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292 H. HILLER N

H*Z/p*;A;) -  H¥Z/p*; M) - 0

l A=i*(A1) l i%k(M)

HYZ/p; Ay = HYZ/p;A) - H*Z/p; M) - 0

where A is the diagonal map Z, — p(Z/p). Hence to eliminate M k),
it suffices to show Im(A) = Im(AX). Let e denote a column p-vector con-
sisting of all I’s, according to the proof of (2.5 we must find an

xk,lskSp—lsothath.k-;k = C*k

k- x, = e. We do this inductively

[ 1 n
2
on k. For example, ;1 = - |, as can easily be checked. Inductively we
= p =
define
1 =1
X, (i) =
Xk(l-—l) + xk__l(i) 1 > 1.
Clearly C, - ;k = ;u—u for all coordinates except possibly the first; we

must show ;k(p) = 0 (mod p). But a comparison of the ;k’s with Pascal’s
triangle convinces one that

— —1+k k—1 1
- (711) () @) omen

sincek — 1 <p— L
We leave it for the reader to check that the restriction maps for
M (k) and M y(k) are non-trivial.

§ 3. Z/4-MANIFOLDS

In this section, we consider the case p = 2. For convenience, we change
the notation slightly and write M, for M(1) and M; for M(0), i = 6, 8, 9.
According to (2.7), the indecomposable Z/4-lattices that carry special classes .
are M,, M, and M,. It is easy to see M, is faithful if and only if |
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i =3,56,7,8,9. Hence if M = Ym;M, is an arbitrary Z/4-lattice then M
is a faithful representation carrying a special class if and only if the
multiplicities m; satisfy the inequalities:

m; + my + mg > 0
(3.0)

my + ms + mg + m; + mg + mg > 0.

Since the multiplicities are a complete set of isomorphism invariants in
the case p = 2 (see section 1) one can use the conditions (3.0) to show:

(3.1) THEOREM. If L,(m) denotes the number of isomorphism classes of
n-dimensional Z/m-lattices that carry special classes, then:

L(4) = Z:;; (aj — |:J2—:| — 1) + Z:;;h”(aj——aj_l—l)

n—4
+ zj=[n]4 (aj_aj_z—'aj_4+aj_6)

where [k], denotes the reduction of k modulo p, [k] denote the largest
integer < k and the a;’s are given by

1
(I-t) (1=t (1-1)? (1—%’

Pit) =3 " at =

In particular, the number of n-dimensional Z/4-manifolds is at least L, (4).

Proof. If Q(t) is a power series, let coef(n, Q(¢)) denote the coefficient
of t" in Q(t). The number L,(4) counts the number of ways of writing

h = my = m, 4 2(m3+m4) + 3(m5+m8) + 4(m6+m7+m9)

where the m,’s satisfy (3.0). If m; > 0 there is a contribution:
Z"m:il coef(n—m,, P(t)) — <|:n—2m1:I + 1>

n—m .
where [ 5 1} + 1 is the number of ways of expressing n — m;, as a

combination of I's (M,) and 2’s (M,) (not permitted by (3.0)). Reindexing
gives the first term for L (4).

Similarly, if m, = 0, m, > 0 there is a contribution:

2, COE(E" ™21 —1)P(t)) — 1
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where | 1s subtracted to omit choosing m, alone. Finally, if m; = m, = (,
we have:

ng COCf(["'~ 4:119‘ (1 —[2) (1 _[4)P([)) .

The coefficients of (1 —1)P(1) and (1 —12—1* —1°)P(t) are easily expressible in
terms of the a;'s and the result follows.

Remark. In order for a Z,p-lattice to carry a special class, the multiplicity
of the trivial representation must be non-zero. Topologically this is reflected
in the fact that a Z p-manifold fibers over a circle. This is already false
for a 4-dimensional Z 4-manifold as the following example shows.

Example. L,(4) = 6. The multiplicities of the indecomposables in these
4-dimensional Z 4-lattices are given by:

notation of [2] m, m, my mg Mg Mg M, Mg My

070202 !
12°01 04 1

12 01 02 TS
07 02 01 >

12,0103 11

12/01/06 1

where the first column gives the label of these “Z-classes” from the table
of the four-dimensional crystallographic groups in [2]. In fact, as these
tables indicate, there 1s precisely one Z/4-manifold corresponding to each
Z/4-lattice, hence there are exactly 6 4-dimensional Z/4-manifolds.

Remark. Recall that if p < 23, the field Q(e?™/?) has class number one.
This fact, along with the work of Charlap [4], shows that the number of
n-dimensional Z/p-manifolds is exactly L,(p), p < 23. This number is readily
computable, as Charlap [4, p. 30] remarks, and the precise formula is:

(3.2) L(p) = Z;:_l (Lﬁ} — <-jé> + 1)

where <k> denotes the smallest integer > k. In particular, L (p) = 1,
L(p) = 0,p > n, and when p = 2
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n\ 2 n [n],
33) L2 = (5) + <5> -1+

using the notation of (3.1).

One can easily construct the following table of values of L,(p):

whn W N3
[
w
w
fo'e)
(SN
—

Hence 14 of the 74 4-dimensional flat manifolds have cyclic holonomy
< 5. (Furthermore, 26 have holonomy the Klein 4-group.) We describe
analogous facts in dimension 5 below.
We let SH?(H, M) denote the set of spec1al classes in H?*(H, M). If

H is a cyclic p-group and i:Z, ¢ H is the inclusion of the subgroup
of order p, then

SH2(H, M) = H¥H, M) — ker(i*) .

If N (resp. Z) denotes the normalizer (resp. the centralizer) of H in
Aut(M), there is an exact sequence (see [15, p. 50])

0—>Z—-> N - Aut(H).
We conjecture:

Conjecture. 1f Z[e*™P*] is a unique factorization domain for,
1 < k < n, then N acts transitively on SH*Z/p"; M) for any H-lattice M.

The case n = 1 of the Conjecture follows from Charlap [4]. Class number
tables shows that the n = 2 case applies to p = 2,3, 5, the n = 3 case to
2,3 and the n = 4 case to p = 2. This conjecture implies that the lower
bound of (3.1) is exact.

We mention that the multiplicities of the indecomposables in the
d-dimensional Z/4-lattices that admit special classes are given by:
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m; m, ms my ms Mg m- mg mg
1
1
* 1
1 1 1
* 1 1
1 1 1
* 1 2
* 1 2 1
* 3 1
2 1
* 2 1
3
* 1
1
* 1
* 1 1

Those lattices that are starred clearly satisfy the Conjecture.

(1]
[2]
[3]
[4]
[5]
L6]
7]
(8]
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