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A NOTE ON LEVI'S PROBLEM
WITH DISCONTINUOUS FUNCTIONS

by Mihnea Coltoiu

§ 1. Introduction

In [3] Fornaess and Narasimhan proved that a complex space X which
carries a strongly plurisubharmonic exhaustion function cp : X -» R is a Stein

space. It is a remarkable fact that cp is supposed only upper semicontinuous.
A natural question which arises when we consider the Levi problem with

upper semicontinuous functions is the following: what would happen if we
allowed cp to take on the value — oc. Simple examples (compact complex
spaces, the blowing up of C" at the origine...) show us that X is not
necessarily Stein. The best result one might hope to obtain is X being
1-convex.

The aim of this short note is to give an affirmative answer to this
question, hence to prove the following theorem conjectured by Fornaess and
Narasimhan :

Theorem 1. Let X be a complex space which admits a strongly
plurisubharmonic exhaustion function cp : X [— oo, oo). Then X is
1-convex.

If cp is supposed real-valued it follows easily, from the maximum principle,
that the exceptional set of V is empty, hence X is Stein. This is exactly
Fornaess-Narasimhan's theorem.

§ 2. Preliminaries

All complex spaces are assumed to be reduced and countable at infinity.
An upper semicontinuous function cp : X [-oo, oo) is called plurisubharmonic

if for every holomorphic map x : W -> X (W the unit disc
in C) it follows that cp o i is subharmonic on W (possibly — oo). cp is said
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to be strongly plurisubharmonic if for every C00 real-valued function 0 with

compact support there exists an s0 > 0 such that cp + s0 is plurisubharmonic
for I s I ^ 80

A main result in [3] tells us that the above definition agrees with the

usual one as given in [6].
Let us also recall that a complex space X is said to be 1-convex if

there exist :

i) a compact analytic set S a X with dimx S > 0 for any x e S,

ii) a Stein space Y, a finite set A <= Y and a proper holomorphic map
p : X -> Y inducing a bilholomorphism X\S Y\A and which satisfies

S is called the exceptional set of X and Y the Remmert reduction of X.

Remark. Using the analytic version of Chow's lemma (Hironaka [5])
it was proved in [2] that any 1-convex space X carries a strongly
plurisubharmonic exhaustion function cp:X-> [—oo, oo), i.e. the converse of
Theorem 1 holds too.

§ 3. The proof of Theorem

We shall apply Andreotti-Grauert's technique [1] with suitable modifications

required by the upper semicontinuity. Throughout this section 3F will
denote a coherent sheaf on X and Xc {x e X \ cp(x) < c).

To prove Theorem 1 we need some lemmas.

Lemma 1. For any ce R there exists 8 > 0 such that is restriction

map H1(Xc+e, $F) -» H1(Xc+e>, is surjective for any 0^8'^ 8.

Proof We may assumée 0. SetX {cp < 1} and let {U1,..., Um} be a

covering of K with Stein open sets, i/jccl and hte Cq(Ui), hx ^ 0

r
such that (p — Yj k is strongly plurisubharmonic for r 1,..., m and

i 1

m m

£ hi > 0 on K. Choose a > 0 such that £ h^x) ^ a for any xe K and take
i 1 i= 1

0 < 8 < min(a, 1). We shall prove that this 8 satisfies the conditions required

in Lemma 1.

For any 0 ^ e' ^ 8 we set Xrt, {x e X \ <p(x) < 8' + hx{x) + + hr(x)}

for r 0,..., m (by definition X° Xz.
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We make the following remark: for any 0 ^ s' < s we have Xe <= A'.
Indeed, let xeXsuch that cp(x) < e. In particular (p(x) < 1, hence xe K.

m

From the definition of a it follows that £ h^x) ^ a and from the inequalities
i 1

m m

cp(x) < 8 < a ^ £ hi(x) ^ s' + Yj hi(x) we get x 6 X.
i 1 i=l

Due to this remark Lemma 1 will be proved if we prove that the

restriction map 3F) - H1(XE ,^r) is surjective for any 0 ^ s' ^ s.

The inclusions X° a Xl. c= c= X show that it suffices to prove that
the restrictions H1(Xr/1, -> H1(XrE', #") are surjective for r 0,..., m — 1.

If we set

Lg'+1 {x g l/r+1 I cp(x) < 8' + Mx) + + hr + i(x)}

then Kg+1 and X l> n V\1 are Stein open sets. On the other hand
c= supp(/ir+1) c= Ur+1 and so X^1 X\. u KJ*1. From the

Mayer-Vietoris exact sequence :

H\X\?l,&) - H\X\.,&) © H\Vr/\^) -> Hl(Xre> n

it follows that the restriction map - H\Xr^,^) is surjective
and so Lemma 1 is proved.

