let

GafJcb’:(—1)k®flA...A@A...A®fq if j=j, and ® 1 ®’' =0
k

otherwise. Folland and Stein prove that for ¢ € A% ¢

1) abd): Z iz—j‘bﬂbj'\a)],

[J[=q j=1
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(8)

|
%
&
I
|
!
II'Mx
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.e.
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e
| S
e

i 0= % (- g 2) + =207 ) 40"
Define the function

—(l

Oz, 0) = (21 —it)~ (IZI +it)”

Let pe A2% g # 0, n. For an appropriate constant, ¢ 4> define

©) K, $(v) = IJI ( J Gru)®, 5 (" v)du>

Folland and Stein prove that for the appropriate c,

THEOREM 1. Let deAQ?, q#0,n Then [0,K,0 = K,[0,0 = ¢.

In [4] we prove a stronger version of the following Hodge decomposition
theorem.

THEOREM 2. Let e A%, q # 0,n. Then
1) Hp = 0 where H isthe orthogonal projection onto the kernel of [1,.

i) & = 8,08 K, 0 + 0F 0,K, 0.
We also prove

THEOREM 3. If $eA%% g #0,n and if 3,0 = O then = ¥K,0
satisfies 5,,\1! = o.

These two theorems are special cases of theorems 6 and 7 proven in
section 4.

3. DIFFERENTIAL COMPLEXES ON STRATIFIED GROUPS

We study a class of nilpotent Lie groups which we describe in terms of
their Lie algebras. A graded Lie algebra, n, is a finite dimensional nilpotent

r

algebra which has a direct sum decomposition, n = @ n; where the n; satisfy
i=1

1) [nw 1] - l+j lf l+] < ra 7

i) [n;,n;] = i +j>r. i
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i Let n = dim n. Define the homogeneous dimension to be Q = Y. j dim(w;).
J=1

Ifnisa graded algebra and if n, generates n then n is called a stratified
. algebra. A Lie group is called a stratified group if its Lie algebra is a
 stratified algebra. For a given stratified algebra n we will restrict our
attention to the simply connected group associated to it.

The Heisenberg group is a simply connected stratified group. In fact,
identifying the Lie algebra with the left invariant vector fields, we may take
n, to be the span of the X’s and Y’s and n, to be the span of T.
"By (3) and (4) we see that [n,,n;] = n, and [n,,n,] = [n,,n,] = 0.
Any graded nilpotent group has a natural family of dilations. First we

define them on the Lie algebra. Let X e n. Then by definition X = ) X;
j=1

where X;emn;. For s> 0 set §(X) = ) §/X;. Because n is nilpotent
j=1

the exponential map is globally defined. Suppose x e N and x = exp(X)

for X e n. Define §4(x) = exp(d,X). Suppose we are given an inner product

on n such that n; L n; for all i # j. Let | X || be the length defined by
the inner product. Suppose x = exp(X) where X = ) X;, X;en;. Then
i=1

define the homogeneous norm function to be

|xl=<,>=:1ux,-|w)

Then (1) | x| = 0 if and only if x = 0, (ii) x —» | x| is continuous on N
and C* on N — {0}, (iii) | 8,x | = s| x|.
On the Heisenberg group, 3((z, t)) = (sz, s*) and |z | = (|z]*+ )%

Recall that the homogeneous dimension is Q = i jdim(n;). Let f
i=1

be a function on N. We say f is homogeneous of degree p if f(84(x))

= s°f(x). If —Q < p then such an f is in L¥_ for 1 < k < o0. A distri-
bution F is called homogeneous of degree p if

<F,s7%(8-1x)> = sP<F, g>

where ge C®(N) and <F,g> is the pairing of CX(N) with its dual,
D'(N). A differential operator L (acting on functions) is homogeneous of
degree p if L(f-8,) = sP(Lf)-d,. Observe that if f 1s a homogeneous
function of degree p and if L is a homogeneous differential operator of
- degree p’ then Lf is a homogeneous function of degree p — p'.
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Let X; 1, .., Xi dgimmy b€ an orthonormal basis of n; with respect to our
inner product. Since n; L n; for i # j the set

{X;;:1<i<rl<j<dimmn)}
is an orthonormal basis of n. Define the global coordinate chart on N by
(10) (xij) — XXX > eXp(ininj)-

This identifies N with R" as a manifold.

