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REPRESENTING PSl,(p) ON A RIEMANN SURFACE
OF LEAST GENUS

by Henry GLOVER and Denis SIERVE ')

§ 1. INTRODUCTION

Given any finite group G there exists a closed Riemann surface S and
an effective action G x S — S by conformal automorphisms (here conformal
means analytic). Therefore it makes sense to ask what is the least genus of
such surfaces S. Recall that when the answer is that the genus equals zero
(le. G acts on the two sphere) then G is from the list Z/n, D,, A4, S,
or As. The purpose of this paper is to determine this minimum genus for the
simple groups PSI,(p), where p > 5 is a prime. Since given any finite group
G and Riemann surface T there exists a regular branched covering
p: S — T such that i) G is the group of branched covering transformations
of p (Le. T=S/G) and i1) G is the full group of automorphisms of S [Gr], it
seems most interesting to realize G as the full group of automorphisms of a
Riemann surface of least genus. In a sequel to this paper [GS] we will prove
that this always happens when p # + 1 mod 8 or mod 5 but may fail for
these congruence equalities. When it does fail PSl,(p) will have index two
in the full group of automorphisms. In addition, a particularly simple
situation occurs when p:S — S/G has exactly three branch points. Our
results always give this for PSI,(p). We conjecture analogus results for every
finite simple group and we seek to relate these ideas to “moonshine” for
simple groups [FLM]. In order to state our results we need some notation:

(1) PSIy(p") is the projective special linear group of 2 x 2 matrices over
the Galois field GF(ph).

(2) T = PSIy(Z) is the classical modular group. Geometrically I' is just
the group of integral linear fractional transformations of the upper half

az + b

cz +d

plane H, that is transformations of the form z —

,where a, b, ¢, d

') Research partially supported by N.S.E.R.C. grant 67-7218.
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are integers so that ad — bc = 1. Algebraically I" is the unimodular
group Sl,(Z) modulo its center = {+ I}.

A result of Newman [N] is that mod p reduction of entries gives an
epimorphism I' —» PS[,(p), and therefore an exact sequence 1 - A —» T
— PSIy(p) = 1. Now A is a Fuchsian group and therefore PSI,(p) is acting
conformally on the open Riemann surface H/A. By adding parabolic points

we obtain a closed Riemann surface H/A and a conformal action on
H/A by extension. According to [G] the genus of H/A is

1 +M<l_l> _ 1 +P(P2i_12<1_1>
2 6 p

p(p*—1)

where | PSl,(p) | = is the order of PSI,(p).

Definition. For any finite group G we let genus (G) denote the least
genus of all Riemann surfaces S for which there exists an effective conformal
action G x S — S. We note that genus (G) has also been called the symmetric
genus of G in the literature.

-1/t 1
Thus we certainly have genus (PSL(p)) < 1 + Pl 2 ) (E — —>. Putting
p

p = 5 then gives genus (PSI,(5)) = 0, and therefore we will tacitly assume
in all that follows that p > 7.

For p = 7, 11 we get the inequalities genus (PSIy(7)) < 3 and genus
(PSI,(11)) < 26. It will turn out that these inequalities are equalities (see
the corollary of the introduction). The action of PSI,(7) on a surface of |
genus 3 is the action of the simple group of order 168 considered by Klein.

This inequality strongly suggests that genus (PSl,(p)) can be calculated
by realizing PSl,(p) as an epimorphic image of I', or some other Fuchsian
group, and then minimizing over all such epimorphisms. For example I
has the presentation:

I ={S,T|S*=(ST)® = 1},

h S—Oland T—11
where =1_1 o =lo 1l

Reducing coefficients mod p leads to a presentation of PSI,(p), namely

3 -

PSly(p) = {4, B,C| 4> = B* = C” = ABC = 1, ETC} |

y-
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where we have made the substitutions 4 = S, B = ST and C = T~ ! We
have written the presentation in this manner so that it becomes clear that
PSl,(p) is an epimorphic image of the triangle group

T(2,3,p) = {4,B,C| A% = B® = C? = ABC = 1}.

Recall that if r, s, t are integers > 2 then T(r,s,t) is the group of
orientation preserving symmetries of the appropriate plane generated by
rotations of 2m/r, 2w/s and 2mn/t, respectively, about the vertices of a triangle
having angles m/r, m/s and m/t respectively. The plane is spherical if
I/r + 1/s + 1/t > 1, euclidean if 1/r + 1/s + 1/t = 1, and hyperbolic if
I/r + 1/s + 1/t < 1. See Magnus [M] for more details.

