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Supposons maintenant qu'on ait f = & + k, k€ %(Z); on vérifie imme-
diatement quon a & ® g = g (analogue de §eog = g), dou f®ged
+ %(Z). On peut voir que lopération @ est associative sur & + ¥(Z).
Je ne sais pas si les éléments de & + %(Z) sont tous inversibles; on a
toutefois le résultat suivant ([E 1], p. 88).

TutoreME (1.6.10). (« Inversion locale »). Soit ged + €(Z) et sup-
posons que la détermination principale de varg soit de monodromie finie
autour de O (Cest-a-dire soit une fonction uniforme de x'P, p entier
convenable). Alors g admet un inverse dans & + €(Z), et cet inverse a
la méme propriété.

CHAPITRE II. — AUTOMORPHISMES DE (C, 0) TANGENTS
A L'IDENTITE

(I.1) GENERALITES

Soit G le groupe des germes d’automorphismes de (C,0) tangents a
l'identité; un élément de G est donc une application holomorphe

z> f(2) = z + ayz® + .. + a2t + ..,

la série f étant convergente au voisinage de 0. On se propose de déter-
miner les classes de conjugaison de G.

Pour cela, on regarde d’abord le méme probléme pour le groupe G
des automorphismes formels (i.e. ici, f est une série formelle); ici la classifi-
cation est facile, et bien connue: en effet, tout f s’écrit d’'une maniére

d
et d’une seule sous la forme exp(§), & = (b222+...)d—; le probléeme revient
z

donc & classer les champs de vecteurs formels s’annulant 4 un ordre > 2,
1
ou encore, en remplagant £ par g, les formes méromorphes formelles a

pole d’ordre > 2. La classification de ces formes sous G (qui coincide
d'ailleurs avec la classification des formes méromorphes convergentes sous G)
est donnée par 2 invariants:

1) le coefficient du terme le plus polaire;

i) le résidu.
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En revenant a G, on voit que la classe de f est donnée par 2 inva-
riants:

i) le premier a, # 0;

ii) un autre invariant, fabriqué avec a,, .., a,,_;; on peut par exemple

: 1 1
prendre le coefficient de — dans ———.
z flz) — z
Exemple. f(z) = z — z2 + z° + (n’importe quoi); alors f est formel-
2
lement conjugué a = :
jug fo 1+ 2

Dans la suite, pour simplifier I'’exposé, je travaillerai uniquement sur
I'exemple de cette classe formelle; je renvoie aux articles d’Ecalle pour les
modifications — inessentielles, mais un peu fastidieuses — a apporter dans
le cas général.

z
1+ z

Soient donc f(z) = z — z* + 2> + 0(zY e G, et f,(2) = ; il est

1
commode de faire le changement de variables — = £, et de poser
Z

g€ = 1/f (é), onaalors go(§) = £+ 1, g =6 +1+ ) &; il existe

ns2 &"

une série formelle méromorphe et une seule en — de la forme (&) = &

1
+ O (g> qui vérifie @ o g = go o (=@ +1). Son inverse | est de la méme

forme et vérifie g o Y = Yo go(=Y(§+1)). Ecalle les nomme respectivement
« I'itérateur direct » et « I'itérateur inverse ».

On voit facilement ceci: soit g’ une autre série analogue a g, et soit
@’ son itérateur: pour que g et g soient conjugués, il faut et il suffit
que ¢ ! o @ soit convergent; en particulier, pour que g soit conjugué a ¢,
il faut et il suffit que @ soit convergent.

Pour se faire une idée des obstructions a cette convergence, examinons
d’abord le probléme analogue pour une déformation infinitésimale d’ordre 1
de g,, c'est-a-dire considérons la famille a 1 paramétre g = g, + t4,
g(€) = O(E~?); Tlitérateur infinitésimal ¢ = & + tp, ¢ = O(™1!) vérifie
@og = goo @ (mod t?), Cest-a-dire o+ 1) — 0(&) = — g(§); cette équation
détermine la série formelle ¢ comme on le voit immédiatement en calculant
terme a terme. L’obstruction a la convergence peut se voir classiquement
de 2 manieres. |
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1"¢ maniére (« Méthode sectorielle »)

Dans un demi-plan Re & » 0, équation ¢.(E+1) — ¢ .(§) = — g(&) a
une solution et une seule tendant vers O a [linfini, & savoir la seérie
Z g€ +n), et @, se prolonge au plan privé d’'une « demi bande arrondie »

nz0

€] < R}u{lIm&| < R;Re& <0} = By (pour R»0).
De méme ¢ _(§) = — Y g(§+n) est une solution de la méme équation

n<Q0

hors de la demi bande arrondie B; définie de fagon analogue; alors pour
que @ converge, il faut et il suffit qu'on ait, pour [Im & | > R: Zg(E+n) = O;
plus généralement, on voit que g et g’ sont analytiquement conjugués a
Pordre 1 si et seulement si 'on a, pour |Im&| >» 0: Zg(E+n) = Zg'(E+n).

