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L Enseignement Mathématique, t. 31 (1985), p. 261-282

INTRODUCTION AUX TRAVAUX DE J. ECALLE

par Bernard MALGRANGE

Cet exposé est la rédaction de conférences faites a 'l.H.E.S. en novembre
1982 et a Strasbourg en mai 1983.

Il résume sans démonstrations les principes de la théorie de J. Ecalle
des « fonctions résurgentes », et leur application au groupe des germes
d’automorphismes de (C, 0) tangents a I'identité. Pour les démonstrations et
des détails complémentaires, je renvoie & [E 1] et [E 2]. D’autres appli-
cations se trouveront dans le travail [E 3] et les suivants...

CHAPITRE I. — FONCTIONS RESURGENTES

(I.1) CONVENTIONS RELATIVES A LA MONODROMIE LOCALE

Pour r > 0, on note D(r) le disque {|x|<r} < C, et I'on pose D(r)*
= D(r) — {0}. On choisit un point base ae D(r)*, et 'on note (D(r)*, a)
le revétement universel de D(r)* de point-base a (= les classes d’homo-
topies de chemins de D(r)* d’origine a). Soit O(r) (resp. @(r)) I'espace des
fonctions holomorphes sur D(r) (resp. (D~(r)*, a)); on fait dans la suite les
conventions usuelles suivantes:

i) Soit O, 'espace des germes de fonctions holomorphes en a; 'application
[+ f,€0, de «restriction au voisinage de a» identifie O(r) (resp. @(r))
au sous-espace de O, formé des germes qui se prolongent a D(r) (resp.
(D(r)*, a)). En particulier, on a ainsi une injection naturelle O(r) —» @(r);
elle se décrit aussi comme I'image réciproque de la projection (D~(r)*, a) - D(r).

i) Soit b un autre point de D(r)*, et y un chemin de D(r)* d’origine a
¢t d’extrémité b; la donnée de y établit un isomorphisme entre (D(r)*, a)
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et (5(r)*, b); I'isomorphisme correspondant de @(r) et de 'espace des fonctions
holomorphes sur (D(r)*, b) se lit dans la description i) par le prolongement
analytique le long de y du germe f,.

En particulier 'automorphisme de monodromie T: O(r) — 0(r) est l'iso-
morphisme obtenu en prenant b = g, et y un lacet d’origine a entourant
une fois l'origine dans le sens direct.

i) Si 'on remplace r par ¥ < r et si |a| < r, on a un plongement
canonique évident O(r) - @(r'); si |a| > , on se raméne au cas précédent
en déplagant le point-base le long du rayon [a, O[ .

(.2) MICROFONCTIONS

La construction qu'on va faire ici, et qui est appelée « germe qualifié »
par Ecalle, est un cas particulier de la notion de microfonction holomorphe
de Sato [S.K.K.]; un autre aspect de la méme construction se trouve chez
Deligne [D], a propos de la théorie des cycles évanescents.

Posons %(r) = 0(r)/0(r), Tinjection O(r) - ((r) étant celle définie au

numéro précédent. On a deux fléches O(r) = €(r) > @(r) (notations de Deligne)

qui sont définies ainsi:
@ «can » est la projection canonique 0(r) - €(r);

® «var » est 'unique fleche qui rende le diagramme suivant commutatif

) —T =1, @)

can var

Eé(r)

Cette fléche («la variation ») est bien définie parce que T agit trivialement
sur O(r).

Dans la suite, on abrégera souvent les notations en écrivant «u»
(resp. « v ») au lieu de «can» (resp. « var »). Si I'on note encore T l'action
de la monodromie sur %(r), définie par passage au quotient a partir de
T | 0(r), il est clair quon a T|0(r) = vou +id et T|%(r) = ucv + id.

Il pourra aussi étre commode de ne pas fixer r et de se placer dans les
germes en 0, en suivant les conventions de (l.iii); on posera pour

y

~
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r—-0: 0(=0, =lm0, d = lim @(r), ¢ = lim‘g(r).

(Chez Ecalle, I'espace € est noté =7 ).

Pour comprendre la signification de I'espace &, linterprétation suivante
est commode, quoiqu’elle ne soit pas indispensable. Supposons qu’on ait
choisi un point base a > 0; alors, la donnée de f € O(r) définit une fonction
holomorphe g dans le disque coupé D(r) — R, , a savoir celle qui coincide
avec f dans l'intersection d’un voisinage de a avec le demi-espace Im x > 0;
a u(f) correspond la classe de g modulo @(r); autrement dit, en notant
g. les restrictions de g 4 D(r) n {Im x < 0}, & u(f) correspond I'hyper-
fonction [g] sur ]—r, r[ a support dans [0, r[ définie par la paire (g, ,g-).
Dans cette représentation, I'application canonique se lit comme la fléche
g—[g]- Quant a la variation, elle s’interpréte de la maniére suivante:
sur R, — {0}, [g] «est» une fonction analytique, donnée par la différence
des valeurs de g au-dessous et au-dessus de R (je prends ici la convention
opposée a la convention usuelle); par exemple au voisinage de a, on a
9], = (Tf), — f., donc [g], est égal a la variation de u(f). La variation
interprete donc ici comme la restriction de [g] 4 R, — {0}, ou si l'on
veut, « 'oubli de 0 ».

On va examiner maintenant les opérations de base sur €: convolution,
transformation de Fourier (Laplace, Borel); ce seront des cas particuliers des

notions analogues pour les hyperfonctions ou les distributions a support
sur R, .

