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The only identifications under the action are: vu gets identified to vx and
wu gets identified to wx. It follows that P/T(r, s, t) is the 2 sphere and the
branched covering P/A — F/T(r, s, t) has 3 branch points coming from the
vertices u, v, w.

Now notice that A is torsion free. This follows from the facts:

(1) the elements of finite order in T(r, s, t) are the conjugates of
A, B, C.

(2) elements of finite order in T(r, s, t) map to elements of the same
order in G. From this it follows that the orders of the branch points are
r, s, t respectively.

Finally we consider the Riemann-Hurwitz formula:

X(P/&) = | G| (x(P/T(n 50) = (1 - 1) - (1 - é) - (1 - %D

_ 1 1 1
ie., 2—2g=|G|<—+—+——1>.
r S t
| G | 1 1 1
Therefore =14 —1 - —— — — .e.d.
¢ 2 ro st Qed
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If (4, B, C) is an (r, s, t) triple generating PSI,(p) then we have a short
exact sequence

1 A - T(rs,t) > PSL(p) - 1

where A is torsion free. Then it follows that H/T(r,s,t) is S? and the
branched covering H/A — H/T(r, s, t) has 3 branch points with orders
r S, L.

Conversely we have:

(3.1). THEOREM. If S is a Riemann surface of least genus for PSl,(p) then

S/PSly(p) is S* and m:S — S/PSl(p) has 3 branch points.

Proof. There exists a short exact sequence 1 - A — T (2, 3, p) = PSI,(p)

— 1 arising from a (2, 3, p) triple and consequently

genus (H/A) = 1 + l—%(% — 117)
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Let g = genus(S), h = genus (S/PSl,(p)) and suppose n: S — S/PSl,(p) has b
branch points x,, .., x, of respective orders n,, .., n,. Then the Riemann-
Hurwitz formula tells us

(3.2). 2—29=|G|<2-2h—2<1—%>).

G 1
Thatisg = 1 + ITI <2h -2+ Z (1 - —>) Since g 1s the least genus this
h;

leads to the inequality

1 1 1
(3.3). 2h—2+z<1——><g—l—?.

n;

From this we immediately see that h = 0, 1.

Therefore we suppose that h = 1. Since all n; > 2 this implies that
b = 0, and hence PSI,(p) is acting fixed point freely on S with orbit space
the torus. But this immediately gives an epimorphism Z @ Z — PSL(p).
However, this is a contradiction since G is not abelian. Therefore h = 0
and S/PSl,(p) is a 2-sphere.

To prove that there are 3 branch points put & = 0 into (3.3):

b 1 1 1
34 —2 l —— )<= —-.
( ) + i=zl ( ni> 6 D
. 1 e
Since 1 — — > — for all i this gives b < 4. If b = 0 we have an unbranched

h;
covering S — S? with deck transformation group PSI,(p). But this is clearly a
contradiction.
Thus assume b = 1. Then we have the regular unbranched covering

S — 1 x) - S — {x}

with deck transformation group PSI,(p). But again this is impossible since
AS'2 - {Xl} g I{2 .
Next we put b = 2 and consider the regular covering

S —n Hx;,x,} > 8% — {x;,x,}.

Then we have the exact sequence coming from fundamental groups
1 - Z - Z — PSl,(p) — 1, which is again a contradiction.
Finally we suppose b = 4. The inequality (3.4) is
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1 1 1 1 1 1
(3.5). 2 e <= - =

n, n, n3y ng, 6 p

' and is clearly satisfied by n, = n, = ny; = n, = 2. However, this choice of
1 n’s gives g = 1 by (3.2); in other words PSl,(p) is toroidal. However, no
" nonabelian finite simple group G can act on S! x S! because covering space
theory implies there are branch points and hence the orbit space is S2. Hence
the induced homomorphism PSl,(p) — Aut(Z?) is nontrivial and also has a
kernel since Aut(Z?) has no p torsion for p > 7. This contradicts G simple.
Therefore this case is excluded and we have

1 1 1 1 1 1 1 1 1
2 - — - — — — = — 22— === —- == = —
n, n, N3 Ny 2 2 2 3 6
contradicting (3.5). Q.ed.

If we let the orders of the 3 branch points be r, s, t then the Riemann-
Hurwitz formula is

o)1)

2
—1
But | PSL(p) | = pp 5 ) and therefore

genus (S) = 1 +p(p24~1)<1 _l_i_l).

To take advantage of this formula we must know what sort of branching
data (r, s, t) can occur. To this end we quote a very general theorem of
Tucker [T].