Lemma 2. For any a ^ ß the restriction map <F) - H\Xa, 3F)
is surjective.

Proof. Set M(a) {S ^ a | for any a ^ y ^ 5 the restriction map

H1(X6, $F) -> H1(Xy, J*) is surjective}

From Lemma 1 and Lemma [1, p. 241] we deduce that M(oc) [a, oo)
which proves Lemma 2.

Lemma 3. For any cue R FF1^, &) has finite dimension.

Proof. Choose ß > oc such that Xa a Xp. From Lemma 2 the restriction
map Fß(Zp, !F) H\Xa, <F) is surjective and from [1, p. 240]

dimcH1(2f0t, ^) < oo

Lemma 4. For any ce R there exists 8 > 0 such that the restriction
map r(Xc + e, r(Xc+£r,J^) has dense image for any 0 ^ s' ^ 8.
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Proof. We may assume c — 0 and choose s > 0 as in Lemma 1.

Exactly as in the proof of Lemma 1 it suffices to prove that the restriction

map T{Xr/\ 3F) - T(Xrz,, 3F) has dense image for r 0,..., m — 1.

Consider the Mayer-Vietoris exact sequence :

T(Xr/ T(Xrz,, &) © T(VrS1, &) A T{Xrz> n 1, F)
-+ H1(Xrz^1, SF)

Since (Xre> n V^1, Kg'+1) is a Runge pair it follows that a has dense image.

On the other hand, applying Lemma 3 to the function

<p - e' - h1 - - Är + 1

we deduce that Hx(X[f1, $F) has finite dimension, in particular it is

separated, hence a has closed image. Consequently a is surjective. From the

open mapping theorem it follows easily that the restriction map

-+ T{Xrz.,&)

has dense image and so Lemma 4 is proved.

Lemma 5. For any a ^ ß the restriction map r(Vß, - T(Xai $F)

has dense image.

Proof. Lemma 5 is an immediate consequence of Lemma 4 and of

Lemma [1, p. 246].

Lemma 6. For any cgR there exists s > 0 such that the restriction

map H1(XC+Z, 3F) -» Hl(Xc+z>, $F) is bijective for any 0 < e' ^ 8.

Proof. We may assume c 0 and choose s > 0 as in Lemma 1.

Due to the inclusions Xz. a Xz c= X and using Lemma 2 it follows that

it suffices to show that the restriction map Hi(X^, !F) - H\XZ., #") is

bijective. The inclusions Xz. Xz. a Xz> c= c X show that it is enough to

prove that the restrictions H\Xz-+1, $F) - H\Xrz*,JF) are bijective for

r 0,..., m — 1.

Consider the Mayer-Vietoris exact sequence :

r(x;., &) © nv'S1, p) - r(xn F;,+ 1, jf) -» 1, .^)

- Hl{Xrt.,F) © H\Vr/1, - n F^+1, jF)

As remarked in the proof of Lemma 4 the map

Wc., P) © r(F;.+1, #") - T(X', n F^,+1, JF)
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is surjective. Since

H\Xrt.n1, J*) 0

it follows that the restriction map

is bijective and so Lemma 6 is proved.

Lemma 7. For any a<ß the restriction map 3?) -> H1(Xa, FF)

is bijective.

Proof. Set M(a) {5 > a | for any a < y ^ 5 the restriction map

H\Xh9&) - H\Xy, &) is bijective}

and let a0 sup M(a).

From Lemma 2 it follows that if ô g M(a) then [a, Ô] cz M(a), consequently

[a, a0) c= M(a). To prove Lemma 7 we have to show that a0 oo. Suppose

that a0 < oo. From Lemma 5 and Lemma [1, p. 250] we deduce that

a0 g M(a). From Lemma 6 there exists s > 0 such that a0 + se M(a).
This contradicts the definition of a0, and so Lemma 7 is proved.

We are now in a position to prove Theorem 1. Choose a e R and take

i oc0 < oc! < < oin < an increasing sequence of real numbers tending
to oo. By Lemma 7 the restriction map H1(X0Ln

+ l, !F) - H1(X0Ln, FF) is

bijective and by Lemma 5 the restriction map r(Xan + 1, FF) - F(Xan, FF)

has dense image. It follows then from Lemma [1, p. 250] that the restriction

map H1{X, FF) - H1(Xa, FF) is also bijective and from Lemma 3 H1(X, FF)

has finite dimension. Theorem V. in [6] tells us that X is 1-convex, as

required.
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