(L3) CoNvoLUTION

Pour simplifier, je prends le point base sur R, — {0}; on s’y raméne,
soit par rotation des coordonnées, soit comme en (I.1). Soient f,ge€®,
et soient f et ge @(r), pour r > 0 convenable, tels que le germe de u(f)
(resp. u(g)) en O soit égal a f (resp. g); soient a,& avec 0 < ¢ < a < r,
¢t soit v, . le chemin composé de [a+i0, £+i0], du cercle de rayon ¢
autour de 0, parcouru dans le sens direct, et de [¢—i0, a—i0]. Pour x ¢ R,

x voisin de 0, I'intégrale A(x) = F(x—y)j(y)dy est bien définie et indé-
Ya,¢

pendante de € si € est assez petit; ceci donne une fonction holomorphe sur
C — R, au voisinage de 0, dont on vérifie facilement quelle se prolonge
en un élément de @; on voit aussi facilement que si 'on change a et les
représentants f et §, on modifie i par une fonction holomorphe en 0;
donc finalement u(f) ne dépend que de f et g. On pose par définition
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u(l) = f * g, et I'on appelle cette opération la convolution sur & ; ses pro-
priétés sont les propriétés usuelles:

1) elle est associative et commutative;

1)) elle admet pour élément unité, la (micro) fonction

1
5 = —
déf catl <2TC1X>

(ceci se voit immédiatement par la formule de Cauchy);

d
i) ona:—(f*g) = —f *xg = f * —g; en particulier, on a:
dx dx dx
df do
dx  dx s

iv) sur %, . est inversible (évident, car deux primitives dans @ différent
X

: d :
par une constante !); l'inverse de — est donc la convolution par
X

d\ ! log x _ , . .
— 8 = can | —— |; peu importe la détermination de log x choisie
dx 2mi

ici, car deux déterminations différent par une constante. Suivant 1'usage,

on notera Y cette microfonction (« microfonction d’Heaviside »);

v) la multiplication par x est une *-dérivation, i.e. on a
x(f*g) = (xf)*g + f *(xg).

Dans la suite, il sera commode de poser 0f = — xf (cf. théoréme (1.4.5)).

Remarque (1.3.1.). De méme que les distributions, ou les hyperfonctions,
les éléments de € ne se multiplient pas entre eux; la seule multiplication
définie va de @ x € dans %, et s'obtient par passage au quotient a partir
de la multiplication usuelle @ x @ — @. En particulier, on a la formule

n—1

(n—1)! Y

usuelle Y*" =

Remarque (1.3.2). On peut voir que f * g ne dépend pas du point base
choisi, avec les conventions de changement de point-base faites au n° 1

Ceci nous servira par la suite.
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(14) TRANSFORMATIONS DE LAPLACE ET BOREL

Il est possible de définir en général la transformée de Laplace d’un
¢léement de €; on n’utilisera ici qu'un cas particulier. Il sera commode de
prendre le point-base a e R, — {0} et de prendre la détermination de log x
donnée par arg a = 0. J’examinerai seulement le cas des « microfonctions de
classe de Nilsson », Cest-a-dire celle qui proviennent d’un f e d somme
finie de fonctions de la forme x*(log x)?g(x), a € C, p entier > 0, g holomorphe
en 0 ). En considérant le méme chemin vy, , qu’au n° précédent, on regarde

I'intégrale f f(x)e™**dx; son développement asymptotique a linfini, au
Ya,e

voisinage de R, , modulo fonctions a décroissances rapides, ne dépend que de
f =u(f), et pas de f,a, et €; on appellera ce développement « trans-
formée de Laplace de f ». Ceci conduit aux formules suivantes, essentiel-
lement classiques.

1) Supposons d’abord « ¢ Z.

. r
On a dabord Z(can x% ~J x%e " *odx ~ (ez"‘“—l)—(oll), (avec

+1
Ya,e éa

arg& = 0, & > oo en restant sur R ).
Il est plus commode d’écrire ceci autrement, en posant

Pf(xa) — Can((ezniu_ 1)— 1xa) .

bl

cest une microfonction dont la variation vaut x*; pour Re o > —1, cest
la distribution définie par la fonction intégrable qui vaut x* si x > 0
et 0si x < 0; alors, on a:

(L4.1) FLPix* ~ T'(a+1)/e**1
(On se permettra dans la suite d’écrire = pour ~).
Plus généralement, étant donné p, il existe une et une seule fonction

p
fix) =Y Mx(log x)* vérifiant (T—id)] = x*(log x)?; on posera
0

Pfx*(log x)* = u(f)

(une autre maniére de faire consisterait a traiter d’abord le cas Reoa > —1

par les distributions, comme ci-dessus, et a faire le prolongement analytique
en o de la formule obtenue). On aura alors

) Ce}a suffira pour I'application qu’on a en vue ici; d’autres applications de la
théorie d’Ecalle exigent de regarder un cas un peu plus général; voir ses travaux.
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u(Pfx*(log x)?) = x*(log x)?,
et

d? T(a+1) p
P =;Ck,q?—1—,

(14.2) ZPf x¥(log x)? =

avec des C, , convenables.
Finalement, pour f = Y a, x*""logx)* et f = u(f), on écrit
nz
OSkgp
f = Pf(Zb, ,x**"(log x)*), la somme figurant au 2° membre étant égale a

(T —1)f; le développement asymptotique & f est la série formelle
b, £ Pix**"(log x)*,
qui s’écrit

g, (og®)
mk gt
avec des d, , convenables.
Cette série n’est pas convergente en général: il est classique qu’on obtient
ainsi exactement les séries qui « convergent au sens de Gevrey », i.e. qui
. A i .
sont telles que, pour k = O, ..., p, les séries X "—' T" convergent au voisinage
n!

de 0. Je laisse le lecteur examiner cette question, et aussi les formules
relatives a la transformée de Laplace inverse, ou transformée de Borel

i) Pour a € Z, il faut opérer de fagon un peu différente.