Using the above presentation of PSI,(p) leads to an exact sequence
1 - A - T(2,3,p) » PSl,(p) - 1 and an effective conformal action of PSI,(p)
on the closed Riemann surface H/A. Again we have

genus (H/A) = 1 + Pp°—1) (1 - 1)

4 6 p

so there is no improvement. But now the idea is clear: find all triples
(r, s, t) for which there is an exact sequence 1 - A — T(r, s, t) = PSL,(p) — 1,
compute the genus of H/A for any such extension, and then minimize over
all possible triples. It turns out that this procedure gives genus (PSl,(p))
because more branch points always gives a higher genus.

If p>13 we make the definition d = min{e|e > 7 and either

p—1 p+1
r
5 or e |

el }. Then our results are:

THEOREM 1. Assume p > 13. Then there exists a short exact sequence
1> A - T(2,3,d) - PSly(p) > 1 and the genus of H/A is

pp*-1) (1 1
I+ (E‘E)'

If p=+1(5 then there exists a short exact sequence 1 — A

TreOREM I1.

2
= T(2,5,5) - PSly(p) > 1 and the genus of ‘HA is 1+ p(p40— 1).

If p= +1(8) then there exists a short exact Sequence 1 — A

2
— T(3,3,4) > PSly(p) > 1 and the genus of H/A is 1 + p(p48— b




|
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(¢ If p=+1(5 and p= 4+ 1(8) then there exists a short exact
sequence 1 - A — T(2,4,5) —» PSl,(p) > 1 and the genus of H/A is

p(p*—1)
1 .
T %0

Then we will prove that genus (PSI,(p)) is obtained by minimizing over

all the possibilities above.
The result of this minimization is

COROLLARY. The genus of PSl,(p) is given as follows :

2_
@ g=1+"22 1)(1—1) if p=5711,

4 6 p

®o=1+20 o pe i pr 10
and d =15,

© g 1+p(pig_l) if p=213, pF X105, p==+1(9
and > 12,

@ g=1+20 y pons p= 21, p=210)
and d =9,

e g=1 +p(p24—1) (é—%) in all other éases.

In fact the least genus g always comes from the branched covering space
action on the Riemann surface S = H/A associated to some extension

1> A-> T(r,s, t) - PSl,(p) - 1,where
2,3,pp if p=25711,

2,55 if p=13, p=+1(5, p# £+ 1(8)
(r,s, t) = (3,3,4 if p=13, p£ +£1(5), p= =+ 1(8)
2,45 if p=13, p=+1(05), p= £t 1(8)

(2,3,d) 1in all other cases.

and
and
and

(ST T
A\VARA\VARV)

It turns out that other triples (r, s, t) are not relevant for the determina-

 tion of the minimal genus.

In most cases the answer is (r, s, t) = (2, 3,d). For p < 617 the triple
(2, 5, 5) occurs once exactly, namely for p = 509, (3, 3, 4) occurs exactly three

D
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times, namely for p = 103, 137 and 569 and (2,4, 5) occurs exactly six
times, for p = 199, 239, 359, 439, 521 and 599.

If S = H/A is the surface of minimal genus for PSI,(p) coming from one
of the extensions above then the orbit manifold S/PSl,(p) is the 2-sphere
$2 and the quotient map S — S? is a branched covering with exactly 3 branch
points. One of the most important steps in the proof of the main result of
this paper is the converse, namely if S is a Riemann surface of least genus
for the group G = PSl,(p) then /G = S% and S — S? is a branched covering
with exactly 3 branch points (see section 3). Note that a related notion
of genus, “the Cayley genus of a group” has been studied by others,
among them Tucker [T]. Earlier results can be found in Hurwitz [H] and
Burnside [B].

The remainder of this paper is organized as follows. In section 2 we
describe various ways of generating PSI,(p) and then prove theorems I and II
Section 3 proves that if S is a Riemann surface of least genus for PSl,(p) then
S/PSl,(p) is a 2-sphere S? and the branched covering S — S* has exactly
3 branch points. The calculation of genus (PSl,(p)) then follows from the
results of section 2.