Let m;, m, and m; be positive integers. For i = 1,2, 3 define
E; = R" x F™ to be the trivial bundle over N = R”" with fiber F™. Consider
the differential complex (1). We know that each D; can be expressed as an
m; ., x m; matrix of differential operators on functions, i = 1, 2. If each entry
is homogeneous of degree p we say D, is a homogeneous differential operator
of degree p. If each entry is left-invariant we say D; is a left-invariant
differential operator.

On our prototype, the Heisenberg group, we have the left-invariant metric
which makes the Z’s, Z’s, and T into an orthonormal basis. Let ®;, .., ®
be a basis for T® ! which is dual to Z,, ..., Z,. Then

n

{C_l)J:J = (jl,---a.jq)al <.]1 <j2 < .. <jq < n}

is a global orthonormal basis of A%? for each g. So A® 1 is a trivial bundle
over H ~ R?"*1 and we may identify sections of A%? with C*(R?*"*! C™)
where m = n!/q!(n—q)!. By (8(iii)) the operator [J,: A4 — A% is given by

1 & -
the matrix (8;; L), <; j<m Where L = — ) Y (Z,Z,+Z,Z;) + i(n—2g)T. L is
K=1

left-invariant and homogeneous of degree 2. So, [], is left-invariant and
homogeneous of degree 2. Similarly, K ¢ defined by (9) can be written as

K, = J g ©p24(u™ ') ddu
H

where e A2% is a g x 1 column vector and I is the g x g identity
matrix. Note that ®,_,, is a homogeneous function of degree —2n. This
example motivates the following definition of a homogeneous convolution
operator.

Return to N, our stratified Lie group with global coordinates defined
by (10). Let k: N — Mat(m’' x m, F) be a mapping of N into the space of
m' x m matrices with entries in F. Given f e C*(F™) and x,ye N the
product k(y " 'x)f(y) is an m’ x 1 column vector. We set

| y




¢ s
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i (11) Kf(x) = J k(y™ ') f(y)dy .

- The measure, dy, is the Haar measure on N. Under suitable restrictions on
- k the integral exists. The operator K is called a convolution operator with
" kernel k. If each entry of k is smooth away from 0 and homogeneous of
- degree —Q 4+ p, 0 < p < Q, we say that K is a homogeneous convolution
: operator of type p. As we mentioned before, a homogeneous function is in
LE_ so the integral in (11) exists for f € C2(F™).

Suppose k is homogeneous of degree —Q and for each entry

ki, 1<i<m,1<j<m,

ijs

we have

(12) J‘ kij(x)dx = 0

for all a and b. We say an operator K is of type O if for some constant ¢
we have

Kf(x) = limJ k(y='x)f()dy + ¢f(0) forall [feCZ(F™
£=0 ) e<|y|<1/e

where k satisfies (12). We refer the reader to Folland [9] or Rothschild

and Stein [16] for details.

To study the continuity properties of these operators we define L?
spaces and Sobolev-type spaces of sections from N to F”. Let | | .»
denote the usual L? norm on functions. Let f e CX(F™) andlet f,,i = 1,..,m
be the components of f. Define the norm

IS oo = (Z I £ ) "

Let LP(F™) be the completion of C *(F™) under this norm.

Let {X; ;,.., X, 4 be the orthonormal basis of n,, with d = dim(n,).
For brevity, we will drop reference to the first subscript. Let J be a multi-
index, J = (j;,j,, ... J,) With 1 <j, <j, < .. <Jj, < d Define|J| = g and
define X; = X; X;,.. X; . Define SZF™ to be the closure of C*(F™)
under the norm

m 1/p
I f “SZ(F"‘) = <|| S Lemy + ,; ”fz I Xsfill fp> .

A modification of a theorem by Folland [9] yields
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THEOREM 4. (i) Let K be a convolution operator of type r for
r>0. Then K extends from CI(F™) to a bounded operator from
LP(F™) to LYF™) where 1 <p <Qfr and q ' = p~! — r/Q. (ii) Let K
be a convolution operator of type 0. Then K extends from CZ(F™)
to a bounded operator from SEF™) to SEF™).