2¢ manieére (transformation de Borel)

- b . r ’
Posons g = ). g—:, ¢ = ) g—:et considérons leurs transformées de Borel
n=2 nz1
a _ S
jp = Y ——— x", = YEZ —"— x"; la premiére est un élément de €,
9 TENTTRAAE (n—1)! P

(n—1!
entiére de type exponentiel, parce que g converge a l'infini; a priori, la
seconde est seulement une « microfonction formelle » qu’il suffit de définir
par son expression, sans avoir besoin de définition générale. L’égalité
oE+1) — @E) = — g(E) se traduit ici par Dégalité (e *—1)og = — gz;

en particulier, on a var @p = (—Tx——l)var gg; donc en fait, var @z est une
e J——

fonction méromorphe sur C, avec des poles simples sur 2miZ — {0}; des
obstructions & la convergence de @ sont ici les résidus de var @gz. Ce sont
en fait les seules obstructions: plus généralement si §' est une autre fonction
analogue 4 ¢, et si var @ et var @3 ont les mémes résidus, alors var @g

dont la variation X x" se prolonge en une série entiere, et meéme

— var @ est entiére, et de la forme ———— x (fonction entiére de type

(e7*—1)

exponentiel); il en réesulte par des raisonnements classiques que var(ez— ¢ %)
est entiere de type exponentiel, donc que @ — ¢’ converge a I'infini, donc que
g et ¢’ sont analytiquement conjugués a 'ordre 1 (la réciproque est évidente).

Pour voir I'équivalence des 2 méthodes, il suffit de voir que les résidus
de var @y sont égaux aux coefficients de Fourier de la série 2g(E+n);
Je laisse cette question au lecteur.

Nous allons voir maintenant comment les deux méthodes précédentes
s¢ généralisent au probléme envisagé.
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(I.2) LA METHODE SECTORIELLE

Je serai ici trés rapide, et renverrai pour les démonstrations a mon
exposé [M]. Cette méthode se trouve essentiellement dans [E]; une variante
a eté retrouvée indépendamment par Voronin [V].

Soient g, g, ® comme ci-dessus.

THEOREME (I1.2.1) (Kimura [K]). Pour R » 0, il existe une unique
fonction @, (resp. ¢_), holomorphe dans C — By (resp. C—B}j) et pos-
seédant les propriétés suivantes :

i) dans tout secteur {|arg&| < m — e} — Bg, @, admet © pour
développement asymptotique a Uinfini,; énoncé analogue pour © _ .

i) Ona @,°9 = goo®, sur C— Bg, avec R > R convenable;
énoncé analogue pour ¢ _ .

Considérons alors la fonction ¢ ¢ -1, définie dans | Im & | > 0; dans tout
secteur e < argf <m —¢eget —nw+ e <argf < — ¢ (¢>0), cette fonction
admet & pour développement asymptotique; posons alors @, -' = & + ;
x est asymptotique a 0; de plus, le fait que ¢, ¢ -' commute 4 g, montre
quon a x(§+1) = x(&). Donc, on a

dans Imé& > 0: (&) = > yx.e*™

n=1
(11.2.2)
etdans Imé& « 0:%E) = > yx.e*™".

n<—1

Soit alors g’ une autre fonction analogue a g. Notons y, et y, les
« fonctions y » correspondantes.

THEOREME (11.2.3).

1) Pour que ¢ et ¢ soient conjugués, il faut et il suffit qu’on ait
Xg = Xg -

2) Réciproquement, soit 7y, une fonction périodique dans |Im¢&| > 0,
du type (2.2). Alors il existe ge G, formellement conjugué a g,, et telle
quon ait ¥, = X

La premiére assertion est immédiate. On trouvera dans [M] une démons-
tration rapide de la seconde. D’autres méthodes, plus explicites, se trouvent

dans [E 2].
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(IL3) TRANSFORMATION DE BOREL ET RESURGENCE

La méthode précédente assez élémentaire, n’utilisait pas les résultats du
chapitre I. Ici, au contraire, ils vont jouer un role essentiel.