Tout d’abord, pour o > 0, il n’y a aucune ambiguité: on définit
Pf x"(log x)? (n=0) comme la distribution définie par la fonction inté-
. grable x"(log x)? pour x > 0, 0 pour x < 0. En particulier, Pf x" = x"Y;ona

. n! . d? I'a+1)
(1.4.3) FPix" = —— & Pf x"(log x)? = do? £

an+1;

a=n

Si maintenant, on a f = u(x"(log x)?), avec n < 0, je ne sais pas quelle est
la maniére la plus simple d’écrire les formules; on peut par exemple faire
ainsi; on écrit:

p

L = ZLu(x*(log x)?) = Lu(x%

a=n

&P (e — D (o+ 1)
wen Z:dap &a+l
d?  2mie™
do? T(—a)E**1?

a=n

a=n
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n
On n'aura vraiment besoin que du cas particulier f = 6‘")<= " 6>,

auquel cas, on a, bien sir
(1.4.4.) LM =g,

La propriété fondamentale de la transformation de Laplace est donnée
par le théoréme classique suivant (qui s’étend, moyennant une definition
convenable, a € tout entier).

THEOREME (1.4.5). Pour f,ge €, de classe de Nilsson, on a

d
P(fxg) = Lf-ZLg; ZLKxf)= — d—&(i”f)
dou
d . af\
Z(0f) = d—gé”f, $<d—x> = &(Zf).

(L5) HYPERFONCTIONS D’ECALLE (OU FONCTIONS RESURGENTES)

Aprés ces préliminaires, venons-en au sujet proprement dit. Soit Q un
sous-groupe discret de C; choisissons r tel que D(r) n Q = {0}, et choisissons

.
un point a € D*(r). Soit (C—Q, a) le revétement universel de C — Q de

~ . .
point base a; on a une application canonique (D *(r), a) 5 (C—Q, a),
obtenue en considérant les chemins de D*(r) d’origine a comme des chemins de
C — Q, ce qui donne un sens a la définition suivante.

DEFINITION (L.5.1). On appelle 0(Q) lespace des fonctions holomorphes

sur (C—Q,a) et on appelle €(Q) le sous-espace de €(r) formé des f
tels que var f se prolonge en un élément de O(Q).

Remarques.

i) On peut voir que cette définition équivaut a la suivante: f e €(r)
appartient a €(Q) s’il existe f € 0(Q) tel qu'on ait can f = f.

ii) 1l sera commode, pour f e @(Q), de faire la convention suivante:
on appellera « détermination principale » de f la fonction i* f € O(r).
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Il est visible que les définitions précédentes ne dépendent pas de r,
supposé assez petit, moyennant le changement de point-base expliqué en (1,iii).
Le premier résultat de la théorie est alors le suivant.

TuEOREME (1.5.1). é(Q) est une sous-algébre de convolution de @.

Pour la démonstration, je renvoie a (E 1), p. 70. L’idée est, en gros,
d’effectuer le prolongement analytique de f * g par des intégrations sur des
chemins de C — Q symétriques par rapport a leur milieu, et des homotopies
convenables dans cette famille de chemins.

Pour énoncer les théoréemes suivants, je me bornerai au cas ou Q = Z;
on passerait de la au cas d’un sous-groupe quelconque en appliquant les
resultats aux sous-demi-groupes N, o € Q.

Supposons donc qu’on ait Q = Z; et supposons le point-base a choisi
dans ]0, r[; si ce n’est pas le cas, on s’y ramene par (1,iii): faire attention
que les définitions qui vont suivre dépendent du chemin vy choisi pour s’y
ramener (voir le n° 6 a ce propos).

Soit n > 0. On note vy, un chemin de C — Z d’origine a, et d’extrémiteé
n + a fabriqué ainsi: on part du chemin rectiligne [a, n+ a] et on le remplace
au voisinage de b = (1, ..., n) par un petit demi-cercle

«au-dessus » ___ /.. ou «au-dessous » \_/

pour b = 1,..,n — 1, toujours « au-dessus » pour b = n (2 homotopie pres,
il y a donc 2"~ tels chemins).

Soit p (resp. g=n—1—p) le nombre de points b € {1, .., n— 1} contournés
par-dessus (resp. par-dessous); on pose

1q!
(L5.3) e(r) = =1
n.

~

DEFINITION (1.5.4). Soit f € €(Z), et v, un chemin du type précédent.
On note A, f Ulélément de €(Z) obtenu de la maniére suivante: on consi-
dere le germe var f e 0,; soit ge0,,, le germe obtenu par prolongement
analytique de var f le long de vy,, et soit he(®, le germe g-or,
v la translation x> (x+a); il est visible qwon a he O(Z); alors, on pose
A, f = canh.

Soit en particulier vy, le chemin obtenu en contournant tous les points
(1, ... n) « par-dessus »; on pose A, = A,+. On considére alors la série for-

melle de I'indéterminée ¢,

ATl =id+ ¥ A

21
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qui est une application €(Z) —» €(Z)[[¢]]; on munit %(Z) du produit de
convolution (théoréme 5.2) et €(Z)[[t]] du produit habituel des anneaux
de séries formelles: (Zf ,t7) * (Zg,t?) = Zf, * g,t?"?. Le résultat est alors le

suivant.

