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METHODE DU CERCLE ADELIQUE 7

C) ADELES

Pour toutes les relations, définitions et propriétés des adéles utilisées
ci-aprés, une référence est Godement (Adéles et ideles, cf. bibliographie).

Soit A 'ensemble des adeles sur Q.

Soit  le caractere de Tate.

Soit ¢ une fonction de Schwarz-Bruhat sur A”, telle que

1) @ est décomposable (i.e.: O(x) = @ (x,) [] ©,(x,))
p
2) Pour tout p premier, on a

0p = lgn
(on note 1 la fonction caractéristique d’'un ensemble E),

3) ¢, = 0 * 1p4 (produit de convolution)

avec 0 fonction de classe C* sur R", a support compact inclus dans un
voisinage de O et, en pratique, aussi petit qu’il sera nécessaire mais fixé
et donc indépendant de la variable P.

Remarque. 11 s’agit la d’une différence notable avec le travail de Birch
(« forms in many variables » cf. bibliographie) qui utilise la fonction 1pg4,
caracteristique de la boite P4, discontinue au bord de celle-ci. En définissant
¢, comme ci-dessus on obtient d’abord une fonction de Schwarz-Bruhat ce
qui permet 'usage d’une formule de Poisson au paragraphe 1. En revanche,
on complique légerement le paragraphe 3 (cf. la remarque importante qui
suit la démonstration du Lemme 3-2).

Soit £ € A", on définit la somme

H(E) = Y o(x¥(<&, f(x)>)

xeQn

avec <&, f(x)> = Z & fix).

Cette somme H(E) est absolument convergente et constante sur les classes
modulo Q', essentiellement parce que le caractére de Tate est trivial sur Q.

Ainsi, pour tout ve Z', I'application & HEW(<E —v>) définit une L
fonction sur (A/Q)" et on a I’égalité

J HEW(<E, —v>)dE = 3 (P(x)j (<, f(x)—v>)dE .
(A1Q)" (A/Q)"

xeQn
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Si f(x) # v, le caractére &+ Y(<¢&, f(x)—v>) n’est pas trivial sur le
groupe (A/Q)" et son intégrale est nulle.

Si f(x) = v, ce caractére est trivial et comme J dg = 1, puisque les
(A/Q)
mesures de Haar sur A" et (A/Q)" sont choisies pour qu’il en soit ainsi! On

obtient I'importante égalité

j HEW(<E —v>)dE = ) ¢u(x)
(A/Q)" xeZn

Sf(x)=v

(la somme Y du second membre ne porte que sur les x € Z" car ¢Q, = IZZ

pour tout p, de plus cette somme représente a peu prés le nombre de solu-
tions entieres du systeme f = v, présentes dans la boite P# < R").

On cherche principalement, dans le présent travail, & comparer la somme
H(&) avec l'intégrale de méme forme, appelée transformée de Gauss globale
(en fait associée au systeéme f, au caractére \y et a la fonction @)

F*E) = j PN( <&, f(x)>)dx .
Arl
On veut obtenir la formule asymptotique suivante: il existe & > 0, tel que

j HEW(<E, —v>)dE = J F*EN(<E, —v>)dE + O(P" ")
(A/Q) r

A
Remarque. L’intégrale portant sur F* est la seule raisonnable car cette
fonction n’est pas en général constante sur les classes modulo Q. De plus

cette intégrale n’est autre, selon les notations d’Igusa (cf. bibliographie) que

1/7}(~—v) = F(v) appelée série singuliere globale (cf. le paragraphe 5F). Le

chapeau /" désigne la transformée de Fourier associée au caractére de Tate
(cf. Godement...).

D) METHODE DU CERCLE ADELIQUE
Soit £ € A”; on utilisera désormais les notations suivantes

€0 | = Max |§ | et pourtoutp, |G|, = Max|§g ,|,;

1<is<r 1<isr

on deéfinit aussi la fonction

Q) = [[Max(L, ], 1))
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