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FLAT MANIFOLDS WITH Z/p>* HOLONOMY

by Howard HILLER ')

By a flat manifold X we will always mean a compact, connected
Riemannian manifold of constant curvature zero. Each such space X arises
as a quotient E"/I" where E" is n-dimensional Euclidean space and
[ = n,(X) is a discrete group of isometries acting freely on E", (so X 1is
also called locally Euclidean or a Euclidean space form). The group I'
fits into a short exact sequence:

(0.1) O- M-I ->H-1

where H is the finite holonomy group of X acting faithfully on a free
abelian group M of rank n. Furthermore, if N denotes the normalizer of H
in Aut(M) = GL,(Z), then the affine difffomorphism class of X corresponds
precisely to an orbit of N on the “special” classes of H*(H, M) (see defini-
tion preceeding 2.6). Following Charlap [4], we call X an H-manifold.

Charlap [4] has given a complete classification of Z/p-manifolds, p a
prime number. His results rely on Reiner’s description [10] of the integral
representation theory of prime order groups.

The success of the classification in this special case depends, in part,
on the following result.

THEOREM (A. Jones [9]). A finite group H admits finitely many iso-
morphism classes of indecomposable integral representations (i.e. is of finite

representation type) if and only if all Sylow p-subgroups of H are cyclic
of order p or p

This result suggests the naturality of generalizing Chaﬂap’s classification
to Z/p*-manifolds. In particular, such a classification would contribute to the

study of H-manifolds, H cyclic of cube-free order, by using appropriate
induction techniques.

ﬁ‘) Partially supported by the WNational Science Foundation under Grant
" M{"S-83-01132.
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The case H = Z/p? differs fundamentally from that of H = Z/p in that
the number of genera of indecomposable Z/p?-lattices is a function of p
(in fact, 4p+ 1) while there are 3 genera of indecomposable Z/p-lattices, for
any prime p. Furthermore it is no longer the case that only the trivial
representation admits non-trivial (and “special”) two-dimensional cohomology
classes. Eventually we restrict to the case p = 2 where there are 9 genera
(originally described by Roiter [14] correcting a mistake in Diederichsen [6])
and 3 of these admit special classes. The assumption p = 2 also insures
that the genera are identical to the isomorphism classes so there are no
further invariants to consider. This follows from work of Reiner [13] and
the fact that Z[e*™™] is a unique factorization domain for m = 2,4

As the smallest dimension of a Z/p?-manifold is p> — p + 1 (this is a
special case of results from [8]) only the case p = 2 produces flat manifolds
of dimension 5, the smallest dimension for which one lacks a complete
classification. We show that there are at least 16 5-dimensional flat
manifolds with holonomy Z/4 and give a general lower bound for any
dimension.

The main ingredient for these results is the work of Heller and Reiner [7]
on the integral representation theory of Z/p?% reviewed in section 1. In
section 2 we study the cohomology of the indecomposables, compute their
restrictions to the subgroup of order p and identify the “special” classes.
Finally in section 3 we restrict to the case p = 2 and study the class of
Z./4-manifolds.

It is hoped that this example of holonomy classification will succeed
in exposing the role played by integral representation theory and cohomology
of groups in understanding the structure of flat Riemannian manifolds.

It is a pleasure to thank I. Reiner for helpful correspondence concerning
integral representation theory.

§ 1. GENERA OF Z/p*-LATTICES

We begin by briefly reviewing the language and philosophy of the
integral representation theory of finite groups (see [5], [11]). We then give
Heller and Reiner’s description [7] of the genera of Z/p® lattices as
extensions.

Suppose A is a Z-order in a Q-algebra A. A A-lattice is a left A-

module that is also a free abelian group of finite rank. The basic problem
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of integral representation theory is the classification of such A-lattices,
A fixed. The Z-orders that we will need are group rings of finite groups
ZG < QG and rings of algebraic integers Ok in an algebraic number field K.
We sometimes refer to a ZG-lattice as a G-lattice.

Let Z, (resp. Q,) denote the p-adic completion of Z (resp. Q). It is
casy to see that A, = Z, ® A is a Z,-order in the Q,-algebra 4,. Further-
more, any A-lattice M yields a A -lattice M, = Z, ® M. One says that M
and M’ are locally isomorphic (or in the same genus) if M, = M as
A,-modules for all primes p.

The classification of A-lattices is often attacked by a “local-to-global”
approach. By this we mean the solution of the following two problems:

1. (local) Determine a complete set of invariants of the genus of a
A-lattice.

