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A NOTE ON LEVI'S PROBLEM
WITH DISCONTINUOUS FUNCTIONS

by Mihnea CoLTOIU

§ 1. INTRODUCTION

In [3] Fornaess and Narasimhan proved that a complex space X which
carries a strongly plurisubharmonic exhaustion function @: X — R is a Stein
space. It is a remarkable fact that ¢ is supposed only upper semicontinuous.

A natural question which arises when we consider the Levi problem with
upper semicontinuous functions is the following: what would happen if we
allowed ¢ to take on the value —oc. Simple examples (compact complex
spaces, the blowing up of C" at the origine..) show us that X is not
necessarily Stein. The best result one might hope to obtain is X being
l-convex.

The aim of this short note is to give an affirmative answer to this
question, hence to prove the following theorem conjectured by Fornaess and
Narasimhan:

THEOREM 1. Let X be a complex space which admits a strongly
plurisubharmonic exhaustion function ¢:X - [—c0, ). Then X s
I-convex.

If ¢ is supposed real-valued it follows easily, from the maximum principle,
that the exceptional set of X is empty, hence X is Stein. This is exactly
Fornaess-Narasimhan’s theorem.

§ 2. PRELIMINARIES

All complex spaces are assumed to be reduced and countable at infinity.
An upper semicontinuous function ¢@: X — [—o0, o) is called plurisub-
harmonic if for every holomorphic map t: W — X (W = the unit disc
in C) it follows that @ o T is subharmonic on W (possibly = — ). ¢ is said
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to be strongly plurisubharmonic if for every C® real-valued function 6 with
compact support there exists an g, > 0 such that ¢ + €0 is plurisubharmonic
for|e| < g.

A main result in [3] tells us that the above definition agrees with the
usual one as given in [6].

Let us also recall that a complex space X is said to be 1-convex if
there exist:

1) a compact analytic set S = X with dim, S > O for any x € S,

i) a Stein space Y, a finite set A < Y and a proper holomorphic map
p: X — Y inducing a bilholomorphism X\S = Y\A and which satisfies
PxOx = Oy.

S is called the exceptional set of X and Y the Remmert reduction of X.

Remark. Using the analytic version of Chow’s lemma (Hironaka [5])
it was proved in [2] that any l-convex space X carries a strongly pluri-
subharmonic exhaustion function ¢: X — [— o0, o), i.e. the converse of
Theorem 1 holds too.

§ 3. THE PROOF OF THEOREM

We shall apply Andreotti-Grauert’s technique [1] with suitable modifica-
tions required by the upper semicontinuity. Throughout this section & will
denote a coherent sheaf on X and X, = {x € X | ¢(x) < c}.

To prove Theorem 1 we need some lemmas.

LEMMA 1. For any ceR there exists € > 0 such that is restriction
map HYX..., %) H'X.,.,F) Iis surjective for any 0 < ¢ < «.

Proof. Wemayassumec = 0.SetK = {¢ < 1} andlet{U,,.., U,}bea
covering of K with Stein open sets, U; c< X and h;e CZ(U), h; = 0

such that @ — ) h; is strongly plurisubharmonic for r = 1,.,m and
i=1

Y h; > 0 on K. Choose o > 0 such that ) hy(x) > afor any x € K and take
i=1 i=1

0 < ¢ < min(o, 1). We shall prove that this ¢ satisfies the conditions required
in Lemma 1.

Forany0 < ¢ <eweset X' = {xe X |@(x) < € + hy(x) + .. + h(x)} -
for r = 0, .., m (by definition X2 = X_.). k|

N
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We make the following remark: for any 0 < € < ¢ we have X, < X 7.
Indeed, let x € X such that @(x) < & In particular @(x) < 1, hence x € K.

From the definition of « it follows that Y h(x) > o and from the inequalities
i=1

plx) < & <o < Zh,(x 8+Zh(x)wegetxeX'"

Due to this remark Lemma 1 will be proved if we prove that the
restriction map HY(X™, #) - HY(X, , %) is surjective for any 0 < & < &.
The inclusions X, = X2 =« X1 < .. © X show that it suffices to prove that
the restrictions HY(X**!, #) - HY{(X", %) are surjective forr = 0, .., m — 1.
If we set

Virt = {xe U,y | 9x) <€ + hy(x) + ... + hy(x)}

then VL' and X. n V.'! are Stein open sets. On the other hand
XWX < supp(h,q) < U,.; and so X.*!' = X7, u V2"l From the
Mayer-Vietoris exact sequence :

HY(X'Y, F) > HY(X', F) @ H\(V'', F) > HY(X . A VI F)

it follows that the restriction map HYX . !, #) - HY(X., %) is surjective
and so Lemma 1 is proved.