Finally, we mention the interaction between the homogeneous convolution
operators and the left-invariant differential operators. Let D:C%(F™)
— C®(F™) be a left-invariant homogeneous differential operator of degree 1
and let K be a homogeneous convolution operator of type r, with r > 1.
Then DK is a homogeneous convolution operator of type r — 1. Moreover,
if r > 1 the kernel of DK is given by Dk(x).

4. THE HODGE DECOMPOSITION

Consider the complex (1) where E; = R" x F™. Assume that each of the

D; is a first order, left-invariant operator, homogeneous of degree 1. So
d

each entry of D; is of the form ) a;X, ; where a; is constant. Construct
j=1

the Laplacian, A, with respect to the euclidian inner products on

F™ i = 1,2, 3. Assume there exists a homogeneous convolution operator of
type 2, K, which inverts A. If f e C*(F™) then f(x) = AKf(x) = KAf(x).

THEOREM 5. Let f € S3(F™). As distributions, Af = 0 if and only if
f = 0.

Proof. Obviously, if f = 0 then Af = 0.

Assume Af = 0. Let {f;} be a sequence in C?(F™) such that f; - f

in S3(F™). Then f; > f in the sense of distributions. Moreover, Af;
— Af = 0in L*(F™). Let g € C2(F™). Then |

<f,g> =lim <f;,g> = lim <f;,AKg> = lim <Af;, Kg> .

j— o - j— o j— o

Because ge CX(F™) it is in L? where p = 2Q/(Q+4). Therefore, by
Theorem 4(1), Kg € L? where

g ! = (0+4)/20 — 2/Q0 = 1/2,ie, Kge L¥F™).
ForQ > 5,1 <p<gq< . So

| <f,g>]|=1lim| <Af;,Kg>| < lim | Af;llL2@mz | Kg |lL2gmsy = 0.
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So, as a distribution, f = 0. This proves the theorem.

We have shown that the only harmonic element in S3(F™) is the zero
clement. Let f e S%(F™) and let f; - f in S3(F™) with f;e C>(F™).
- Then
f = lim AKf; = lim D, D¥Kf + lim D¥D,Kf = D,DfKf + DID,Kf.

jooo j— oo jo o
To complete the Hodge decomposition we must prove that
D,D¥Kf L D¥D,Kf .

We need the following notation. Let D(R) = {xe N:|x| < R} and
S(R) = {xe N:| x| = R}. Endow each set with the left-invariant metric
induced by N. The metric gives rise to the corresponding volume elements
which, in the case of D(R), is the restriction of dx. Let duyp denote the
volume element on S(R). For f, g € C*(D(R), F™) define

(f, g)D(R),i = JD . (f(x), g(x))i,xdx
(R)

where (, ); . is the metric on F™. Similarly for f, g e C*(S(R), F™) define

(f, 9Dswy,i = L (f (x), g(x))i, <Apg(x) .
(R)

By restriction, any element f e C*°(N,F™) gives rise to an element of
C*(S(R), F™) or C®(D(R), F™). In our notation, we will not distinguish f
from its restrictions.

We will be integrating by parts on D(R) which will involve a boundary
integral on S(R). To that end we define the symbol of our differential
operators. Define §(x) = | x| — R and let g € C}(N, F™). Let x € S(R). Then
&(x) = 0. The symbol of D; at x € S(R) acting on df and on g 1s given by

o(D;, dS)g(x) = D{&g) (x) .
The integration by parts formula is

(13) (Digs flowy,i+1 = @ D¥fpwy.i + (o(D;, d&)g, Hswy.i -

THEOREM 6. Assume  f e LAF™) n LYF™) where ¢ = Q/Q + 2.
Then f = D,D¥Kf+ D3D,Kf and D,D¥Kf L D*D,Kf.

Proof. Wehavealreadyseen that f = D,D¥Kf + D 3D,Kf.To prove the
orthogonality we restrict our attention to D(R) for R large.
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For brevity let h = (D,D¥Kf, D¥D,Kf),. Also, let
h(R) = (DD ¥Kf, DgDZKf)D(R), 2
Then lim A(R) = h. Note that D;D*¥K and D%D,K are type 0 operators.