TaEOREME (1.5.5). AT[[t]] est un homomorphisme d’algebres.

On trouvera une démonstration de ce résultat dans [E 1], p. 80; elle est
fondée sur un argument de déformation de contours. Voici une esquisse
d’'une autre démonstration, qui m’a été suggérée par A. Voros.

Pour f e %(Z), désignons par f., I'hyperfonction sur R a support
[0, + co[ définie ainsi: on prend au voisinage de 0 l'’hyperfonction [f]
définie au n° 2 a partir de f; on la prolonge par 0 a gauche de O;
a droite de 0, on la prolonge par la « valeur au bord » du prolongement
analytique de var f dans le demi-plan Im x > 0; on définit f_ de la méme
maniere a partir du demi-plan Im x < 0.

Je laisse le lecteur vérifier que, pour f,ge %(Z), on a (f*g), = f4 *g,
(le premier produit est pris dans €(Z), le second dans les hyperfonctions a
support borné a gauche).

Posons d’autre part, f, - = f_;et,pourn > 1,soit f, _ ’hyperfonction
(A, f) translatée de n vers la droite. On a visiblement f, = Z f

n=z0
dou (f*g)s = Y (f, —*g, -). Mais f, _ * g, _ est le translaté par p + g de
p.q
Ay fo*xAjg_ = (A} f*Afg)_. On a donc une décomposition (f*g),
= ) h,_avech,_ = Y (ASf*ASg)_ (translaté de n). Si alors on
ptq=n ptq=n
definit (f=g), - a partir de (f*g) comme on I'a fait ci-dessus pour f " —
a partir de f, on trouve I'égalité X(f=g), - = Zh, _.

Montrons, par récurrence sur n, que ceci entraine (fxg) =h

n, —

n, —»

n, —»

ce qui equivaut au théoréme annoncé; au voisinage de 0, seul le 1°* terme

des deux séries est # 0, d’ou (f*g)y - = ho _; & droite de 0, les deux

membres sont valeurs au bord de leur prolongement du coté Im x < 0

comme ils coincident pres de 0, ils coincident partout, donc on a partout

(f*g)o, - = hy _, et ; (f*g)., - = ). h, _;onrecommence alors le raison-
nz=

n=1
nement avec n = 1 et ainsi de suite.

(L6) CALCUL DIFFERENTIEL ETRANGER

i Pour n > 0, définissons les opérateurs A, sur €(Z) par Iidentité de séries
formelles (non commutatives, peu importe).
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(I.6.1) log(id + Z ATt = Z A",
n=1 nz1

On a le résultat suivant.

THEOREME (1.6.2).

1) Les A, sont des dérivations de €(Z).

2) Ona A, =) &y,)A,,.

Yn

La premiere assertion résulte formellement du théoréme (5.5). Pour la
seconde, voir (E 1), p. 80.

On obtient donc ainsi toute une famille de dérivations, dites « déri-
vations étrangéres » de l'algebre %(Z), a savoir celles qui sont données par
un n > 0 et le choix du point-base, et de méme du coté négatif: plus
précisément, soit C* un revétement universel de C*, et m la projection
C* - C*: on aura une dérivation étrangére attachée a chaque point de
= Y(Z—{0}).

Ces dérivations forment une algébre de Lie libre, de dimension infinie
(elles « n’ont pas de relations entre elles »).

Pour écrire les formules qui suivent, je reprends les notations un peu
ambigués du n° 5, qui sous-entendent le choix d’'un point-base.

(1.6.3) Soit f > xfla « dérivation interne » de G(Z) (cf. n° 3,v); de (6.2.2) on
déduit immédiatement qu'on a A, (x?f) = (x+n)’A,f, autrement dit A,0° A
= (0—n)PA, (p entier >0).

Les résultats qui suivent sont les analogues dans cette théorie du théo-
réme des fonctions composées et du théoreme d’inversion locale. Pour les
énoncer, il est nécessaire d’introduire une classe particuliere d’hyperfonctions
.que je vais maintenant définir.

Reprenons d’abord les notations du n° 1; pour r > 0, soit @, (r) I'espace
des fonctions g e O(r) qui possédent la propriété suivante: pour tout

b e D *(r), l'intégrale J |g| | dx| est absolument convergente, et ceci
[0, b

uniformément lorsque b parcourt un secteur |b| <ro <r, o < argh < P
Sur @, ,(r), on a un relévement canonique de l'application « var », qui peut
par exemple €tre défini ainsi: si le point-base a est sur R% , cas auquel on
peut se ramener par changement de base, on définit ce relevement comme
étant la distribution a support sur R, définie par la fonction intégrable
égale 4 g sur R*% et a zéro sur R_ (il est immeédiat que cette distributiorj

,
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appartient & %(r)). Par extension de la notation utilisée au n° 4, on notera

ce relévement Pf g, et on posera %,,(r) = Pf @,.(r).
Une maniére équivalente de définir Pf consiste a considérer 'intégrale

1 a
de Cauchy: pour xe D(r) — R,, on pose G(x) = ZRiJ 9) dy; G se
0

prolonge visiblement en un élément de @, et l'on pose Pfg = canG.