Finally we would like to thank Bomshik Chang for help with the group
theory of PSI,(p). The first author would like to thank the University of
British Columbia for its hospitality to him during the time this research
was done.

§ 2. GENERATING TRIPLES FOR PSI,(p)

Our goal in this section is to find triples (r, s, t) for which there are
epimorphisms T(r, s, t) » PSIl,(p). In other words, given integers r,s,t > 2
are there matrices A, B, C e PSl,)(p) so that A, B, C generate PSI,(p)
and A" = B* = C' = ABC = 1? Throughout this section a standard refer-
ence for the group theory is Suzuki [S].

The spherical triangle groups are given in the following table

TABLE 1
triple triangle group order
(2,2,n) dihedral 2n
(2,3, 3) tetrahedral (4,) 12
(2,3,4) octahedral (S, 24

(2,3,95) icosahedral (A45) 60
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Now the group PSl,(p) has an element of order p since its order is
2
—1
| Psty(p) | = 2220

of any spherical triangle group since PSl,(p) can not be the image of any.
dihedral group and we are assuming p > 7. The following lemma then implies
‘that PSl,(p) can only be the image of hyperbolic triangle groups.

. It therefore follows that PSl,(p) is not the image

(2.1). LEMMA. PSl,)(p) is not the image of any euclidean triangle group.

Proof. Suppose T is one of the euclidean triangle groups, namely one of
T(3,3,3), T(2,4,4), T(2, 3, 6), and there exists an epimorphism T —» PSI,(p).
Since T has Z @ Z as a normal subgroup of index < 6 it follows that
PSl,(p) has an abelian normal subgroup of index < 6. But this is clearly
not possible. Q.ed.

In order to decide when a triple of matrices A, B, C € PSl,(p) generates
the entire group we need detailed knowledge of the maximal subgroups.
The following theorem can be found in Suzuki [S].

(2.2). THEOREM. The maximal proper subgroups of PSl,(p) are:
(a) dihedral of order p —1 or p + 1.

~1
(b) solvable of order °P . )
© A. if p=3,13, 27,37 mod 40.
d S, if p=+ 1mod8
) As if p= + 1mod5.

The dihedral group of order p — 1 can be chosen to be

—

a O 0 o .
D = <R, §> = 0 o'l et 0 |oeZ¥ >, where

0 1
R = [x 0—1} S = ) O] and x is a primitive root mod p.

To realize the dihedral subgroup of order p + 1 we need another
description of PSI,(p). The mapping

GF(p?) —» GF(p?), x — x” H
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is an automorphism of order 2. For convenience we put x = x°. Then
PSl,(p) = PSU,(p), where PSU,(p) is the projective special unitary group

PSU,(p) = {':_Z_ Z]la,beGF(pz),ad+ bb = 1}

®

Now consider the matrix U = I:O

(3:|, where ® € GF(p?) is chosen so that
®

p+1

oPtV2 = _lando* # + 1forl1 <k< . Then the order of U as

p+1
2

and the dihedral group of order

. + 1
an element of PSU,(p) 1s £

can be taken to be

0
p=<us>=1% Y| ¥ *llaccrpyr artt = 1},
0 a —a 0

(p—1)

can be chosen

Finally the maximal solvable subgroup of order

to be the subgroup of upper triangular matrices

X A
H = {[0 x_l}lxelj, XeZp}.

Thus there is a split extension of the form

A
1—>zpaH—">z(,,_1),2—>1,e:[g _1]—» + x.
X

: 1 1
The kernel is generated by T = |:0 1:| and the splitting is induced by the

. lx 0 : Ny
matrix |:0 _ 1} , where x is a primitive root mod p.
X

The other maximal subgroups will not play much of a role in what
follows. Notice that an immediate consequence of (2.2) is

(2.3). LEMMA.

(@) The order of an element of PSl,(p) is one of the following: a divisor

p—1 p+1
or :

ith
of either > 5

r;2,3,4 or 5.
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-1 1
(b) If d is a divisor of either pT or P+ then there is an

element of PSl,(p) having order d.

The order of an element 4 e PSI,(p) can be determined from its trace.
In particular we have:

(24) LeMMmA. Let A€ PSl,(p) and y = + trace A. Then the order of A
is 2,3,4, or 5 vrespectively if, and only if, x =0(p), x= + 1(p),
x> =2(p) or x>+ — 1=0(p) respectively.

