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A NOTE ON LEVI'S PROBLEM
WITH DISCONTINUOUS FUNCTIONS

by Mihnea Coltoiu

§ 1. Introduction

In [3] Fornaess and Narasimhan proved that a complex space X which
carries a strongly plurisubharmonic exhaustion function cp : X -» R is a Stein

space. It is a remarkable fact that cp is supposed only upper semicontinuous.
A natural question which arises when we consider the Levi problem with

upper semicontinuous functions is the following: what would happen if we
allowed cp to take on the value — oc. Simple examples (compact complex
spaces, the blowing up of C" at the origine...) show us that X is not
necessarily Stein. The best result one might hope to obtain is X being
1-convex.

The aim of this short note is to give an affirmative answer to this
question, hence to prove the following theorem conjectured by Fornaess and
Narasimhan :

Theorem 1. Let X be a complex space which admits a strongly
plurisubharmonic exhaustion function cp : X [— oo, oo). Then X is
1-convex.

If cp is supposed real-valued it follows easily, from the maximum principle,
that the exceptional set of V is empty, hence X is Stein. This is exactly
Fornaess-Narasimhan's theorem.

§ 2. Preliminaries

All complex spaces are assumed to be reduced and countable at infinity.
An upper semicontinuous function cp : X [-oo, oo) is called plurisubharmonic

if for every holomorphic map x : W -> X (W the unit disc
in C) it follows that cp o i is subharmonic on W (possibly — oo). cp is said
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to be strongly plurisubharmonic if for every C00 real-valued function 0 with

compact support there exists an s0 > 0 such that cp + s0 is plurisubharmonic
for I s I ^ 80

A main result in [3] tells us that the above definition agrees with the

usual one as given in [6].
Let us also recall that a complex space X is said to be 1-convex if

there exist :

i) a compact analytic set S a X with dimx S > 0 for any x e S,

ii) a Stein space Y, a finite set A <= Y and a proper holomorphic map
p : X -> Y inducing a bilholomorphism X\S Y\A and which satisfies

S is called the exceptional set of X and Y the Remmert reduction of X.

Remark. Using the analytic version of Chow's lemma (Hironaka [5])
it was proved in [2] that any 1-convex space X carries a strongly
plurisubharmonic exhaustion function cp:X-> [—oo, oo), i.e. the converse of
Theorem 1 holds too.

§ 3. The proof of Theorem

We shall apply Andreotti-Grauert's technique [1] with suitable modifications

required by the upper semicontinuity. Throughout this section 3F will
denote a coherent sheaf on X and Xc {x e X \ cp(x) < c).

To prove Theorem 1 we need some lemmas.

Lemma 1. For any ce R there exists 8 > 0 such that is restriction

map H1(Xc+e, $F) -» H1(Xc+e>, is surjective for any 0^8'^ 8.

Proof We may assumée 0. SetX {cp < 1} and let {U1,..., Um} be a

covering of K with Stein open sets, i/jccl and hte Cq(Ui), hx ^ 0

r
such that (p — Yj k is strongly plurisubharmonic for r 1,..., m and

i 1

m m

£ hi > 0 on K. Choose a > 0 such that £ h^x) ^ a for any xe K and take
i 1 i= 1

0 < 8 < min(a, 1). We shall prove that this 8 satisfies the conditions required

in Lemma 1.

For any 0 ^ e' ^ 8 we set Xrt, {x e X \ <p(x) < 8' + hx{x) + + hr(x)}

for r 0,..., m (by definition X° Xz.
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