En théorie des distributions, on a I’habitude d’identifier une fonction
localement intégrable et la distribution qu’elle définit; comme cas particulier,
on pourrait ici identifier €,, et 0., (pour la clarté de Iexposé, jéviterai
de le faire); la convolution sur %, se raméne immédiatement a la convolution
des fonctions intégrables, et ’'on voit facilement qu'on a

~ ~ ~

(gint i (gint — (gint ’

DEFINITION (1.6.4). On note % la sous-algébre de convolution de €
égale a Cd + €,,,.

Reprenons maintenant les notations du n° 5, en nous limitant au cas
Q = Z pour simplifier un peu I'exposé. Soit f € €(Z) et soit y n’importe quel
chemin de C — Z d’origine a le point-base et d’extrémité n + a, neZl;
on définit A, f de maniére analogue a (5.4).

DEFINITION (1.6.5).  Onnote €(Z) Tensemble des f e G(Z) qui possédent
les propriétés suivantes :

) fe¥;
i) pourtout y, ona Afe®.

La seconde propriété signifie aussi ceci: au voisinage de ne Z, toute

détermination de var f est de la forme

— + (translaté de n d’un

¢lément de can™!%, ).

Remarque sur les notations. Chez Ecalle, € (resp. %) est noté .
(resp. o) ; B(Q) (resp. €(Q)) est noté A(Q) (resp. A(Q)).

X Dans les énoncés qui suivent, on munit é(Z), (ou plus généralement
¢(Q)), de la topologie définie ainsi: b(Z) est le quotient de ((Z) par les
fonctions dont la détermination principale est holomorphe en 0 (voir remarque

suivant la définition (5.1)); on munit alors 0(Z) de 1a convergence uniforme
.

Sur tout compact de C — Z, et €(Z) de la topologie quotient (le sous-
tSpace qu’on identifie a 0 est évidemment fermé)
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Une maniere équivalente de faire est la suivante: on choisit un r < 1,

on munit @(r) de la convergence uniforme sur tout compact de D(r)*,

et €(r) = 0(r)/O(r) de la topologie quotient; on injecte alors €(Z) dans

(€(r), O(Z)) par Tlapplication (id, var), et on prend la topologie induite.
On peut maintenant énoncer les résultats annoncés plus haut.

THEOREME (1.6.6). Pour fe%(Z) la série exp,f = Y. f*" converge
nz0

vers un élément de %(Z) (on pose f*°=3).

Pour la démonstration, voir (E 1) p. 84. A noter que le résultat ne
s'étend pas a G(Z).
Soient maintenant f € ¢(Z) et g = & + h, avec h e 4(Z).

THEOREME (1.6.7). (« Fonctions composées »)

i) La série f®g= ), —(6” f) * h*"  converge vers un élément de
nz0 N
é(Z).

ii) Pour g fixé, lapplication f+> f ® g est continue de €(Z) dans
é(Z); cest un homomorphisme pour la convolution; enfin elle envoie %(Z)
dans ¥(Z).

Pour les démonstrations, voir (E 1) p. 87. Heuristiquement, et méme rigou-
reusement dans les cas intéressants, cette opération est la transformée de
Laplace inverse (ou « de Borel ») de la composition usuelle

PEth =3 f‘"’(&)ﬁ

on lui donnera donc le nom harmonieux de composition-convolution.
Sous les hypothéses du théoréme précédent, les formules pour les déri-
vations s’écrivent :

(L6.8) a(f®g) = (0f Bg) * g
(L6.9) A(f®g) = (0f®g) * Aug + exp,(—nh) * ((A,f)®g) -

Ces formules résultent formellement de la définition de f ® g, du fait
que 0 et A, sont des dérivations pour la convolution, et de (1.6.3). A
remarquer que si on avait laissé A,f «au-dessus de n», au lieu de le
ramener en 0, on aurait [A,, 0] = 0; alors, le facteur exponentiel disparaitrait
dans (1.6.9). Toutefois, ceci exigerait d’autres définitions que celles qu'on a
prises.
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Supposons maintenant qu'on ait f = & + k, k€ %(Z); on vérifie imme-
diatement quon a & ® g = g (analogue de §eog = g), dou f®ged
+ %(Z). On peut voir que lopération @ est associative sur & + ¥(Z).
Je ne sais pas si les éléments de & + %(Z) sont tous inversibles; on a
toutefois le résultat suivant ([E 1], p. 88).

TutoreME (1.6.10). (« Inversion locale »). Soit ged + €(Z) et sup-
posons que la détermination principale de varg soit de monodromie finie
autour de O (Cest-a-dire soit une fonction uniforme de x'P, p entier
convenable). Alors g admet un inverse dans & + €(Z), et cet inverse a
la méme propriété.

CHAPITRE II. — AUTOMORPHISMES DE (C, 0) TANGENTS
A L'IDENTITE

(I.1) GENERALITES

Soit G le groupe des germes d’automorphismes de (C,0) tangents a
l'identité; un élément de G est donc une application holomorphe

z> f(2) = z + ayz® + .. + a2t + ..,

la série f étant convergente au voisinage de 0. On se propose de déter-
miner les classes de conjugaison de G.

