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The only identifications under the action are: vu gets identified to vx and

ww gets identified to wx. It follows that P/T(r, s, t) is the 2 sphere and the

branched covering P/A -> P/T(r, s, t) has 3 branch points coming from the

vertices w, v, w.

Now notice that A is torsion free. This follows from the facts :

(1) the elements of finite order in T(r, s, t) are the conjugates of
A, B, C.

(2) elements of finite order in T(r, s, t) map to elements of the same
order in G. From this it follows that the orders of the branch points are

r, s, t respectively.

Finally we consider the Riemann-Hurwitz formula:

X{P/A) I G I (x(P/T(r, s, t))-(l - ^ - ^1 - ^ - ^1 -
i.e., 2 2f/ I G I — H 1 1

\r s t

Therefore g1 + f1 - -, 1 - 1
Q.e.d.

2 \ r

§ 3. CONFORMAL ACTIONS ON SURFACES OF LEAST GENUS

If (A, B, C) is an (r, s, t) triple generating PSl2(p) then we have a short
exact sequence

1 -» A -» T(r,s,t) -+ PSl2(p) -+ 1

where A is torsion free. Then it follows that is S2 and the
branched covering H/A - H/T(r, s,t)has 3 branch points with orders
r, s, t.

Conversely we have :

(3.1). Theorem. If Sis a Riemann surface of least genus for PSl2(p) then
S/PSl2(p) is S2 and n: S -*S/PSl2(p)has3 branch points.

Proof. There exists a short exact sequence 1 -> A -> 3, p) -, PSl2(p)
-> 1 arising from a (2, 3, p) triple and consequently

genus (H/A) 1 + Q - 1j
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Let g genus (S), h genus (S/PSl2(p)) and suppose n : S - S/PSl2(p) has b

branch points x1,..., xb of respective orders nl,..., nb. Then the Riemann-

Hurwitz formula tells us

(3.2). 2 - 20 I G I ^2 - 2/i - £ i
That is g1 + |^2/i — 2 + £ ^1 — —^. Since g is the least genus this

leads to the inequality

(3.3). 2h-2 + £(l-TUi-i.
V 6 P

From this we immediately see that h 0,1.
Therefore we suppose that h 1. Since all nt ^ 2 this implies that

b 0, and hence PSl2(p) is acting fixed point freely on S with orbit space
the torus. But this immediately gives an epimorphism Z © Z -» PSl2(p).

However, this is a contradiction since G is not abelian. Therefore h 0

and S/PSl2{p) is a 2-sphere.
To prove that there are 3 branch points put h 0 into (3.3):

(3.4) -2+
i=:i V nJ 6 P

Since 1 ^ - for all i this gives b ^ 4. If b 0 we have an unbranched
nt 2

covering S -» S2 with deck transformation group PSl2(p). But this is clearly a

contradiction.
Thus assume b 1. Then we have the regular unbranched covering

S — n~1(x1) - S2 — {xj

with deck transformation group PSl2(p). But again this is impossible since

S2 — {xj R2.

Next we put b 2 and consider the regular covering

S - tc~ 1{x1, x2} -+ S2 - {Xjl x2}.

Then we have the exact sequence coming from fundamental groups
1 - Z - Z PSl2(p) - 1, which is again a contradiction.

Finally we suppose b 4. The inequality (3.4) is |
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111111(3.5). 2 ^ - - -n i n2 n3 n4 6 p

and is clearly satisfied by nL n2 n3 n4 2. However, this choice of
n- s gives g 1 by (3.2); in other words PSl2(p) is toroidal. However, no
nonabelian finite simple group G can act on S1 x S1 because covering space

theory implies there are branch points and hence the orbit space is S2. Hence
the induced homomorphism PSl2(p) -> Aut(Z2) is nontrivial and also has a

kernel since Aut(Z2) has no p torsion for p ^ 7. This contradicts G simple.
Therefore this case is excluded and we have

2 - — - — - — -
1

> 2 -
1 1 1 1-1

nx n2 n3 n4 ^ 2 2 2 3 6

contradicting (3.5). Q.e.d.

If we let the orders of the 3 branch points be r, s, t then the Riemann-
Hurwitz formula is

X(S)I PSl2(p) I ^2 - ^1 - ij - - 1

But I PSl2(p) I —— and therefore

4 \ r s t

To take advantage of this formula we must know what sort of branching
data (r,s,t) can occur. To this end we quote a very general theorem of
Tucker [T].

