Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	31 (1985)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	REPRESENTING \$PSI_2(p)\$ ON A RIEMANN SURFACE OF LEAST GENUS
Autor:	Glover, Henry / Sjerve, Denis
Kapitel:	§3. CONFORMAL ACTIONS ON SURFACES OF LEAST GENUS
DOI:	https://doi.org/10.5169/seals-54572

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 02.09.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

The only identifications under the action are: vu gets identified to vx and wu gets identified to wx. It follows that P/T(r, s, t) is the 2 sphere and the branched covering $P/\Delta \rightarrow P/T(r, s, t)$ has 3 branch points coming from the vertices u, v, w.

Now notice that Δ is torsion free. This follows from the facts:

(1) the elements of finite order in T(r, s, t) are the conjugates of A, B, C.

(2) elements of finite order in T(r, s, t) map to elements of the same order in G. From this it follows that the orders of the branch points are r, s, t respectively.

Finally we consider the Riemann-Hurwitz formula:

$$\chi(P/\Delta) = |G| \left(\chi(P/T(r, s, t)) - \left(1 - \frac{1}{r}\right) - \left(1 - \frac{1}{s}\right) - \left(1 - \frac{1}{t}\right) \right)$$

$$2 - 2a = |G| \left(\frac{1}{r} + \frac{1}{r} + \frac{1}{r} - \frac{1}{r}\right)$$

i.e.,

$$2 - 2g = |G| \left(\frac{1}{r} + \frac{1}{s} + \frac{1}{t} - 1\right).$$
$$g = 1 + \frac{|G|}{2} \left(1 - \frac{1}{r} - \frac{1}{s} - \frac{1}{t}\right)$$

Therefore

§ 3. CONFORMAL ACTIONS ON SURFACES OF LEAST GENUS

If (A, B, C) is an (r, s, t) triple generating $PSl_2(p)$ then we have a short exact sequence

$$1 \rightarrow \Delta \rightarrow T(r, s, t) \rightarrow PSl_2(p) \rightarrow 1$$

where Δ is torsion free. Then it follows that H/T(r, s, t) is S^2 and the branched covering $H/\Delta \rightarrow H/T(r, s, t)$ has 3 branch points with orders r, s, t.

Conversely we have:

(3.1). THEOREM. If S is a Riemann surface of least genus for $PSl_2(p)$ then $S/PSl_2(p)$ is S^2 and $\pi: S \to S/PSl_2(p)$ has 3 branch points.

Proof. There exists a short exact sequence $1 \rightarrow \Delta \rightarrow T(2, 3, p) \rightarrow PSl_2(p) \rightarrow 1$ arising from a (2, 3, p) triple and consequently

genus
$$(H/\Delta) = 1 + \frac{|G|}{2} \left(\frac{1}{6} - \frac{1}{p}\right).$$

O.e.d.

Let g = genus(S), $h = \text{genus}(S/PSl_2(p))$ and suppose $\pi: S \to S/PSl_2(p)$ has b branch points $x_1, ..., x_b$ of respective orders $n_1, ..., n_b$. Then the Riemann-Hurwitz formula tells us

(3.2).
$$2 - 2g = |G| \left(2 - 2h - \sum \left(1 - \frac{1}{n_i} \right) \right).$$

That is $g = 1 + \frac{|G|}{2} \left(2h - 2 + \sum \left(1 - \frac{1}{n_i} \right) \right)$. Since g is the least genus this leads to the inequality

(3.3).
$$2h - 2 + \sum \left(1 - \frac{1}{n_i}\right) \leq \frac{1}{6} - \frac{1}{p}$$

From this we immediately see that h = 0, 1.

Therefore we suppose that h = 1. Since all $n_i \ge 2$ this implies that b = 0, and hence $PSl_2(p)$ is acting fixed point freely on S with orbit space the torus. But this immediately gives an epimorphism $\mathbb{Z} \oplus \mathbb{Z} \twoheadrightarrow PSl_2(p)$. However, this is a contradiction since G is not abelian. Therefore h = 0 and $S/PSl_2(p)$ is a 2-sphere.

To prove that there are 3 branch points put h = 0 into (3.3):

(3.4)
$$-2 + \sum_{i=1}^{b} \left(1 - \frac{1}{n_i}\right) \leq \frac{1}{6} - \frac{1}{p}.$$

Since $1 - \frac{1}{n_i} \ge \frac{1}{2}$ for all *i* this gives $b \le 4$. If b = 0 we have an unbranched covering $S \to S^2$ with deck transformation group $PSl_2(p)$. But this is clearly a contradiction.

Thus assume b = 1. Then we have the regular unbranched covering

$$S - \pi^{-1}(x_1) \to S^2 - \{x_1\}$$

with deck transformation group $PSl_2(p)$. But again this is impossible since $S^2 - \{x_1\} \cong \mathbb{R}^2$.