2. (global) Determine a complete set of invariants of the isomorphism
class of A-lattice within a fixed genus.

This approach has been very successful and the examples below illustrate it.

We introduce some notation. Let o (resp. {) denote a primitive p?
(resp. p™) root of unity and let R, = Z[(], R, = Z[w]. We also let
A; = Z[Z/p"]. The classification of lattices over a ring of algebraic integers,
or more generally a Dedekind domain is classic, and is a good example
of the local-to-global approach.

(1.1) THEOREM (Steinitz). If R is a Dedekind domain, every R-lattice
is a direct sum of non-zero ideals of R. The genus of an R-lattice is
determined by the number of non-zero ideals occurring, its rank. The iso-
morphism class of the R-lattice within the genus is determined by the ideal
class of the product of the ideals as an element of the ideal class group of
R (the Steinitz class of the lattice).

The classification problem for Z/p-lattices was solved by Diederichsen [6]
and Reiner [10]. Again the local-to-global approach is useful.

If a denotes a non-zero ideal of R, let E(a) denote the non-split
extension of a by the trivial lattice Z. The genus of a (resp. E(a)) is
denoted o (resp. B). Every Z/p-lattice M can be written:

M=28Y  o®Y_ EQq).

The genus of the Z/p-lattice M is determined by the multiplicities a, b, ¢
of the three indecomposable genera 1, o, B. The isomorphism class of the
1a¥)t)ice within its genus is completely determined by the ideal class
[l [1._, aiin the ideal class group of R; .




286 H. HILLER

The solution of the (local) classification problem for R, = Z[®] (a
Dedekind domain) and A; = Z[Z/p] can be combined to classify genera of
Z/p*-lattices. The technique used is essentially homological. If M is a
Z/p*-lattice, we let L = {xe M:(x*—1)M = 0}. L is a Z/p-lattice and fits
into a Z/p*-exact sequence

O-L->M->N-0

where N is an R,-lattice. Hence one is reduced to classifying extensions of
R,-lattices by Z/p-lattices using homological methods. It is not difficult
to show (see [13, p. 478]) that Ext,(R,, L) = L/pL, where L is an arbitrary
Z/p-lattice. In fact, if o € L/pL then the corresponding extension is given
by the pushout diagram:

0 - o,A, -» A, -> R, - 0
(1.2) ®| ! I

0O - L > M - R, - 0
where @, is the cyclotomic polynomial 1 +‘ x? 4+ x%P + .. + x®~ VP and the
map o is (by abuse of language) the map that sends ¢, to a. We write

(L, o) for this extension. The final result is:

(1.3) TueoreM (Heller and Reiner [7]). There are 4p + 1 genera of
indecomposable Z/p*-lattices given by :

M, =1,

M, = Ry,

M; = R,,

M, = Ay,

Ms = (Z,1),

Mg(k) = (Ay, M), O0<k<p-1,
M,(k) = (Z&A,, 1019, l<k<p-2,
Mg(k) = (R;, A9, 0<k<p-—2,
Myk) = (Z®R,, 1019, O0<k<p-2,

A

where A = (1—x), A; = Z[x]/(x?—1) and we view R; as a quotient ;
of A;.
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The splintering of these genera into isomorphism classes has been
analyzed by Reiner [13]. One can, of course, replace R;, R, by ideal
classes in these rings and A; by E(a) (cf. section 1) where a is an ideal
class in R;. There is an additional invariant lying in a quotient of the
group of units of a certain finite ring and, if p =1 (mod 4) a certain
quadratic residue character mod p can also appear as an invariant. The
precise result 1s Theorem 7.3 of [13]. We will require only the observation
[13, p. 494] that if p = 2, 3 there are no further invariants, i.e. each genus
of an indecomposable is a single isomorphism class. In the case p = 5
already, although the class number of Q(e?™™) is one for m = 5, 25, the
21 genera of indecomposables split up into 40 isomorphism classes. Hence
already the further isomorphism invariants mentioned above exert an
influence.

§ 2. COHOMOLOGY, RESTRICTIONS AND SPECIAL CLASSES

If H is a finite group, M an H-lattice then: H'(H, M) = @, H(H, M),
where p ranges over the primes dividing the order of H [3, p. 84].
Hence if M and M’ are locally isomorphic, H(H, M) = HY(H, M’); so the
cohomology of an H-lattice depends only on its genus.