(3.6). Theorem. Suppose G is a finite group acting effectively on a
closed orientable surface S by orientation preserving homeomorphisms. If
g genus (S/G) and there are b branch points of orders n1,...,nb then G
has a presentation of the form

9

t*!, xg,yg,elte„ | [] [xf,.yßet eb 1, ETC}

(3.7). Corollary. If S is a Riemann surface of least genus for PSl2(p)
then there exist integers r, s, f, ^ 2 so that

(a) there is an extension 1 - À -» T(r, s, t) - PSl2(p) 1 ;
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(b) genus (PSl2(p))1 + ^-31 f 1 - - -4 \ r s t

If A, B, C are the usual generators of T(r, s, t) then it is in fact true
that the orders of A, B, C in PSl2(p) are r, 5, t. Putting (2.22) and (3.7)

together gives

(3.8). Corollary. The genus of PSl2(p) is given by

• f, 1 1 1

gmin <1 + 1

4 \ r s t

where the minimum is taken over all (r, s, t) for which there exist

(r, s, t) triples generating PSl2(p).

The last step in the determination of the genus is to identify those

(r, s, t) which are relevant. This is accomplished in the following manner :

(1) first find all (r, 5, t) so that

111111 ^ — —-, assumingp ^ 13
r s t 6 a

(2) then eliminate those triples (r, 5, t) corresponding to either spherical or

Euclidean triangle groups.

(3) make a comparison of the triples remaining so as to eliminate those

with larger genus.

In the following table we give some pertinent data :
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Table I

(r,s,t)
1 1 1

1

r s t
type

condition for

111111

r s t 6 a

(2,2,
1

t
spherical d ^ 6

(2, 3,
1 1

6
~ 7 spherical t ^ à

where 3 <

(2, 3, 6) 0 euclidean t < à

(2, 3, t)
1 1

6
~ 7 hyperbolic t ^ à

where 7

(2, 4, 4) 0 euclidean à > 6

(2, 4, 5)
1

20
hyperbolic d ^ 9

(2, 4, 6)
1

12
hyperbolic d ^ 12

(2,4,7)
3

28
hyperbolic d ^ 17

(2, 4, 8)
1

8
hyperbolic d ^ 24

(2, 4, 9)
5

36
hyperbolic d^ 36

(2, 4, 10)
3

20
hyperbolic d ^ 60

(2, 4, 11)
7

44
hyperbolic d ^ 132

N—-,
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Table I (suite)

0r, s, t)
1 1

1

r s

1

t
type

condition for
1 1 1

1 ^
r s t

13. (2, 4, t)
1 1

4
~ 7 ^

1

6
hyperbolic never

14. (2, 5, 5)
1

IÖ hyperbolic d ^ 15

15. (2, 5, 6)
2

Î5 hyperbolic d ^ 30

16. (2, 5, 7)
11

70
hyperbolic d ^ 105

17. (2, 5, t)
3 1

10
~ 7 >

1

6
hyperbolic never

where t > 8

18. (2, 5, 0
1 1 1

1st
1

*'6 hyperbolic never

19. (3, 3, 3) 0 euclidean d>l

20. (3, 3, 4)
1

Î2 hyperbolic d ^ 12

21. (3, 3, 5)
2

15 hyperbolic d ^ 30

22. (3, 3, t)
1 1

3
~ 7 ^

1

6
hyperbolic never

23. (3, s, t)

where t > s > 4

2 1 1

3 st
1

^6 hyperbolic never

24. (r, s, t) i-i-i-r s

1 1

t
^ 4

hyperbolic never

where
t > s > r > 4
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Examining this table we see that we can eliminate cases 13, 17, 18, 22, 23

and 24 since - — will always be less than 1 — 1/r — l/s — 1 /t. We can
6 a

also eliminate cases 1, 2, 3, 5 and 19 since these triples are not hyperbolic.
Now notice that cases 7,..., 12 need never be considered since if there are
such triples generating PSl2(p) then there will also be a (3, 3,4) triple
generating PSl2(p), in which case the genus calculation from the (3, 3, 4)

case is at least as small. In a similar fashion we can ignore cases 15, 16

and 21 by comparing them with case 14. Finally, we can use Lemma (2.3)

to eliminate case 4. The triples remaining after this will be (2,3, p),

(2, 3, d\ (2, 5, 5), (2, 4, 5) and (3, 3, 4). Minimization of the genera for these

triples leads directly to the corollary in the introduction.
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