Soient g, g, et @ comme précédemment, et définissons la « microfonction
formelle » @ comme au n° 1. Observons d’abord que les fonctions ¢
et ¢_ définies au théoréme (2.1) vérifient la majoration suivante: dans tout
secteur e <argE < m—¢cet —m+e<argl < —e(e>0), o — @_ est,
a linfini, de lordre de e~ 2"™%l [en effet, on a @, 2! = & + x(§), d'ou
0, — @_ = o o@_ et il suffit d’utiliser les propriétés asymptotiques de @_
et y pour obtenir le résultat cherché¢]. On peut déduire de 1a, et de la
théorie de la sommabilité de Borel que var @ est en fait holomorphe dans le
plan privé des deux demi-droites [2mi, ioo[ et [ —2mi, —ico[. Je renvoie pour
ces questions aux travaux sur la sommabilit¢ de Borel, notamment a [R].

Ici, on va directement obtenir un résultat plus précis:

—~

TtOREME (IL3.1). Ona ¢z @2niZ).

Ceci peut encore €tre précisé: soit a le point base choisi, et ¥ un chemin
quelconque de C — 2miZ d’origine a et d’extrémité un point b e a + 2niZ;
on definit alors A @z comme en (1.5.4). On a le résultat suivant qui donne
lexpression des singularités de var @p:

THEOREME (I1.3.2). Pour tout y comme ci-dessus, on a
Ay(pB = ays + nga
avec a,€C, g, € O; en particulier,ona @ged + €2niZ).
Indiquons le principe de la démonstration; pour les détails, voir [E 2],

p. 311-318. Posons
OC) =& + ), g€) = & + 1 + k(E+1);

Iéquation @og = @ + 1 se réécrit g + mog = £+ 1+ 7w ou encore
E+K(E) = nE—1) — k(E).

En appelant K (resp. L) I'image réciproque par I'application E— & + k(€)
(resp. E—E —1), cela s’écrit Kn = Lt — k, ou encore (L=Dr = (K—Drn — k.
L'idée est alors de faire apparaitre I'inverse de L — I, comme dans le cas
linéaire; cet inverse est bien défini, des séries Y. a,/E" vers les séries

n=2
2. baE"

RS

L
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L’équation précédente a, dans les séries formelles, une solution unique

n=— Y (L—D YK-D](L—1) k.

nz0

[(L—1)"! augmente de 1 les degrés en &, et (K—1I) les diminue de 3, donc
la série est bien formellement convergente].

On applique alors la transformation de Borel a la formule précédente:
(L—1I)~! devient la division par (¢e*—1), et K la composition-convolution
avec (E+k)g. On arrive alors aux résultats cherchés par un calcul de
majoration.

D’apres le théoréme (1.6.10) la transformée de Borel \z de Pitérateur
inverse vérifiera alors aussi Yz € &' + ¥(2miZ). Les hyperfonctions Vg et @,
vérifient des « relations de résurgence » remarquables qu'on va maintenant

¢tablir.
| Partons de la formule g oy = yog, = Y(§+1); en passant aux trans-
formées de Borel, on trouve

g ® Vg = Y ® go 55
posant @ = 2min, (neZ—{0}), on a

Augs = Augo,p = 0;
d’autre part:

go,p = 0 + 90,
d’ou:
exp,0(go, p— ) = exp,(—wd) = &> = §;

en utilisant (I.6.9), on trouve alors:

(095@Vp) * AgVp = AVp @ go, 5 -

Posons Z(A V) = A, V; d’aprés le théoréme précédent, on est dans le
cas d’application de la transformation de Laplace considérée au chapitre I,
et 'on a:

AV = ) &, ¢eC;

n<o0
on aura:

d
((d_é g> © W) Aw‘l’ = (Aw\l’) (E.:+ 1) .
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D’autre part, en dérivant I'équation g o ¥ = Y(§+ 1), on trouve

dg AU} _i\li
(Zizoq;)zig = i E+1).

: d :
Maintenant, il est facile de voir que I’¢quation (;1%0 \|1> n =nE+1) na

quune solution formelle de la forme Y c¢,&" a un facteur constant prés.
n<O

On trouve donc la relation

d
133) AN = Am—‘li, ou Ay = AV, A,eC.

dg
Maintenant, en utilisant la relation o = &, ou Yz ® ¢z = &, et la
formule (1.6.9), on trouve facilement qu’on a:

(I1.3.4) APp = — Aexp,(—o(ps—7)),
ce qu'il est commode d’écrire

Ao = — Ame—m(tv—i)'

Soit maintenant g’ un autre ¢lément de G, formellement conjugué a g,,
et soient @', Y/, (resp. A,) les itérateurs (resp. les invariants) qui lui cor-
respondent.