We recall the cohomology of a cyclic group Z/n = <o> [3, p. 58].
Wewrite N =1+ ..+ 0" 'and D = 1 — o. If M is a Z/n-module, then

H%Z/n, M) = M°

H*~YZ/n, M) = y\M/D - M

H*(Z/n, M) = M°/N - M

for all i > 1, where M° denotes o-invariants and yM = {xe M: Nx = 0}.

From these remarks it is easy to compute the cohomology of the inde-
composable Z/p-lattices described in section 1.

(2.1) PROPOSITION. The following table describes the cohomology of the
indecomposable Z./p-lattices :

M rank H° H! H?
1 1 z 0 Z/p
p—1 0 Z/p 0

B p Z 0 0
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Similarly one can easily compute the cohomology and restriction of the
first four Z/p?-lattices of (1.3).

(2.2) ProposITION. If [M], denotes the restriction of the Z/p*-lattice
M to the subgroup of order p, we have the following table.

M rank H° H! H? [M],
M, =1 1 z 0 Z/p? 1
M,=R, p—1 0 Z/p 0 (p— 1)1
M; =R, p*-p 0 Z/p 0 po.
My = Ay p Z 0 Z/p pl

Furthermore, A, = Z[Z/p*], the regular representation of Z/p?, satisfies
H° = Z,H' = 0 = H? and [A,]; = pB.

Proof. It suffices to observe that M, = p*(a) and M, = p*(B), where
p:Z/p* —» Z/p is the natural projection, and M, fits into a short exact
sequence:

0->M,—>A,>M;-0.

The last remark follows from the freeness of A, .
To complete the table for the modules M;,i > 5, we have the following
lemma:

(23) LemMmA. If L is a Z/p-lattice, o€ L, then the extension
M = (L, o) defined by (1.2) satisfies:
H*(C; M) = coker(x, : H(C; ¢,A,) » H¥C; L))
where C is either Z/p* or Z/p.
Proof. The diagram (1.2) induces

)

- HY(C, R)) -  HXC,@,A;) - 0

! L ox,

— HY(C, R,) = H?*(C, L) - H?*(C, M) - 0

where the zeros follow from (2.2). An easy diagram-chase completes the proof.
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(2.4) ProposiTION. The following table describes the cohomology of the

indecomposable Z/p*-lattices M;,i = 5:

M rank H° H! H?
M pP—p+1 Z 0 Z/p
M(0) P2 Z 0 0
M (k) p* Z Z/p Z/p
M (k) p* + 1 AW/ 0 Z/p ® Z/p
M(0) p* — 1 0 Z/p® 0
M g(k) p* —1 0 Z/p ® Z/p 0
M (k) p? Z Z/p Z/p

Proof. Since

H%(Z/p*; R,) = 0, HY(Z/p*; (L, x)) = H%Z/p*; L)

and these can be read off from (2.2). The groups H? are computed by
(2.3). We work out one example in detail. Consider M¢(k),0 < k < p — 1,
so that L = A, . If we identify ¢,A, with A, then the generator:

1+ x + .. + xP"Ye H(Z/p? 0,A),)
issent by Ak, 1 < k<p—1to

(1=x)f(l X+ +xP" ) = (1—x)}"1-0=0

in H¥Z/p*;A,). If k = 0, then the map is an isomorphism. Hence

H*Z/p*; M0)) = 0 and H¥(Z/p*, M¢(k)) = Z/p, k > 1.

The groups H'(M;) can be read off the long exact cohomology sequence

of the bottom row of (1.2).

Remark.
representation.

It follows from (2.2) that M) is the genus of the regular

We now record the restrictions of the modules M; to the subgroup of

] o-der D-
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(2.5) PROPOSITION. The Z/p-cohomology and the restrictions of
M;,i = 5, are given by:

M H*Z/p;[M],) [M],
M, 0 (p—Do + B
M (k) KZ/p) Kkl + ka + (p—k)B 0<k<p-1
Mok  (k+1)(Z/p) (k+D1 + ko + (p—k)B 1<k<p-2
M (k) KZ/p) k1 + (k+ Do + (p—k—1)B 0<k<p-2

Mok)  (k+1)(Z/p) (k+D1 + (k+Do + (p—k—1B 0<k<p-—2

Proof. One begins by computing H*Z/p, [M],), from (2.3). We work
out an example again with M = M(k). We will need these details later.
The map

k

p(Z/p) = HYZ/p, Ay) = HXZ/p; A,) = p(Z/p)

sends the generator x/, 0 < j < p — 1, from the left-hand side to x/(1—x)*.
The resulting matrix C, , in GL,(Z/p) can be described in the following
way. If p > k, let C,, ; denote a column p-vector whose entries are the
coefficients of (1 —x)* introduced “cyclically” starting in row j. For example:

to be the pXp

p!k

1
0

Cs,4=| 0 We define C
' 1

1 0 0 1 —2]