Definition. We say that a triple of elements (4, B, C) from PSI,(p) is
an (r,s, t) triple if (a) order 4 = r, order B =5, order C = t; and
(b) ABC = 1.

p—1

In order to construct (2, 3, d) triples for d | let A, B, C be the

matrices

0 = X 0 1 ~ x~1 x
waa o[ Nemwar [ ]

where x € Z} . Then order A = 2, order B = 3 and

[x"k x(xk 14 xk3 +...+x“"_1)):|

k=
0 5k

If x= 4+ 1then C = T and order T = p. In general the order of C is
given by the following lemma whose proof is elementary and hence omitted.

(2.6). LEMMA. Assume x # + 1. Then the order of C in PSl,(p) is the
least positive integer k so that either x* =1 or x* = — 1.

Given xeZ*, x # = 1, let k be the least positive integer so that

x¥ = + 1. Since we always have x*~1/2 = + 1 it follows that 1 <k
p—1

< . Also x** = 1 and therefore k | pT Conversely, given any divisor

1
d of 2

there exists x € Z}¥ so that d is the least positive integer k

Ve

satisfying x* = + 1. i
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— 1
4 Then there exist

(2.7). COROLLARY. Suppose d > 1 isadivisor of
(2,3,d) triples (A, B,C) in PSIly(p).

Next we determine when there are (2,3,d) triples for divisors of

Ei—l—. Suppose x € GF(p?)* is such that x?*! = 1. Then consider the triple

2
of matrices (A4, B, C) in PSU,(p):

)3 4 = a b B — Xa —xb C - x 0
(28 -5 al’ b xa |” |0 x

where a, b € GF(p?) satisfyaa + b b = 1.
[t is easy to check that ABC = 1.

=)

+ 1
(29). LEMMA. Let d > 2 be any divisor of pT Then there are

(2,3,d) triplesin PSI,(p).

Proof. Let x e GF(p** be any element so that d is the least positive
integer satisfying x? = + 1. Then the matrix C in (2.8) has order d. Next
we choose a € GF(p?)* so that a(x—x~?!) = 1. Since

GF(p) = {bb|be GF(p?)}

it follows that there exists b € GF(p?) such that aa + bb = 1.

We now prove that the matrices 4, B of (2.8) have orders 2, 3
respectively, that is we will show thata + ¢ = O and ax + a x = + 1. Since
x?*1 = 1 we have

1 = a’(x—x"Y = a?(xP—x7?) = aP(x 1 —x).

This together with 1 = a(x—x~1') implies that a®» = —aq, ie, a + d = 0.
Finally

ax + ax =ax + a’xf = ax —ax ' =ax—x"1) =1. Qed

The next theorem proves one half of theorem'I of the introduction.

(2.10). THEOREM. Suppose d is a divisor of either % or %l
and suppose d > 6. Then there is a (2,3,d) triple (A4, B,C) so that the
group generated by A, B, C is PSl,(p). h

Proof. Let (A, B, C)be any (2, 3, d) tripleand set G = < A4, B, C> = the
subgroup generated by A4, B, C. Since G has elements of order d > 6 it




314 H. GLOVER AND D. SJERVE

follows that G can not be a subgroup of A,,S,, As. Therefore, if
G # PSl,(p), it follows that either G = D or G < H, where D is a maxima]
dihedral subgroup and H is a maximal solvable subgroup (see (2.2)).

First we assume that G < D. Since B, ABA both have order 3 they
must commute, i.e., (AB)?> = (BA)>. But then we have

(AB)® = (AB)*AB(AB)*AB = (BA BA)AB (BA BA)AB = BAB?BAB? = 1

contradicting our hypothesis that C = (4B)~ ! has order d > 6.
Next assume that G < H. Since there is an extension

1_’Zp—’H“e’Z(p—1)/2“’1

we see that (4B)° € Z, since A has order 2, B has order 3, and 6(4) and

p—1

6(B) commute. If d | then

(Ll p~i Lk
1 =(AB)®% = (AB)*\ 2 * 2 * 1) = (AB)® since (AB) 2z = 1.
This contradicts the fact that AB has order d > 6. The argument for divisors

+1. . .
¥ is similar. Q.ed.

of

Summarizing we now know that PSIl,(p) is generated by a (2, 3,p)
triple and also by any (2, 3, d) triple, where d > 6 and d is a divisor of
.. p—1 p+1
either 5 or 5
it turns out that in addition we only need determine those primes p for
which PSl,(p) is generated by a triple of the form (3, 3, 4), (2,5, 5), (2,4, 5).