Next we put b = 2 and consider the regular covering

$$S - \pi^{-1}\{x_1, x_2\} \to S^2 - \{x_1, x_2\}.$$

Then we have the exact sequence coming from fundamental groups $1 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow PSl_2(p) \rightarrow 1$, which is again a contradiction.

Finally we suppose b = 4. The inequality (3.4) is

REPRESENTING $PSl_2(p)$

(3.5).
$$2 - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} - \frac{1}{n_4} \le \frac{1}{6} - \frac{1}{p}$$

and is clearly satisfied by $n_1 = n_2 = n_3 = n_4 = 2$. However, this choice of n_i 's gives g = 1 by (3.2); in other words $PSl_2(p)$ is toroidal. However, no nonabelian finite simple group G can act on $S^1 \times S^1$ because covering space theory implies there are branch points and hence the orbit space is S^2 . Hence the induced homomorphism $PSl_2(p) \rightarrow Aut(\mathbb{Z}^2)$ is nontrivial and also has a kernel since $Aut(\mathbb{Z}^2)$ has no p torsion for $p \ge 7$. This contradicts G simple. Therefore this case is excluded and we have

$$2 - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} - \frac{1}{n_4} \ge 2 - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

ng (3.5). Q.e.d.

contradicting (3.5).

If we let the orders of the 3 branch points be r, s, t then the Riemann-Hurwitz formula is

$$\chi(S) = |PSl_2(p)| \left(2 - \left(1 - \frac{1}{r}\right) - \left(1 - \frac{1}{s}\right) - \left(1 - \frac{1}{t}\right)\right).$$

But $|PSl_2(p)| = \frac{p(p^2-1)}{2}$ and therefore

genus (S) = 1 +
$$\frac{p(p^2-1)}{4}\left(1 - \frac{1}{r} - \frac{1}{s} - \frac{1}{t}\right)$$
.

To take advantage of this formula we must know what sort of branching data (r, s, t) can occur. To this end we quote a very general theorem of Tucker [T].

(3.6). THEOREM. Suppose G is a finite group acting effectively on a closed orientable surface S by orientation preserving homeomorphisms. If g = genus(S/G) and there are b branch points of orders $n_1, ..., n_b$ then G has a presentation of the form

$$\{x_1, y_1, ..., x_g, y_g, e_1, ..., e_b \mid \prod_{i=1}^g [x_i, y_i]e_1 \dots e_b = e_1^{n_1} = \dots = e_b^{n_b} = 1, ETC\}$$

(3.7). COROLLARY. If S is a Riemann surface of least genus for $PSl_2(p)$ then there exist integers r, s, t, ≥ 2 so that

(a) there is an extension $1 \to \Delta \to T(r, s, t) \to PSl_2(p) \to 1$;

(b) genus
$$(PSl_2(p)) = 1 + \frac{p(p^2-1)}{4} \left(1 - \frac{1}{r} - \frac{1}{s} - \frac{1}{t}\right).$$

If A, B, C are the usual generators of T(r, s, t) then it is in fact true that the orders of A, B, C in $PSl_2(p)$ are r, s, t. Putting (2.22) and (3.7) together gives

(3.8). COROLLARY. The genus of $PSl_2(p)$ is given by

$$g = \min\left\{1 + \frac{p(p^2 - 1)}{4} \left(1 - \frac{1}{r} - \frac{1}{s} - \frac{1}{t}\right)\right\}$$

where the minimum is taken over all (r, s, t) for which there exist (r, s, t) triples generating $PSl_2(p)$.

The last step in the determination of the genus is to identify those (r, s, t) which are relevant. This is accomplished in the following manner: (1) first find all (r, s, t) so that

$$1 - \frac{1}{r} - \frac{1}{s} - \frac{1}{t} \leq \frac{1}{6} - \frac{1}{d}, \text{ assuming } p \geq 13.$$

- (2) then eliminate those triples (r, s, t) corresponding to either spherical or Euclidean triangle groups.
- (3) make a comparison of the triples remaining so as to eliminate those with larger genus.

In the following table we give some pertinent data:

	TABLE I					
(<i>r</i> , <i>s</i> , <i>t</i>)	$1 - \frac{1}{r} - \frac{1}{s} - \frac{1}{t}$	type	condition for $1 - \frac{1}{r} - \frac{1}{s} - \frac{1}{t} \le \frac{1}{6} - \frac{1}{d}$			
(2, 2, t)	$-\frac{1}{t}$	spherical	$d \ge 6$			
(2, 3, t) where $3 < t < 5$	$\frac{1}{6} - \frac{1}{t}$	spherical	$t \leqslant d$			
(2, 3, 6)	0	euclidean	t < d			
(2, 3, t) where $t > 7$	$\frac{1}{6} - \frac{1}{t}$	hyperbolic	$t \leqslant d$			
(2, 4, 4)	0	euclidean	<i>d</i> > 6			
(2, 4, 5)	$\frac{1}{20}$	hyperbolic	$d \ge 9$			
(2, 4, 6)	$\frac{1}{12}$	hyperbolic	$d \ge 12$			
(2, 4, 7)	$\frac{3}{28}$	hyperbolic	$d \ge 17$			
(2, 4, 8)	$\frac{1}{8}$	hyperbolic	$d \ge 24$			
(2, 4, 9)	$\frac{5}{36}$	hyperbolic	$d \ge 36$			
(2, 4, 10)	$\frac{3}{20}$	hyperbolic	$d \ge 60$			
(2, 4, 11)	$\frac{7}{44}$	hyperbolic	$d \ge 132$			

TABLE	I	(suite)

(r, s, t)	$1 - \frac{1}{r} - \frac{1}{s} - \frac{1}{t}$	type	condition for $1 - \frac{1}{r} - \frac{1}{s} - \frac{1}{t} \le \frac{1}{s}$
(2, 4, <i>t</i>)	$\frac{1}{4} - \frac{1}{t} \ge \frac{1}{6}$	hyperbolic	never
(2, 5, 5)	$\frac{1}{10}$	hyperbolic	$d \ge 15$
(2, 5, 6)	$\frac{2}{15}$	hyperbolic	$d \ge 30$
(2, 5, 7)	$\frac{11}{70}$	hyperbolic	$d \ge 105$
(2, 5, t) where $t > 8$	$\frac{3}{10} - \frac{1}{t} > \frac{1}{6}$	hyperbolic	never
(2, s, t)	$\frac{1}{2} - \frac{1}{s} - \frac{1}{t} \ge \frac{1}{6}$	hyperbolic	never
(3, 3, 3)	0	euclidean	<i>d</i> > 7
(3, 3, 4)	$\frac{1}{12}$	hyperbolic	$d \ge 12$
(3, 3, 5)	$\frac{2}{15}$	hyperbolic	$d \ge 30$
(3, 3, t)	$\frac{1}{3} - \frac{1}{t} \ge \frac{1}{6}$	hyperbolic	never
(3, s, t) where $t > s > 4$	$\frac{2}{3} - \frac{1}{s} - \frac{1}{t} \ge \frac{1}{6}$	hyperbolic	never
(r, s, t) where $t > s > r > 4$	$1 - \frac{1}{r} - \frac{1}{s} - \frac{1}{t} \ge \frac{1}{4}$	hyperbolic	never

Examining this table we see that we can eliminate cases 13, 17, 18, 22, 23 and 24 since $\frac{1}{6} - \frac{1}{d}$ will always be less than 1 - 1/r - 1/s - 1/t. We can also eliminate cases 1, 2, 3, 5 and 19 since these triples are not hyperbolic. Now notice that cases 7, ..., 12 need never be considered since if there are such triples generating $PSl_2(p)$ then there will also be a (3, 3, 4) triple generating $PSl_2(p)$, in which case the genus calculation from the (3, 3, 4) case is at least as small. In a similar fashion we can ignore cases 15, 16 and 21 by comparing them with case 14. Finally, we can use Lemma (2.3) to eliminate case 4. The triples remaining after this will be (2, 3, p), (2, 3, d), (2, 5, 5), (2, 4, 5) and (3, 3, 4). Minimization of the genera for these triples leads directly to the corollary in the introduction.

REFERENCES

- [B] BURNSIDE, W. Theory of Groups of Finite Order. Cambridge University Press, 1911.
- [FLM] FRENKEL, I., J. LEPOWSKY and A. MEURMAN. A natural representation of the Fischer-Griess Monster with the modular function J as character (preprint).
- [Gr] GREENBERG, L. Maximal groups and signatures. Annals of Math. Studies 79 (1974), 207-226.
- [Gu] GUNNING, R. C. Lectures on Modular Forms. Annals of Math. Studies No. 48, Princeton University Press, 1962.
- [GS] GLOVER, H. and D. SJERVE. $PSl_2(p)$ as the automorphism group of a Riemann surface (in preparation).
- [H] HURWITZ, A. Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41 (1892), 403-442.
- [M] MAGNUS, W. Noneuclidean Tesselations and Their Groups. Academic Press, 1974.
- [N] NEWMANN, M. Integral Matrices. Academic Press, 1972.
- [S] SUZUKI, M. Group Theory I. Springer-Verlag 1982.
- [T] TUCKER, T. Finite groups Acting on Surfaces and the genus of a group. Journal of Combinatorial Theory B 34 (1983), 82-92.

(Reçu le 17 octobre 1984)

Henry Glover

Ohio State University Columbus, OH 43210

Denis Sjerve

University of British Columbia Vancouver, BC V6T1W5