(3.6). THEOREM. Suppose G is a finite group acting effectively on a
closed orientable surface S by orientation preserving homeomorphisms. If
g = genus (S/G) and there are b branch points of orders Ny, ..,n, then G
has a presentation of the form

g

S

lx19y17-"3 xga ygaela'": ebl 1—1 [xia ,Vi:lel - €p = e'{l = e = egb = 13 ETC}
i=1

(3.7). CoROLLARY. If S is a Riemann surface of least genus for PSl,(p)
then there exist integers r,s,t, = 2 so that

"i , (4) there is an extension 1 - A > T(r, s, t) - PSl(p) > 1;
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(b) genus (PSL(p) = 1 + p(p"'4— 1 (1 1 1 £>

If A, B, C are the usual generators of T(r, s, t) then it is in fact true

that the orders of A, B, C in PSl,(p) are r, s, t. Putting (2.22) and (3.7)
together gives

(3.8). CoOROLLARY. The genus of PSl,(p) is given by

2_4 o1 1
g-—-min{l s )(1— ————— )}
4 r S t

where the minimum is taken over all (r,s,t) for which there exist
(r, s, t) triples generating PSl,(p).

The last step in the determination of the genus is to identify those
(r, s, t) which are relevant. This is accomplished ‘in the following manner:

(1) first find all (r, s, ) so that

. 1 1 1<1 1 . S 13
- <~ — —, assuming p > 13.
r S t 6 d sP

(2) then eliminate those triples (r, s, t) corresponding to either spherical or
Euclidean triangle groups.

(3) make a comparison of the triples remaining so as to eliminate those
with larger genus.

In the following table we give some pertinent data:
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TABLE 1
condition for
1 1 1 1 1 1 - 1 1
(r, s, t) e type T Ty T 6 4
1 :
(2,2, t) - spherical d>6
1 1 .
2,3,1) 6 7 spherical t<d
where 3 <t <5
(2, 3, 6) 0 euclidean t<d
1 1 .
(2,3,1) A hyperbolic t<d
where t > 7
(2,4, 4) 0 euclidean d>©6
1 :
(2,4, 5) 20 hyperbolic d>=>9
1 :
(2,4, 6) D hyperbolic d > 12
3 :
(2,4,7) 7 hyperbolic d > 17
1 :
(2,4, 8) 3 hyperbolic d > 24
5 :
(2,4,9) 6 hyperbolic d > 36
3 .
(2, 4, 10) 20 hyperbolic d = 60
7
(2,4, 11) — hyperbolic d > 132




13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.
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TABLE 1 (suite)

condition for

1 1 1 1 1 1
(r, s, t) l - - type l———-—-¢
r S t r S t
(2,4,t b 1 > ! h boli
—— > r ne
,4,1) 1776 yperbolic ver
1 .
(2,5,9) 10 hyperbolic d> 15
2 :
(2,5, 6) 15 hyperbolic d > 30
11 :

(2,57 70 hyperbolic d > 105
(2,50 3 ! > ! hyperbolic never
— == > = i
> 10 ¢t 6 yP Y

where t > 8
1 1 1 1
(2,s,1) 2T 7 2\6 hyperbolic never
(3,3,3) 0 euclidean d>17
1 :
(3,3,4) B hyperbolic d> 12
2 :
(3,3,95) 3 hyperbolic d > 30
1 1 _ 1 .
(3,31 -——— 2= hyperbolic never
3 t° 6
1 1 :
(3,s, 1) 37577 > — hyperbolic never
S
where t > s > 4
1 1 :
(r, s, t) 1 —— — = = — hyperbolic never
where

t>s>r>4
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Examining this table we see that we can eliminate cases 13, 17, 18, 22, 23
1
and 24 since % — 3 will always be less than 1 — 1/r — 1/s — 1/t. We can

also eliminate cases 1, 2, 3, 5 and 19 since these triples are not hyperbolic.
Now notice that cases 7, .., 12 need never be considered since if there are
such triples generating PSl,(p) then there will also be a (3,3,4) triple
generating PSl,(p), in which case the genus calculation from the (3, 3, 4)
case is at least as small. In a similar fashion we can ignore cases 15, 16
and 21 by comparing them with case 14. Finally, we can use Lemma (2.3)
to eliminate case 4. The triples remaining after this will be (2,3, p),
2,3,d), (2,5,95), (2,4,5) and (3, 3, 4). Minimization of the genera for these
triples leads directly to the corollary in the introduction. ‘
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