According to (2.4) a matrix C € PSl,(p) has order 4, respectively order
5, if, and only if, x* = 2(p), respectively x> + yx — 1 = 0(p), where
x = trace C. But these equations are solvable over Z, if, and only fif,
p = t+ 1(8), respectively p = + 1(5). Since every element of Z, can arise
as the trace of some matrix we have PSl,(p) has elements of order 4,
respectively order 5, if, and only if, p = + 1(8), respectively p = + 1(5).

To construct (3, 3, 4) triples consider matrices

2.11). A=[ 0 1},3:[‘1 b ]
—1 1 ¢ —a+1

C = (4B = l:l——a—b a—l]

. As far as the problem of minimum genus is concerned

a—¢ C

where —a? + a — bc = 1 (p).
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A4 and B both have order 3 and C will have order 4 if, and only if,
(1—a—b+c)*> = 2 (p). Therefore we need to find a4, b, ¢ satisfying

(2.12). —a*+a—bc=1(p) and (I1—a—b+c)* =2(p).

Assume p = + 1(8) so that there is ae Z, with a®> = 2(p). Then (2.12)
is equivalent to

l—a—b+c=a and a*—a+bc+1=0
which in turn is equivalent to finding b, ¢ so that

(2.13). —3 — 4bc is a quadratic residue mod p  and

1+ ./—3—4bc

=1—b+c— 0.
2

But this is the same as finding b, ¢ so that
(2.14). —3 — 4bc = (1+2(—b+c—0)*.

Now solving for ¢ we see that there is a solution, if, and only if,
—3b* + (2—4a)b — 3 is a quadratic residue for some choice of b. But
quadratic polynomials always assume at least one quadratic residue and
therefore it is possible to satisfy (2.12).

Thus we have proved the following theorem.

(2.15). THEOREM. Suppose p = + 1(8). Then there are (3,3,4) triples
in  PSl,(p), one such being given by (2.11), where a,b,c are chosen to
satisfy

—a*+a—bc=1(p) and (l—a—b+c)>=2(p).

We still must prove that PSl,(p) can be generated by a (3, 3,4) triple
fp=+1(8).

(2.16). THEOREM. Suppose p = + 1(8). Then there are (3,3,4) triples
in PSly(p) and any such triple will generate PSl,(p).

Proof. Let (4, B, C) be any (3, 3, 4) triple, which exists by (2.15), and
let G = <A4,B,C>. We use (2.2) to prove that G = PSi,(p). First note
that none of A4,, S,, A5 contain (3, 3,4) triples. Secondly suppose that
G < D, where D is a dihedral group. Since A, B are elements, of odd order
(in a dihedral group) they commute and consequently 4B will not have

4 order 4.
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Finally, suppose G = H, where H is a maximal solvable subgroup of
PSly(p). From the existence of the extension 1 —» Z, - H 5 Ly 1), —1
we see that ABeZ, since 6(AB)* =1 and 6(4B)’ = 1. But this is
impossible since the order of AB is 4. Q.ed.

To construct (2, 5, 5) or (2, 4, 5) triples in the case p = 1 (5) consider the
matrices

—ax 1 —
217, A = l:a b:l, B — [ ax_1 bx], C_ |:x 0_1}
s —a —cXx ax 0 x

where a, b, ¢, x € GF(p) are chosen so that

—a? —bc=1,x>=1,x#+1.

If we also have p = + 1(8) then we can choose a so that a’(x—x~1)* = 2,
and therefore (A4, B, C) will be a (2, 4, 5) triple. On the other hand choosing
a so that o« = a(x—x"1)is a solution of u?> + u — 1 = 0 will guarantee that
(A,B,C)is a (2,5, 9) triple.

In the case p = —1(5) we think of PSl,(p) as the projective special
unitary group PSU,(p). Thus we have the matrices

a b a —bx x 0
R P R

where a, b, x € GF(p?) are chosen to satisfy

=

S

ad+bb=1x>=1x# +1.

x must also satisfy x X = 1, that is x?*!

follows automatically.