Pour cela, on regarde d’abord le méme probléme pour le groupe G
des automorphismes formels (i.e. ici, f est une série formelle); ici la classifi-
cation est facile, et bien connue: en effet, tout f s’écrit d’'une maniére

d
et d’une seule sous la forme exp(§), & = (b222+...)d—; le probléeme revient
z

donc & classer les champs de vecteurs formels s’annulant 4 un ordre > 2,
1
ou encore, en remplagant £ par g, les formes méromorphes formelles a

pole d’ordre > 2. La classification de ces formes sous G (qui coincide
d'ailleurs avec la classification des formes méromorphes convergentes sous G)
est donnée par 2 invariants:

1) le coefficient du terme le plus polaire;

i) le résidu.
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En revenant a G, on voit que la classe de f est donnée par 2 inva-
riants:

i) le premier a, # 0;

ii) un autre invariant, fabriqué avec a,, .., a,,_;; on peut par exemple

: 1 1
prendre le coefficient de — dans ———.
z flz) — z
Exemple. f(z) = z — z2 + z° + (n’importe quoi); alors f est formel-
2
lement conjugué a = :
jug fo 1+ 2

Dans la suite, pour simplifier I'’exposé, je travaillerai uniquement sur
I'exemple de cette classe formelle; je renvoie aux articles d’Ecalle pour les
modifications — inessentielles, mais un peu fastidieuses — a apporter dans
le cas général.

z
1+ z

Soient donc f(z) = z — z* + 2> + 0(zY e G, et f,(2) = ; il est

1
commode de faire le changement de variables — = £, et de poser
Z

g€ = 1/f (é), onaalors go(§) = £+ 1, g =6 +1+ ) &; il existe

ns2 &"

une série formelle méromorphe et une seule en — de la forme (&) = &

1
+ O (g> qui vérifie @ o g = go o (=@ +1). Son inverse | est de la méme

forme et vérifie g o Y = Yo go(=Y(§+1)). Ecalle les nomme respectivement
« I'itérateur direct » et « I'itérateur inverse ».

On voit facilement ceci: soit g’ une autre série analogue a g, et soit
@’ son itérateur: pour que g et g soient conjugués, il faut et il suffit
que ¢ ! o @ soit convergent; en particulier, pour que g soit conjugué a ¢,
il faut et il suffit que @ soit convergent.

Pour se faire une idée des obstructions a cette convergence, examinons
d’abord le probléme analogue pour une déformation infinitésimale d’ordre 1
de g,, c'est-a-dire considérons la famille a 1 paramétre g = g, + t4,
g(€) = O(E~?); Tlitérateur infinitésimal ¢ = & + tp, ¢ = O(™1!) vérifie
@og = goo @ (mod t?), Cest-a-dire o+ 1) — 0(&) = — g(§); cette équation
détermine la série formelle ¢ comme on le voit immédiatement en calculant
terme a terme. L’obstruction a la convergence peut se voir classiquement
de 2 manieres. |
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1"¢ maniére (« Méthode sectorielle »)

Dans un demi-plan Re & » 0, équation ¢.(E+1) — ¢ .(§) = — g(&) a
une solution et une seule tendant vers O a [linfini, & savoir la seérie
Z g€ +n), et @, se prolonge au plan privé d’'une « demi bande arrondie »

nz0

€] < R}u{lIm&| < R;Re& <0} = By (pour R»0).
De méme ¢ _(§) = — Y g(§+n) est une solution de la méme équation

n<Q0

hors de la demi bande arrondie B; définie de fagon analogue; alors pour
que @ converge, il faut et il suffit qu'on ait, pour [Im & | > R: Zg(E+n) = O;
plus généralement, on voit que g et g’ sont analytiquement conjugués a
Pordre 1 si et seulement si 'on a, pour |Im&| >» 0: Zg(E+n) = Zg'(E+n).

2¢ manieére (transformation de Borel)

- b . r ’
Posons g = ). g—:, ¢ = ) g—:et considérons leurs transformées de Borel
n=2 nz1
a _ S
jp = Y ——— x", = YEZ —"— x"; la premiére est un élément de €,
9 TENTTRAAE (n—1)! P

(n—1!
entiére de type exponentiel, parce que g converge a l'infini; a priori, la
seconde est seulement une « microfonction formelle » qu’il suffit de définir
par son expression, sans avoir besoin de définition générale. L’égalité
oE+1) — @E) = — g(E) se traduit ici par Dégalité (e *—1)og = — gz;

en particulier, on a var @p = (—Tx——l)var gg; donc en fait, var @z est une
e J——

fonction méromorphe sur C, avec des poles simples sur 2miZ — {0}; des
obstructions & la convergence de @ sont ici les résidus de var @gz. Ce sont
en fait les seules obstructions: plus généralement si §' est une autre fonction
analogue 4 ¢, et si var @ et var @3 ont les mémes résidus, alors var @g

dont la variation X x" se prolonge en une série entiere, et meéme

— var @ est entiére, et de la forme ———— x (fonction entiére de type

(e7*—1)

exponentiel); il en réesulte par des raisonnements classiques que var(ez— ¢ %)
est entiere de type exponentiel, donc que @ — ¢’ converge a I'infini, donc que
g et ¢’ sont analytiquement conjugués a 'ordre 1 (la réciproque est évidente).

Pour voir I'équivalence des 2 méthodes, il suffit de voir que les résidus
de var @y sont égaux aux coefficients de Fourier de la série 2g(E+n);
Je laisse cette question au lecteur.

Nous allons voir maintenant comment les deux méthodes précédentes
s¢ généralisent au probléme envisagé.
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(I.2) LA METHODE SECTORIELLE

Je serai ici trés rapide, et renverrai pour les démonstrations a mon
exposé [M]. Cette méthode se trouve essentiellement dans [E]; une variante
a eté retrouvée indépendamment par Voronin [V].

Soient g, g, ® comme ci-dessus.