LEMMA 2. Forany o < B the restriction map H' (X4, F) » H'(X,, F)
IS surjective.

Proof. Set M(a) = {6 > a|for any o < y < J the restriction map
HY (X, #) - H'(X,, #) is surjective} .

From Lemma 1 and Lemma [1, p. 241] we deduce that M(x) = [a, o0)
which proves Lemma 2.

LEMMA 3. For any aeR HYX,, %) has finite dimension.

Proof. Choose B > a such that X, = X;. From Lemma 2 the restriction
map H(Xy, #) - H'(X,, F) is surjective and from [1, p. 240]

dimcHY(X,, #) < .

LEMMA 4. For any ceR there exists & > 0 such that the restriction
map  I(X..o, F) > U(X o, F)  has dense image for any 0 < ¢ <e.
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Proof. We may assume ¢ = 0 and choose ¢ > 0 as in Lemma 1.
Exactly as in the proof of Lemma 1 it suffices to prove that the restriction
map (X', #) - (X", #) has dense image for r = 0,..,m — 1.

Consider the Mayer-Vietoris exact sequence :

(X, 7)) - TX,, #)QIV ', F) > T(XLn Vi, F)
- HY(X', 7)
Since (XL n V.*1, V.71 is a Runge pair it follows that o has dense image.
On the other hand, applying Lemma 3 to the function
o —¢ —h —..—hy

we deduce that HY(X!"! %) has finite dimension, in particular it is
separated, hence o has closed image. Consequently « is surjective. From the
open mapping theorem it follows easily that the restriction map

MXy, ) > T(X,, 7F)

has dense image and so Lemma 4 is proved.

LEMMA 5. For any o < B the restriction map I'(X,, #) - I'(X,, #)
has dense image.

Proof. Lemma 5 is an immediate consequence of Lemma 4 and of
Lemma [1, p. 246].

LEMMA 6. For any ceR there exists €& > 0 such that the restriction
map HY(X,,.,F)— HYX.,.,F) is bijective for any 0 < ¢ < &

Proof. We may assume ¢ = 0 and choose ¢ > 0 as in Lemma 1.
Due to the inclusions X, < X, < X7 and using Lemma 2 it follows that
it suffices to show that the restriction map H{(XT, %) - HY(X, , %) is
bijective. The inclusions X,, = X2 = X1 = .. = X™show thatitis enough to
prove that the restrictions HYX."!', #) > H(X ., %) are bijective for
r=20,.,m-—1.

Consider the Mayer-Vietoris exact sequence:

(X, YTV F)Y>TXLn VL F) > H(XL, F)
- H'X,, Z)Q H'(V{", #F) > H(X, n VT F)
As remarked in the proof of Lemma 4 the map

X, eIV, F)->T XLV F)



" ' LEVI’S PROBLEM 303

is surjective. Since
HWVP L F) = H XL n Vi L, #F) =0
it follows that the restriction map
H\X[ ', F) > H(X], 7)

is bijective and so Lemma 6 is proved.

LEMMA 7. Forany o < P the restriction map H Xy, F) - H'(X,, F)
is bijective.

Proof. Set M(a) = {8 > o|for any a < y < 8 the restriction map

HYX;, %) » H'(X,, ) is bijective}

v

and let o, = sup M(a).

From Lemma 2 it follows that if 8 € M(a) then [a, 8] < M(a), consequently
[4, %y) = M(a). To prove Lemma 7 we have to show that ay = 00. Suppose
that oy < 0. From Lemma 5 and Lemma [1, p. 250] we deduce that
% € M(a). From Lemma 6 there exists € > 0 such that o, + €€ M(x).
This contradicts the definition of o, and so Lemma 7 is proved.

We are now in a position to prove Theorem 1. Choose o € R and take
1=0, < 0oy < ..<a, <..an increasing sequence of real numbers tending
to co. By Lemma 7 the restriction map HY(X, , , %) - H'(X, ,%) is
bijective and by Lemma 5 the restriction map I'(X, , ,#) - I(X, %)
has dense image. It follows then from Lemma [1, p. 250] that the restriction
map HYX, #) - HYX,, #) is also bijective and from Lemma 3 H(X, %)
has finite dimension. Theorem V. in [6] tells us that X is l-convex, as
required.
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