2 1 0 0 1

Cs,=| 1 =2 1 0 0
0 1 -2 1 0
0 0 1 -2 1]

It is a consequence of the identity (1—x)*** = (1—x) (1 —x)* that
Cp,k+1 = Cp,lcp,k

so we get:
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0 —1 1
It is easy to see that C, i(p(Z/p)) = {x esp(Z/p):Zf;O1 x; = 0}. Hence
rank (C, ;) = p— k and dimg, H*Z/p; M¢k) = p — (p—k) =k, as
claimed. The other cases are similar.

Now from (2.1) we see that the Z/p-dimension of H? is the multiplicity
of 1 in [M],. The multiplicities of o and B are then determined by the
bottom row of (1.2) restricted to the subgroup of order p.

Recall from Charlap [4] that a cohomology class o € H*(H, M) is called
special if i* (o) # 0 for the inclusion i: C - H of any cyclic subgroup.
The basic result is (see [4, p. 22]).

(2.6) PROPOSITION. The extension I in (0, 1) corresponding to
«e H*(H, M) is torsion-free (i.e. the fundamental group of a flat manifold)
if and only if o is special.

It remains to determine which indecomposables in (1.3) admit special
classes. The result is:

(2.7) PROPOSITION. There are 2p — 1 genera of indecomposable Z./p>-
lattices that admit special classes. They are M, M,, M;(k), 1 < k <p — 2,
and Myk),0 < k<p— 2

Proof. From (2.2), (2.4) and (2.5) one sees that the given lattices along

with Mg(k), 1 < k < p — 2, are the only possibilities. We must determine
the restriction map

i"(M): H(Z/p*; M) » H*Z/p; M)

in these cases. Clearly for M = M, ix(M) is the natural projection and for
M = M,, ix(M) is the diagonal embedding.

Now suppose M = Mgk). We have a commutative diagram of exact
sequences from (1.2) and (2.3)
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H*Z/p*;A;) -  H¥Z/p*; M) - 0

l A=i*(A1) l i%k(M)

HYZ/p; Ay = HYZ/p;A) - H*Z/p; M) - 0

where A is the diagonal map Z, — p(Z/p). Hence to eliminate M k),
it suffices to show Im(A) = Im(AX). Let e denote a column p-vector con-
sisting of all I’s, according to the proof of (2.5 we must find an

xk,lskSp—lsothath.k-;k = C*k

k- x, = e. We do this inductively

[ 1 n
2
on k. For example, ;1 = - |, as can easily be checked. Inductively we
= p =
define
1 =1
X, (i) =
Xk(l-—l) + xk__l(i) 1 > 1.
Clearly C, - ;k = ;u—u for all coordinates except possibly the first; we

must show ;k(p) = 0 (mod p). But a comparison of the ;k’s with Pascal’s
triangle convinces one that

— —1+k k—1 1
- (711) () @) omen

sincek — 1 <p— L
We leave it for the reader to check that the restriction maps for
M (k) and M y(k) are non-trivial.

§ 3. Z/4-MANIFOLDS

In this section, we consider the case p = 2. For convenience, we change
the notation slightly and write M, for M(1) and M; for M(0), i = 6, 8, 9.
According to (2.7), the indecomposable Z/4-lattices that carry special classes .
are M,, M, and M,. It is easy to see M, is faithful if and only if |
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i =3,56,7,8,9. Hence if M = Ym;M, is an arbitrary Z/4-lattice then M
is a faithful representation carrying a special class if and only if the
multiplicities m; satisfy the inequalities:

m; + my + mg > 0
(3.0)

my + ms + mg + m; + mg + mg > 0.

Since the multiplicities are a complete set of isomorphism invariants in
the case p = 2 (see section 1) one can use the conditions (3.0) to show:

(3.1) THEOREM. If L,(m) denotes the number of isomorphism classes of
n-dimensional Z/m-lattices that carry special classes, then:

L(4) = Z:;; (aj — |:J2—:| — 1) + Z:;;h”(aj——aj_l—l)

n—4
+ zj=[n]4 (aj_aj_z—'aj_4+aj_6)

where [k], denotes the reduction of k modulo p, [k] denote the largest
integer < k and the a;’s are given by

1
(I-t) (1=t (1-1)? (1—%’

Pit) =3 " at =

In particular, the number of n-dimensional Z/4-manifolds is at least L, (4).