THEOREME (I1.2.1) (Kimura [K]). Pour R » 0, il existe une unique
fonction @, (resp. ¢_), holomorphe dans C — By (resp. C—B}j) et pos-
seédant les propriétés suivantes :

i) dans tout secteur {|arg&| < m — e} — Bg, @, admet © pour
développement asymptotique a Uinfini,; énoncé analogue pour © _ .

i) Ona @,°9 = goo®, sur C— Bg, avec R > R convenable;
énoncé analogue pour ¢ _ .

Considérons alors la fonction ¢ ¢ -1, définie dans | Im & | > 0; dans tout
secteur e < argf <m —¢eget —nw+ e <argf < — ¢ (¢>0), cette fonction
admet & pour développement asymptotique; posons alors @, -' = & + ;
x est asymptotique a 0; de plus, le fait que ¢, ¢ -' commute 4 g, montre
quon a x(§+1) = x(&). Donc, on a

dans Imé& > 0: (&) = > yx.e*™

n=1
(11.2.2)
etdans Imé& « 0:%E) = > yx.e*™".

n<—1

Soit alors g’ une autre fonction analogue a g. Notons y, et y, les
« fonctions y » correspondantes.

THEOREME (11.2.3).

1) Pour que ¢ et ¢ soient conjugués, il faut et il suffit qu’on ait
Xg = Xg -

2) Réciproquement, soit 7y, une fonction périodique dans |Im¢&| > 0,
du type (2.2). Alors il existe ge G, formellement conjugué a g,, et telle
quon ait ¥, = X

La premiére assertion est immédiate. On trouvera dans [M] une démons-
tration rapide de la seconde. D’autres méthodes, plus explicites, se trouvent

dans [E 2].
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(IL3) TRANSFORMATION DE BOREL ET RESURGENCE

La méthode précédente assez élémentaire, n’utilisait pas les résultats du
chapitre I. Ici, au contraire, ils vont jouer un role essentiel.

Soient g, g, et @ comme précédemment, et définissons la « microfonction
formelle » @ comme au n° 1. Observons d’abord que les fonctions ¢
et ¢_ définies au théoréme (2.1) vérifient la majoration suivante: dans tout
secteur e <argE < m—¢cet —m+e<argl < —e(e>0), o — @_ est,
a linfini, de lordre de e~ 2"™%l [en effet, on a @, 2! = & + x(§), d'ou
0, — @_ = o o@_ et il suffit d’utiliser les propriétés asymptotiques de @_
et y pour obtenir le résultat cherché¢]. On peut déduire de 1a, et de la
théorie de la sommabilité de Borel que var @ est en fait holomorphe dans le
plan privé des deux demi-droites [2mi, ioo[ et [ —2mi, —ico[. Je renvoie pour
ces questions aux travaux sur la sommabilit¢ de Borel, notamment a [R].

Ici, on va directement obtenir un résultat plus précis:

—~

TtOREME (IL3.1). Ona ¢z @2niZ).

Ceci peut encore €tre précisé: soit a le point base choisi, et ¥ un chemin
quelconque de C — 2miZ d’origine a et d’extrémité un point b e a + 2niZ;
on definit alors A @z comme en (1.5.4). On a le résultat suivant qui donne
lexpression des singularités de var @p:

THEOREME (I1.3.2). Pour tout y comme ci-dessus, on a
Ay(pB = ays + nga
avec a,€C, g, € O; en particulier,ona @ged + €2niZ).
Indiquons le principe de la démonstration; pour les détails, voir [E 2],

p. 311-318. Posons
OC) =& + ), g€) = & + 1 + k(E+1);

Iéquation @og = @ + 1 se réécrit g + mog = £+ 1+ 7w ou encore
E+K(E) = nE—1) — k(E).

En appelant K (resp. L) I'image réciproque par I'application E— & + k(€)
(resp. E—E —1), cela s’écrit Kn = Lt — k, ou encore (L=Dr = (K—Drn — k.
L'idée est alors de faire apparaitre I'inverse de L — I, comme dans le cas
linéaire; cet inverse est bien défini, des séries Y. a,/E" vers les séries

n=2
2. baE"

RS

L
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L’équation précédente a, dans les séries formelles, une solution unique

n=— Y (L—D YK-D](L—1) k.

nz0

[(L—1)"! augmente de 1 les degrés en &, et (K—1I) les diminue de 3, donc
la série est bien formellement convergente].

On applique alors la transformation de Borel a la formule précédente:
(L—1I)~! devient la division par (¢e*—1), et K la composition-convolution
avec (E+k)g. On arrive alors aux résultats cherchés par un calcul de
majoration.

D’apres le théoréme (1.6.10) la transformée de Borel \z de Pitérateur
inverse vérifiera alors aussi Yz € &' + ¥(2miZ). Les hyperfonctions Vg et @,
vérifient des « relations de résurgence » remarquables qu'on va maintenant

¢tablir.
| Partons de la formule g oy = yog, = Y(§+1); en passant aux trans-
formées de Borel, on trouve

g ® Vg = Y ® go 55
posant @ = 2min, (neZ—{0}), on a

Augs = Augo,p = 0;
d’autre part:

go,p = 0 + 90,
d’ou:
exp,0(go, p— ) = exp,(—wd) = &> = §;

en utilisant (I.6.9), on trouve alors:

(095@Vp) * AgVp = AVp @ go, 5 -

Posons Z(A V) = A, V; d’aprés le théoréme précédent, on est dans le
cas d’application de la transformation de Laplace considérée au chapitre I,
et 'on a:

AV = ) &, ¢eC;

n<o0
on aura:

d
((d_é g> © W) Aw‘l’ = (Aw\l’) (E.:+ 1) .
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D’autre part, en dérivant I'équation g o ¥ = Y(§+ 1), on trouve

dg AU} _i\li
(Zizoq;)zig = i E+1).