R—

Since f € L*(F™) by theorem 4 (ii) we know that h is defined. Further-
more h(R) is bounded for all R by || DiD¥Kf |lp2rma I| DED,KS |l 12(rma)-
We can compute h(R) as follows:

h(R) = (DlDTKf, DgDZ(Kf))D(R), 2 = (D2D1D TKfa DZKf)D(R), 3
+ (D D¥Kf, o(D%, d(x))D,Kf )sx). 2

by (13). We now prove a sequence of lemmas.

LeEmMMA 1. h(R) is continuous.

Proof. This follows from Lebesgue’s dominated convergence theorem.

LEMMA 2. Let R>1,xeN and |x| = R. Then
| o(D%, dlx])g(x) | < C|g(x) ]|
where C is a constant independent of g.

Proof. Recall that X,, .., X, is our orthonormal basis for n, where
d = dim(n,). The entries of D% are linear combinations of the X,,
i = 1,..,d with coefficients in F. Let D;; be the i,j entry, 1 <i < mj,,

d
1 <j < ms. Then D;; = ) CFkX,. Thus, for x € S(R)
k=1 ,

|oD%, dxg() | < C S | Dy((x—Ryg;() |

i=1 j=1

<C Z I C?ij(UxI_R)gj(x)) |

i,J,k

< CZkI(XkIXDQj(X)I (since | x| = R)
< C(m:,lx (Xklxl)) | gj(x) | .

We must show X, | x| is bounded. But | x| is C® away from the origin
and homogeneous of degree 1. So X, | x| is homogeneous of degree O.
Thus, it is determined by its values on {| x| = 1}. It is C® on this set
and, therefore, bounded. This proves the lemma.

Since h(R) - h as R — oo we have
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1 r+e
LEMMA 3. For € > 0, lim TJ h(R)dR = h.
roow 28

r—e
We continue with the proof of our theorem. By the preceding lemma it

1 r+e
suffices for us to prove that lim % f h(R)dR = 0. But,

r— o r—e

(14) 1 J o WR)dR

28 r—e
1

= EJ (D.D*Kf, o(D¥, dIx|)D,Kf), || d| x| || dx
r—es|x|sr+e

because dugzdR = || d| x| || dx. We claim that || d|x]|| 1s bounded. Let
®’/ be dual to X;; where X; is our orthonormal basis. Then d|x|
= Y (X;jx)o". Since | x| is homogeneous of degree 1 and X;; is homo-
genejous of degree i we have X;;|x| is homogeneous of degree 1 — i.
Hence, for [ x| > 1 each X;;|x| is bounded. So | d|x]||| is bounded.

By assumption, f e LYF™), ¢ = Q/Q + 2 and we know that D,K is
type 1. By Theorem 4(i) we know that D,Kf € L}¥F™). Thus, by Lemma 2
|x,o(D%,dx))D,Kf | < C|yD,Kf | where v, is the characteristic function of
{r—e<|x| <r+ ¢}. We conclude that y,o(D%, d|x|)D,Kf € L} F™). By
the Schwarz inequality and the fact that || d | x | || is bounded, we get,’ from (14)

1

r+e c
2—Sj WR)dR < —2€ I x.D,D¥Kf “LZ(sz) | %D, Kf ||L2(Fm3)-

r—e

As r— oo, both [ x.DiDYKf || 2gms, and || x,D,Kf ||;2ems tend to 0. So

r+e

.1 .
h = lim e hR)dR = 0. This proves the theorem.

r—= o r—e

This theorem together with Theorem 5 proves the Hodge decomposition.
A similar argument gives the solution to the problem of finding g such
that D,g = f for a given f.

THEOREM 7. Let f e L*(F™) n LYF™) with q = Q/Q + 2. Suppose
D,f = 0. Then there exists ge L*(F™) such that D,g = f.

Proof. We have f = D,D¥Kf + D¥D,Kf. It suffices to prove h
(f, D3D,Kf) = 0 because this implies D¥D,Kf = 0 since

D,D¥Kf L D%D,Kf .
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We may set g = DTKf. Using the same notation as in the preceding theorem
we have

(f, D3D,Kf), = lim (f, DgDZKf)D(R), 2

R—- o
= lim ((D2f, DK  )pgy. 3 + (f> o(DF, dIXND,KS )ser )
= lim (f,o(D}%, d|x)D,Kf)sry,»  (since D,f = 0).
R—=

The same argument as in Theorem 6 proves that the limit is zero. This
proves the theorem.
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