= 1. Since p + 1 = 0(5) this

First we choose x so that x> = 1, x # + 1 and then we choose a so
that a*(x—x~1)?> = 2, assuming also that p = + 1(8). In other words let
o€ GF(p) be such that a®> = 2 and then set a(x—x~!) = a. But then we
have a(x—x"!) = o = o? = aP(x*—x"F) = a’(x " '—x) = —d(x—x"?') and
hence a + a = 0. Therefore, with these choices, (2.18) is a (2, 4, 5) triple.

In a similar fashion the matrices in (2.18) will be a (2, 5,5) triple if
a, b, x € GF(p?) are chosen to satisfy aa+bb =1, x> =1, x # + 1,
a(x—x"1!) = o, where o€ GF(p) is any solution of u®* + u — 1 = 0. As
a consequence we have the following result.

(2.19). THEOREM. ’

(@) If p= £ 1(5) then thereare (2,5,5) triplesin PSl,(p). i
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b) If p=+1(5 and p= + 1(8) then there are (2,4, 5) triples in
PSL(p). )
It still remains to prove that we can generate PSl,(p) by (2,5,5)
triples or (2, 4, 5) triples.

(220). THEOREM. If p= +1(5 and p= + 1(8) then any (2,4,5)
triple will generate PSl,(p).

Proof. Let (A, B, C) be any (2,4,5) triple and let G = <A4, B, C>.
Because of the orders of A, B, C it readily follows that G &£ A, S,, As.

Suppose G = D, where D is a dihedral group of order p + 1. Then
BC = CB, since elements of orders > 2 in a dihedral group commute.
Therefore (BC)* = C*. But also (BC)?> = 1, and this together with C°> = 1
implies that C = 1, a contradiction.

Finally suppose G < H, where H is a maximal solvable subgroup.
Recall that we have an extension

1 >Z, > H>Z, 1, — 1.
Then C* € Z,, since (BC)* = 1 and
1 = 8(BC)* = 6(C%).

From this it follows that the order of C is p, a contradiction. Therefore
G = PSL(p). Q.ed.

The generation of PSl,(p) by (2, 5, 5) triples is more delicate since it is
possible to generate A5 by such triples.

(221). THeoREM. If p = + 1(5) thenthereare (2,5,5) triples generating
PSL,(p).

Proof. First we consider the case p = 1(5). The matrices 4, B, C in
(2.17) will be a (2, 5, 5) triple if

—a*—bc=1 x=1, x#+1, ax—x"1!) = a,

where o e GF(p) is any solution of u?> + u — 1 = 0. In particular o« = x
+ x~ ! is such a solution. In fact a> + o — 1 = 0.

As before let G = <A, B, C>. By arguments similar to those of (2.20) we
see that G &£ A,, S;, D or H. To show that G can not be a subgroup
of A5 consider the matrix
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ax>? bx?
C?A = )
[cx‘2 ——axz]

The trace of this matrix is
Y = a(x*—x"%) = ax—x"YH(x+x"1H = (x+x"1)%.

Using (2.4) we can show that C?4 does not have order 2, 3, or 5, and
this eliminates 4. Hence G = PSI,(p) in this case.

For the case p = —1(5) we choose matrices 4, B, C as in (2.18), where
now

aa+bb=1 x*>=1, x#+1, ax—x"1) =x+x"1.

As in the first case we can show that <A, B, C> = PSlL,(p). Q.ed

Theorems (2.16), (2.20) and (2.21) now establish half of theorem II in the
introduction. The other half follows from the result below.

(2.22). THEOREM. Suppose G is a finite group and (A, B,C) is an
(r, s, t) triple generating G. If 1 > A - T(r,s,t) > G — 1 isthe associated

G 1 1 1
extension then the genus of H/A is 1 + 'z—l <1 - — - = ;)
r s

Proof. A fundamental domain for the action of T(r,s, t) on P, where P
is the appropriate plane, consists of two copies of a triangle whose
angles are m/r, /s, n/t (see the diagram)

A, B, C are rotations
about u, v, w through
angles 2mn/r, 2nt/s, 2n/t.
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The only identifications under the action are: vu gets identified to vx and
wu gets identified to wx. It follows that P/T(r, s, t) is the 2 sphere and the
branched covering P/A — F/T(r, s, t) has 3 branch points coming from the
vertices u, v, w.

Now notice that A is torsion free. This follows from the facts:

(1) the elements of finite order in T(r, s, t) are the conjugates of
A, B, C.

(2) elements of finite order in T(r, s, t) map to elements of the same
order in G. From this it follows that the orders of the branch points are
r, s, t respectively.