Proof. If Q(t) is a power series, let coef(n, Q(¢)) denote the coefficient
of t" in Q(t). The number L,(4) counts the number of ways of writing

h = my = m, 4 2(m3+m4) + 3(m5+m8) + 4(m6+m7+m9)

where the m,’s satisfy (3.0). If m; > 0 there is a contribution:
Z"m:il coef(n—m,, P(t)) — <|:n—2m1:I + 1>

n—m .
where [ 5 1} + 1 is the number of ways of expressing n — m;, as a

combination of I's (M,) and 2’s (M,) (not permitted by (3.0)). Reindexing
gives the first term for L (4).

Similarly, if m, = 0, m, > 0 there is a contribution:

2, COE(E" ™21 —1)P(t)) — 1
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where | 1s subtracted to omit choosing m, alone. Finally, if m; = m, = (,
we have:

ng COCf(["'~ 4:119‘ (1 —[2) (1 _[4)P([)) .

The coefficients of (1 —1)P(1) and (1 —12—1* —1°)P(t) are easily expressible in
terms of the a;'s and the result follows.

Remark. In order for a Z,p-lattice to carry a special class, the multiplicity
of the trivial representation must be non-zero. Topologically this is reflected
in the fact that a Z p-manifold fibers over a circle. This is already false
for a 4-dimensional Z 4-manifold as the following example shows.

Example. L,(4) = 6. The multiplicities of the indecomposables in these
4-dimensional Z 4-lattices are given by:

notation of [2] m, m, my mg Mg Mg M, Mg My

070202 !
12°01 04 1

12 01 02 TS
07 02 01 >

12,0103 11

12/01/06 1

where the first column gives the label of these “Z-classes” from the table
of the four-dimensional crystallographic groups in [2]. In fact, as these
tables indicate, there 1s precisely one Z/4-manifold corresponding to each
Z/4-lattice, hence there are exactly 6 4-dimensional Z/4-manifolds.

Remark. Recall that if p < 23, the field Q(e?™/?) has class number one.
This fact, along with the work of Charlap [4], shows that the number of
n-dimensional Z/p-manifolds is exactly L,(p), p < 23. This number is readily
computable, as Charlap [4, p. 30] remarks, and the precise formula is:

(3.2) L(p) = Z;:_l (Lﬁ} — <-jé> + 1)

where <k> denotes the smallest integer > k. In particular, L (p) = 1,
L(p) = 0,p > n, and when p = 2
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n\ 2 n [n],
33) L2 = (5) + <5> -1+

using the notation of (3.1).

One can easily construct the following table of values of L,(p):

whn W N3
[
w
w
fo'e)
(SN
—

Hence 14 of the 74 4-dimensional flat manifolds have cyclic holonomy
< 5. (Furthermore, 26 have holonomy the Klein 4-group.) We describe
analogous facts in dimension 5 below.
We let SH?(H, M) denote the set of spec1al classes in H?*(H, M). If

H is a cyclic p-group and i:Z, ¢ H is the inclusion of the subgroup
of order p, then

SH2(H, M) = H¥H, M) — ker(i*) .

If N (resp. Z) denotes the normalizer (resp. the centralizer) of H in
Aut(M), there is an exact sequence (see [15, p. 50])

0—>Z—-> N - Aut(H).
We conjecture:

Conjecture. 1f Z[e*™P*] is a unique factorization domain for,
1 < k < n, then N acts transitively on SH*Z/p"; M) for any H-lattice M.

The case n = 1 of the Conjecture follows from Charlap [4]. Class number
tables shows that the n = 2 case applies to p = 2,3, 5, the n = 3 case to
2,3 and the n = 4 case to p = 2. This conjecture implies that the lower
bound of (3.1) is exact.

We mention that the multiplicities of the indecomposables in the
d-dimensional Z/4-lattices that admit special classes are given by:
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m; m, ms my ms Mg m- mg mg
1
1
* 1
1 1 1
* 1 1
1 1 1
* 1 2
* 1 2 1
* 3 1
2 1
* 2 1
3
* 1
1
* 1
* 1 1

Those lattices that are starred clearly satisfy the Conjecture.

(1]
[2]
[3]
[4]
[5]
L6]
7]
(8]
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