La version « résurgente » du théoréme (I1.2.3), assertion 1, est alors la
suivante.

THEOREME (IL3.5). Pour que g et g soient analytiquement conjugués,
il faut et il suffit qu'on ait, pour tout neZ — {0}: Ay, = A%, .

Soit h la série formelle a Iinfini définie par ¢ = ¢’ ch; on a
g = hogeh™!, et d’aprés les résultats qui précédent h est transformé de
Laplace d’un certain hy e &' + €(2miZ), vérifiant @z = hy @ @z. Pour sim-
plifier les notations, on continuera a se permettre d’écrire les dérivations

étrangeres du coté « fonctions de & ». On a:

!

— Ame-m((P—i) — Am(P _ <d(9

oh —o(h—-¥) "o
i )Awh + e (A,@) o h

le dernier terme vaut

r ,2—o(h—E)— "—§&)o P -
—Ame oh—8) ~a(@"—&oh _ —Ame o(e &)
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Alors:

1) si h est convergent, i.e. si g et g  sont analytiquement conjugués,
hg est entiere, donc Ah = Oet A, = A,,.

2) Réciproquement, si 4, = A, pour tout o, on a A,h = 0; on en déduit
facilement que hy est entiére. On montre.alors, par des majorations qui se
font en méme temps que celles du théoréme (I1.3.2) que hy est de type
exponentiel; (voir [E 2], p. 321 et suivantes); donc h est convergent et ¢’
est conjugué a g.

Pour terminer, indiquons rapidement le lien entre les deux séries d’in-
variants trouvés aux n® 2 et 3. Tout d’abord on déduit de la formule
(I1.3.4) qu’il existe des A} e C tels quon ait Ao = — A e @7, de plus,
les A s’expriment par des polyndmes universels (qu’on pourrait expliciter)
dans les A, et réciproquement. On utilise pour cela la formule (1.6.1) et son
« inverse » exp(ZA,t") = id + ZA ",

Soient alors {Y,} les invariants (I.2.2). On a le résultat suivant.

ProposITION (I1.3.6). Pour n >0, ona A, = X,

Je me limiterai a un argument heuristique; soit vy, la demi-droite
e'®[0, + co[ orientée de maniére a avoir 0 pour origine. On doit avoir,
en un sens convenable,

(I1.3.7) J Qp(x)e dx = ¢, si |arg9| <g
76

T
@_ si lﬂ:—arg9|<5.

. T
On regarde alors ce qui se passe lorsque 0 traverse la valeur 3 (cf. la

démonstration de (1.5.5)); formellement, pour
Imf «0, —nm+e<argf < — ¢,

on a

Oy — Q- = ZJ‘ A;nin(PB(x)ewxé—znin&dg 2
Yn

Y, €tant le translaté par 2nin de vy, (6 = g + O)

d’ou 0oy — 0 = Z A;nine—Z”imp_

n>0 i|
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! en comparant avec (IL2.3), on «obtient» le résultat cherché; je laisse
' Je lecteur regarder les modifications a faire pour n < 0.

Dans [E 2], p. 417 et suivantes, le lecteur trouvera une démonstration
de cette proposition par un argument voisin de celui qui est esquissé ici;
le point-clef est une majoration a Iinfini de var @g, a laquelle jai déja
fait allusion; ceci permet entre autres d’établir (IL.3.7) (bien entendu, au
voisinage de O, l'intégrale doit étre interprétée au sens des distributions,

comme on I’a fait au chapitre I).

Remarque (11.3.8). Dans la démarche précédente, on retrouve les ¢ . , donc
les résultats du n° 2 (méthode sectorielle) par la méthode résurgente du n° 3.

Sans que jaie vérifi¢ les détails, il me semble qu’une utilisation plus
systématique de la sommabilité de Borel permettrait inversement de retrouver
les resultats du n® 3, en particulier le théoréme (I1.3.1) a partir du n° 2,
et plus précisément de la formule ¢, — ¢_ = Zy,e*™™®-. A mon avis,
ceci ne diminue pas l'intérét de principe qui s’attache a I'utilisation directe
de la convolution et de la méthode résurgente: outre son élégance, et son
caractere direct, cette méthode a aussi 'avantage de donner des résultats
dans d’autres applications dont je n’ai pas parlé, par exemple dans des cas
ou 'on trouve pour Q un réseau; dans un tel cas, une méthode de type
sectoriel semble difficile a appliquer.
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