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where A is the diagonal map Zp -> p(Z/p). Hence to eliminate M6(/c),

it suffices to show Im(A) c Im^*). Let e denote a column p-vector
consisting of all l's, according to the proof of (2.5) we must find an

xk, 1 ^ k ^ p — 1 so that Cp k-xk CkPtl • xk e. We do this inductively

1

2

on k. For example, xt -, as can easily be checked. Inductively we

define

**(0

i 1

Xk(/-1) + z > 1

Clearly Cp t
• xk xk_i, for all coordinates except possibly the first; we

must show xk(p) 0 (mod p). But a comparison of the xks with Pascal's

triangle convinces one that

xk{p)
p— 1 + k

p-l
k-l\ 1

p-lj \0
0 (mod p),

since k — 1 < p — 1.

We leave it for the reader to check that the restriction maps for

M7(k) and M9(k) are non-trivial.

§ 3. Z/4-MANIFOLDS

In this section, we consider the case p 2. For convenience, we change

the notation slightly and write M7 for M6( 1) and Mf for Mf(0), i 6, 8, 9.

According to (2.7), the indecomposable Z/4-lattices that carry special classes

are Mx, M4 and M9. It is easy to see Mt is faithful if and only if
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i 3, 5, 6, 7, 8, 9. Hence if M is an arbitrary Z/4-lattice then M
is a faithful representation carrying a special class if and only if the

multiplicities mt satisfy the inequalities :

(3.0)

m1 + m4 + m9 > 0

m3 + m5 + m6 + m7 + m8 + m9 > 0

Since the multiplicities are a complete set of isomorphism invariants in
the case p 2 (see section 1) one can use the conditions (3.0) to show:

(3.1) Theorem. If Ln(m) denotes the number of isomorphism classes of
n-dimensional Z/m-lattices that carry special classes, then :

l,(4) L;:
n - 1

2 \°J -1+1^+2^-^-1-1)
+ Z"=[t]4 (flJ—aj-2-0/-4 + a/-6)

where [/c]p denotes the reduction of k modulo p, [/c] denote the largest
integer ^ k and the a- s are given by

m ^0ajf
1

(1 — £) (1 — t2)2 (1 — t3)2 (1 — t4)3

In particular, the number of n-dimensional Z/4-manifolds is at least L„(4).

Proof If Q(t) is a power series, let coef(n, Q(t)) denote the coefficient
of tn in Q(t). The number Ln(4) counts the number of ways of writing

n m1 + m2 + 2(m3 + m4) + 3 (m5 + m8) + 4(m6 + m7 + m9)

where the m- s satisfy (3.0). If ml > 0 there is a contribution:

n — mi
El1 1 coef(n-mi,P(t)) - + 1

where
n — m i

+ 1 is the number of ways of expressing n — m1 as a

combination of l's (M2) and 2's (M4) (not permitted by (3.0)). Reindexing
gives the first term for Ln(4).

Similarly, if m1 0, m4 > 0 there is a contribution:

coef(tn ~ 2m4( 1 — t)P(t)) - 1



294 H. HILLER

where 1 is subtracted to omit choosing m2 alone. Finally, if ml m4 0,

we have :

The coefficients of (1 — r)P(r) and 1 — t2 — r4 — t6)P(t) are easily expressible in

terms of the a-s and the result follows.

Remark. In order for a Z/p-lattice to carry a special class, the multiplicity
of the trivial representation must be non-zero. Topologically this is reflected

in the fact that a Z p-manifold fibers over a circle. This is already false

for a 4-dimensional Z 4-manifold as the following example shows.

Example. L4(4) 6. The multiplicities of the indécomposables in these

4-dimensional Z 4-lattices are given by:

notation of [2] ml m2 m5 m4 m5 m6 m7 m8 m9

where the first column gives the label of these "Z-classes" from the table

of the four-dimensional crystallographic groups in [2]. In fact, as these

tables indicate, there is precisely one Z/4-manifold corresponding to each

Z/4-lattice, hence there are exactly 6 4-dimensional Z/4-manifolds.

Remark. Recall that if p < 23, the field Q(e2ni/P) has class number one.

This fact, along with the work of Charlap [4], shows that the number of

n-dimensional Z/p-manifolds is exactly Ln(p), p < 23. This number is readily

computable, as Charlap [4, p. 30] remarks, and the precise formula is:

coefitr" "4m9, 1 -12) 1 - f4)P(f)).

07 02 02

12 01 04

12 01 02

07 02 01

12 01 03

12/01/06

i

(3.2) Up) p-i
j

where <k> denotes the smallest integer ^ k. In particular, Lp(p) 1,

Ln(p) 0, p > n, and when p 2
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2 AA M 2n\ n\ 1 L"j2
I» +y-i+T-
using the notation of (3.1).

One can easily construct the following table of values of Ln(p):

n 2 3 4 5 6

p
2 1 3 5 8 11

3 1 2 3 4

5 1 2

Hence 14 of the 74 4-dimensional flat manifolds have cyclic holonomy

^ 5. (Furthermore, 26 have holonomy the Klein 4-group.) We describe

analogous facts in dimension 5 below.

We let SH2(H, M) denote the set of special classes in H2(H, M). If
H is a cyclic p-group and i : Zp c+ H is the inclusion of the subgroup
of order p, then

SH2(H, M) H2(H, M) - ker(i*).

If N (resp. Z) denotes the normalizer (resp. the centralizer) of H in
Aut(M), there is an exact sequence (see [15, p. 50])

0 - Z - N -> Aut(if).

We conjecture :

Conjecture. If Z[e2nl/pk] is a unique factorization domain for,

U U n, then N acts transitively on SH2(Z/pn\ M) for any H-lattice M.
The case n 1 of the Conjecture follows from Charlap [4]. Class number

tables shows that the n 2 case applies to p 2, 3, 5, the n 3 case to
2, 3 and the n 4 case to p 2. This conjecture implies that the lower
bound of (3.1) is exact.

We mention that the multiplicities of the indécomposables in the
5-dimensional Z/4-lattices that admit special classes are given by :
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m1 m2 m3 m4 m5 m6 m7 m8 m9

Those lattices that are starred clearly satisfy the Conjecture.
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