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A NOTE ON LEVI'S PROBLEM
WITH DISCONTINUOUS FUNCTIONS

by Mihnea CoLTOIU

§ 1. INTRODUCTION

In [3] Fornaess and Narasimhan proved that a complex space X which
carries a strongly plurisubharmonic exhaustion function @: X — R is a Stein
space. It is a remarkable fact that ¢ is supposed only upper semicontinuous.

A natural question which arises when we consider the Levi problem with
upper semicontinuous functions is the following: what would happen if we
allowed ¢ to take on the value —oc. Simple examples (compact complex
spaces, the blowing up of C" at the origine..) show us that X is not
necessarily Stein. The best result one might hope to obtain is X being
l-convex.

The aim of this short note is to give an affirmative answer to this
question, hence to prove the following theorem conjectured by Fornaess and
Narasimhan:

THEOREM 1. Let X be a complex space which admits a strongly
plurisubharmonic exhaustion function ¢:X - [—c0, ). Then X s
I-convex.

If ¢ is supposed real-valued it follows easily, from the maximum principle,
that the exceptional set of X is empty, hence X is Stein. This is exactly
Fornaess-Narasimhan’s theorem.

§ 2. PRELIMINARIES

All complex spaces are assumed to be reduced and countable at infinity.
An upper semicontinuous function ¢@: X — [—o0, o) is called plurisub-
harmonic if for every holomorphic map t: W — X (W = the unit disc
in C) it follows that @ o T is subharmonic on W (possibly = — ). ¢ is said
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to be strongly plurisubharmonic if for every C® real-valued function 6 with
compact support there exists an g, > 0 such that ¢ + €0 is plurisubharmonic
for|e| < g.

A main result in [3] tells us that the above definition agrees with the
usual one as given in [6].

Let us also recall that a complex space X is said to be 1-convex if
there exist:

1) a compact analytic set S = X with dim, S > O for any x € S,

i) a Stein space Y, a finite set A < Y and a proper holomorphic map
p: X — Y inducing a bilholomorphism X\S = Y\A and which satisfies
PxOx = Oy.

S is called the exceptional set of X and Y the Remmert reduction of X.

Remark. Using the analytic version of Chow’s lemma (Hironaka [5])
it was proved in [2] that any l-convex space X carries a strongly pluri-
subharmonic exhaustion function ¢: X — [— o0, o), i.e. the converse of
Theorem 1 holds too.

§ 3. THE PROOF OF THEOREM

We shall apply Andreotti-Grauert’s technique [1] with suitable modifica-
tions required by the upper semicontinuity. Throughout this section & will
denote a coherent sheaf on X and X, = {x € X | ¢(x) < c}.

To prove Theorem 1 we need some lemmas.

LEMMA 1. For any ceR there exists € > 0 such that is restriction
map HYX..., %) H'X.,.,F) Iis surjective for any 0 < ¢ < «.

Proof. Wemayassumec = 0.SetK = {¢ < 1} andlet{U,,.., U,}bea
covering of K with Stein open sets, U; c< X and h;e CZ(U), h; = 0

such that @ — ) h; is strongly plurisubharmonic for r = 1,.,m and
i=1

Y h; > 0 on K. Choose o > 0 such that ) hy(x) > afor any x € K and take
i=1 i=1

0 < ¢ < min(o, 1). We shall prove that this ¢ satisfies the conditions required
in Lemma 1.

Forany0 < ¢ <eweset X' = {xe X |@(x) < € + hy(x) + .. + h(x)} -
for r = 0, .., m (by definition X2 = X_.). k|
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