: d :
Maintenant, il est facile de voir que I’¢quation (;1%0 \|1> n =nE+1) na

quune solution formelle de la forme Y c¢,&" a un facteur constant prés.
n<O

On trouve donc la relation

d
133) AN = Am—‘li, ou Ay = AV, A,eC.

dg
Maintenant, en utilisant la relation o = &, ou Yz ® ¢z = &, et la
formule (1.6.9), on trouve facilement qu’on a:

(I1.3.4) APp = — Aexp,(—o(ps—7)),
ce qu'il est commode d’écrire

Ao = — Ame—m(tv—i)'

Soit maintenant g’ un autre ¢lément de G, formellement conjugué a g,,
et soient @', Y/, (resp. A,) les itérateurs (resp. les invariants) qui lui cor-
respondent.

La version « résurgente » du théoréme (I1.2.3), assertion 1, est alors la
suivante.

THEOREME (IL3.5). Pour que g et g soient analytiquement conjugués,
il faut et il suffit qu'on ait, pour tout neZ — {0}: Ay, = A%, .

Soit h la série formelle a Iinfini définie par ¢ = ¢’ ch; on a
g = hogeh™!, et d’aprés les résultats qui précédent h est transformé de
Laplace d’un certain hy e &' + €(2miZ), vérifiant @z = hy @ @z. Pour sim-
plifier les notations, on continuera a se permettre d’écrire les dérivations

étrangeres du coté « fonctions de & ». On a:

!

— Ame-m((P—i) — Am(P _ <d(9

oh —o(h—-¥) "o
i )Awh + e (A,@) o h

le dernier terme vaut

r ,2—o(h—E)— "—§&)o P -
—Ame oh—8) ~a(@"—&oh _ —Ame o(e &)




280 ' B. MALGRANGE

Alors:

1) si h est convergent, i.e. si g et g  sont analytiquement conjugués,
hg est entiere, donc Ah = Oet A, = A,,.

2) Réciproquement, si 4, = A, pour tout o, on a A,h = 0; on en déduit
facilement que hy est entiére. On montre.alors, par des majorations qui se
font en méme temps que celles du théoréme (I1.3.2) que hy est de type
exponentiel; (voir [E 2], p. 321 et suivantes); donc h est convergent et ¢’
est conjugué a g.

Pour terminer, indiquons rapidement le lien entre les deux séries d’in-
variants trouvés aux n® 2 et 3. Tout d’abord on déduit de la formule
(I1.3.4) qu’il existe des A} e C tels quon ait Ao = — A e @7, de plus,
les A s’expriment par des polyndmes universels (qu’on pourrait expliciter)
dans les A, et réciproquement. On utilise pour cela la formule (1.6.1) et son
« inverse » exp(ZA,t") = id + ZA ",

Soient alors {Y,} les invariants (I.2.2). On a le résultat suivant.

ProposITION (I1.3.6). Pour n >0, ona A, = X,

Je me limiterai a un argument heuristique; soit vy, la demi-droite
e'®[0, + co[ orientée de maniére a avoir 0 pour origine. On doit avoir,
en un sens convenable,

(I1.3.7) J Qp(x)e dx = ¢, si |arg9| <g
76

T
@_ si lﬂ:—arg9|<5.

. T
On regarde alors ce qui se passe lorsque 0 traverse la valeur 3 (cf. la

démonstration de (1.5.5)); formellement, pour
Imf «0, —nm+e<argf < — ¢,

on a

Oy — Q- = ZJ‘ A;nin(PB(x)ewxé—znin&dg 2
Yn

Y, €tant le translaté par 2nin de vy, (6 = g + O)

d’ou 0oy — 0 = Z A;nine—Z”imp_

n>0 i|
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! en comparant avec (IL2.3), on «obtient» le résultat cherché; je laisse
' Je lecteur regarder les modifications a faire pour n < 0.

Dans [E 2], p. 417 et suivantes, le lecteur trouvera une démonstration
de cette proposition par un argument voisin de celui qui est esquissé ici;
le point-clef est une majoration a Iinfini de var @g, a laquelle jai déja
fait allusion; ceci permet entre autres d’établir (IL.3.7) (bien entendu, au
voisinage de O, l'intégrale doit étre interprétée au sens des distributions,

comme on I’a fait au chapitre I).

Remarque (11.3.8). Dans la démarche précédente, on retrouve les ¢ . , donc
les résultats du n° 2 (méthode sectorielle) par la méthode résurgente du n° 3.

Sans que jaie vérifi¢ les détails, il me semble qu’une utilisation plus
systématique de la sommabilité de Borel permettrait inversement de retrouver
les resultats du n® 3, en particulier le théoréme (I1.3.1) a partir du n° 2,
et plus précisément de la formule ¢, — ¢_ = Zy,e*™™®-. A mon avis,
ceci ne diminue pas l'intérét de principe qui s’attache a I'utilisation directe
de la convolution et de la méthode résurgente: outre son élégance, et son
caractere direct, cette méthode a aussi 'avantage de donner des résultats
dans d’autres applications dont je n’ai pas parlé, par exemple dans des cas
ou 'on trouve pour Q un réseau; dans un tel cas, une méthode de type
sectoriel semble difficile a appliquer.
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