Finally we consider the Riemann-Hurwitz formula:

X(P/&) = | G| (x(P/T(n 50) = (1 - 1) - (1 - é) - (1 - %D

_ 1 1 1
ie., 2—2g=|G|<—+—+——1>.
r S t
| G | 1 1 1
Therefore =14 —1 - —— — — .e.d.
¢ 2 ro st Qed

§ 3. CONFORMAL ACTIONS ON SURFACES OF LEAST GENUS

If (4, B, C) is an (r, s, t) triple generating PSI,(p) then we have a short
exact sequence

1 A - T(rs,t) > PSL(p) - 1

where A is torsion free. Then it follows that H/T(r,s,t) is S? and the
branched covering H/A — H/T(r, s, t) has 3 branch points with orders
r S, L.

Conversely we have:

(3.1). THEOREM. If S is a Riemann surface of least genus for PSl,(p) then

S/PSly(p) is S* and m:S — S/PSl(p) has 3 branch points.

Proof. There exists a short exact sequence 1 - A — T (2, 3, p) = PSI,(p)

— 1 arising from a (2, 3, p) triple and consequently

genus (H/A) = 1 + l—%(% — 117)
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Let g = genus(S), h = genus (S/PSl,(p)) and suppose n: S — S/PSl,(p) has b
branch points x,, .., x, of respective orders n,, .., n,. Then the Riemann-
Hurwitz formula tells us

(3.2). 2—29=|G|<2-2h—2<1—%>).

G 1
Thatisg = 1 + ITI <2h -2+ Z (1 - —>) Since g 1s the least genus this
h;

leads to the inequality

1 1 1
(3.3). 2h—2+z<1——><g—l—?.

n;

From this we immediately see that h = 0, 1.

Therefore we suppose that h = 1. Since all n; > 2 this implies that
b = 0, and hence PSI,(p) is acting fixed point freely on S with orbit space
the torus. But this immediately gives an epimorphism Z @ Z — PSL(p).
However, this is a contradiction since G is not abelian. Therefore h = 0
and S/PSl,(p) is a 2-sphere.

To prove that there are 3 branch points put & = 0 into (3.3):

b 1 1 1
34 —2 l —— )<= —-.
( ) + i=zl ( ni> 6 D
. 1 e
Since 1 — — > — for all i this gives b < 4. If b = 0 we have an unbranched

h;
covering S — S? with deck transformation group PSI,(p). But this is clearly a
contradiction.
Thus assume b = 1. Then we have the regular unbranched covering

S — 1 x) - S — {x}

with deck transformation group PSI,(p). But again this is impossible since
AS'2 - {Xl} g I{2 .
Next we put b = 2 and consider the regular covering

S —n Hx;,x,} > 8% — {x;,x,}.

Then we have the exact sequence coming from fundamental groups
1 - Z - Z — PSl,(p) — 1, which is again a contradiction.
Finally we suppose b = 4. The inequality (3.4) is




REPRESENTING PSl,(p) 321

1 1 1 1 1 1
(3.5). 2 e <= - =

n, n, n3y ng, 6 p

' and is clearly satisfied by n, = n, = ny; = n, = 2. However, this choice of
1 n’s gives g = 1 by (3.2); in other words PSl,(p) is toroidal. However, no
" nonabelian finite simple group G can act on S! x S! because covering space
theory implies there are branch points and hence the orbit space is S2. Hence
the induced homomorphism PSl,(p) — Aut(Z?) is nontrivial and also has a
kernel since Aut(Z?) has no p torsion for p > 7. This contradicts G simple.
Therefore this case is excluded and we have

1 1 1 1 1 1 1 1 1
2 - — - — — — = — 22— === —- == = —
n, n, N3 Ny 2 2 2 3 6
contradicting (3.5). Q.ed.

If we let the orders of the 3 branch points be r, s, t then the Riemann-
Hurwitz formula is

o)1)

2
—1
But | PSL(p) | = pp 5 ) and therefore

genus (S) = 1 +p(p24~1)<1 _l_i_l).

To take advantage of this formula we must know what sort of branching
data (r, s, t) can occur. To this end we quote a very general theorem of
Tucker [T].

(3.6). THEOREM. Suppose G is a finite group acting effectively on a
closed orientable surface S by orientation preserving homeomorphisms. If
g = genus (S/G) and there are b branch points of orders Ny, ..,n, then G
has a presentation of the form

g

S

lx19y17-"3 xga ygaela'": ebl 1—1 [xia ,Vi:lel - €p = e'{l = e = egb = 13 ETC}
i=1

(3.7). CoROLLARY. If S is a Riemann surface of least genus for PSl,(p)
then there exist integers r,s,t, = 2 so that

"i , (4) there is an extension 1 - A > T(r, s, t) - PSl(p) > 1;
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(b) genus (PSL(p) = 1 + p(p"'4— 1 (1 1 1 £>

If A, B, C are the usual generators of T(r, s, t) then it is in fact true

that the orders of A, B, C in PSl,(p) are r, s, t. Putting (2.22) and (3.7)
together gives

(3.8). CoOROLLARY. The genus of PSl,(p) is given by

2_4 o1 1
g-—-min{l s )(1— ————— )}
4 r S t

where the minimum is taken over all (r,s,t) for which there exist
(r, s, t) triples generating PSl,(p).

The last step in the determination of the genus is to identify those
(r, s, t) which are relevant. This is accomplished ‘in the following manner:

(1) first find all (r, s, ) so that

. 1 1 1<1 1 . S 13
- <~ — —, assuming p > 13.
r S t 6 d sP

(2) then eliminate those triples (r, s, t) corresponding to either spherical or
Euclidean triangle groups.

(3) make a comparison of the triples remaining so as to eliminate those
with larger genus.

In the following table we give some pertinent data:
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TABLE 1
condition for
1 1 1 1 1 1 - 1 1
(r, s, t) e type T Ty T 6 4
1 :
(2,2, t) - spherical d>6
1 1 .
2,3,1) 6 7 spherical t<d
where 3 <t <5
(2, 3, 6) 0 euclidean t<d
1 1 .
(2,3,1) A hyperbolic t<d
where t > 7
(2,4, 4) 0 euclidean d>©6
1 :
(2,4, 5) 20 hyperbolic d>=>9
1 :
(2,4, 6) D hyperbolic d > 12
3 :
(2,4,7) 7 hyperbolic d > 17
1 :
(2,4, 8) 3 hyperbolic d > 24
5 :
(2,4,9) 6 hyperbolic d > 36
3 .
(2, 4, 10) 20 hyperbolic d = 60
7
(2,4, 11) — hyperbolic d > 132




13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.
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TABLE 1 (suite)

condition for

1 1 1 1 1 1
(r, s, t) l - - type l———-—-¢
r S t r S t
(2,4,t b 1 > ! h boli
—— > r ne
,4,1) 1776 yperbolic ver
1 .
(2,5,9) 10 hyperbolic d> 15
2 :
(2,5, 6) 15 hyperbolic d > 30
11 :

(2,57 70 hyperbolic d > 105
(2,50 3 ! > ! hyperbolic never
— == > = i
> 10 ¢t 6 yP Y

where t > 8
1 1 1 1
(2,s,1) 2T 7 2\6 hyperbolic never
(3,3,3) 0 euclidean d>17
1 :
(3,3,4) B hyperbolic d> 12
2 :
(3,3,95) 3 hyperbolic d > 30
1 1 _ 1 .
(3,31 -——— 2= hyperbolic never
3 t° 6
1 1 :
(3,s, 1) 37577 > — hyperbolic never
S
where t > s > 4
1 1 :
(r, s, t) 1 —— — = = — hyperbolic never
where

t>s>r>4




REPRESENTING PSI,(p) 325

Examining this table we see that we can eliminate cases 13, 17, 18, 22, 23
1
and 24 since % — 3 will always be less than 1 — 1/r — 1/s — 1/t. We can

also eliminate cases 1, 2, 3, 5 and 19 since these triples are not hyperbolic.
Now notice that cases 7, .., 12 need never be considered since if there are
such triples generating PSl,(p) then there will also be a (3,3,4) triple
generating PSl,(p), in which case the genus calculation from the (3, 3, 4)
case is at least as small. In a similar fashion we can ignore cases 15, 16
and 21 by comparing them with case 14. Finally, we can use Lemma (2.3)
to eliminate case 4. The triples remaining after this will be (2,3, p),
2,3,d), (2,5,95), (2,4,5) and (3, 3, 4). Minimization of the genera for these
triples leads directly to the corollary in the introduction. ‘
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