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REPRESENTATION OF REAL NUMBERS BY MEANS
OF FIBONACCI NUMBERS

by Paulo Ribenboim

Dedicated to Professor D.H. Lehmer

at the occasion of his eightieth birthday.

The purpose of this note is to derive a new representation of positive
real numbers as sums of series involving Fibonacci numbers. This will be

an easy application of an old result of Kakeya [4]. The paper concludes
00 1

with a result of Landau [5], relating the sum Y — with values of theta
n 1 Fn

series; we believe it worthwhile to unearth Landau's result, which is now
rather inaccessible.

1. Let (Si)m% be a sequence of positive real numbers, such that
00

sl > s2 > s3 > and lim st 0. Let S £ sf ^ oo.
i-> co i 1

oo

We say that x > 0 is representable by the sequence (s, )^ if x £ sf.l*1 j= i
(with i1 < i2 < i3 <...). Then necessarily x < S.

The first result is due to Kakeya; for the sake of completeness, we give
a proof :

Proposition 1. The following conditions are equivalent:
00

1) Every x, 0 < x ^ S, is representable by the sequence (sj^ x £ st:ii
;=i

where is the smallest index such that sh < x.
2) Every x, 0 < x < S is representable by the sequence (si).>i.

oo

3) For every n ^ 1, sn < £ sf.
i n+ 1

Prop/! 1 -> 2. This is trivial.

00

2 -> 3. If there exists n > 1 such that s„ >£ si> let x be such that
1 n+ 1

oo oo

> X > £ V By hypothesis, x £ s, with Since
i n+1 j= 1

oo 00

> x > sj(, then n < f1; hence x £ Si. < £ sk, which is absurd.
j — t fc n + 1
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3 -* 1. Since lim st 0, there exists the smallest index i1 such that
i~* oo

Sh < X.

Similarly, there exists the smallest index i2 such that il < i2 and sh < x — sh.

More generally, for every O 1 we define in to be the smallest index
n - 1

such that in_1 < in and sin < x — Y sij-
j= i

00 00

Then x ^ £ st Suppose that x > £ st
j=i J

j i

m

We note that there exists N such that if m ^ N then sirn < x — Y st-
j i

Otherwise, there exist infinitely many indices < n2 < n3 < such that
"k oo

Ss ^ x - V S:.. At the limit, we have 0 lim s; ^ x — Y s,. > 0, and
nk • <

3 ,nk J

7=1 k * co k 7=1

this is a contradiction.
We choose N minimal with above property.
We show: for every m ^ N, im + 1 im + 1. In fact

m

Sim + 1 < sim < X - £ s,
j'=i

so by definition of the sequence of indices, im 4- 1 fm +1. Therefore the

following sets coincide: {iN, iN+l, i^ + 2,...} {iN, iN+1, iN + 2, •••}•
Next we show that iN 1. If iN > 1 we consider the index iN — 1,

and by hypothesis (3) :

oo oo N — 1

siN-l < Z S/= L Sù < * - X Vfc ijv 7 ÎV 7=1

We have iN_ ^ — 1 < If x < iN — 1 this is impossible, because

was defined to be the smallest index such that iN_1 < i^ and siN < x
N-1 N-1

— £ s,- Thus x z7v — 1, that is s^_1 < x — £ and this is against
7=1

J
7=1

the choice of N as minimal with the property indicated.
00 00

Thus iN 1 and x > Y Y si against the hypothesis.
7=1

J

i=l

We remark now that if the above conditions are satisfied for the sequence
oo

(st) if m ^ 0 then every x, 0 < x < S' Y 5i ^ representable by
i m+ 1

the sequence (s,)^ +
with il the smallest index such that m 4- 1 < i\

and six < x.
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Indeed, condition (3) holds for (s. ^ hence also for (s. l Sincex/ vti^l v i ^ m + 1

0 < x < S', the remark follows from the proposition.
Proposition 1 has been generalized (see for example Fridy [3]). Now we

consider the question of unique representation (this was generalized by
Brown in [1]).

Proposition 2. With above notations, the following conditions are
equivalent :

00

2') Every x, 0 < x < S, has a unique representation x £ sf..
j= i

oo

3') For every n ^ 1, sn £ st •

i n + 1

4') Forevery n^1, s„ f/ience S 2s1).

00

Proof 2' y. Suppose there exists n ^ 1 such that ^ £ 5..
i n+l

00

Since (2') implies (2) hence also (3) then sn < st. Let x be such that
i n+ 1

00

sn < x < £ 5.. By the above remark, x is representable by the sequence
i /j + 1

00

(si },->„+!> that is x Y. skj-°nthe other hand, (2') implies (2), hence
;= i

kj^n 4- 1

00

also (1) and x has a representation x Y s,, > where i, is the smallest
j= 1

7

index such that sh < x. From s„ < x it follows that < n and so x
would have two distinct representations, against the hypothesis.

oo

3' 4'. We have sn sn + 1 + £ 5. 2sn + 1 for every n ^ 1 hence
/ n + 2

sn Si for every n>1.

4' -> 2'. Suppose that there exists x, 0 < x < having two distinct
representations

oo oo

x I so I % •

j=1 j-1
Let y0 be the smallest index such that iJo # say ijo < k, Then

°° oo

A so I ^ < I vJ~J(j i=io « ôo +1
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By hypothesis, after dividing by s1, we have

00 1 co oo

1 I 2x~£ 21_ij
n lj0 Z J J0 j j0

co co oo

+ £ 21-ij £2-"+ £ 21

j-jo+l
00

hence £ 21-1-' ^ 0, which is impossible.
J=jo + 1

For practical applications, we note:
If sn ^ 2sn+1 for every n ^ 1 then condition (3) is satisfied.

Indeed

oc oo co 00

Z si<2Z si+i 2 Z 5i' hence s«+i < Z s;
i n+ 1 i n+ 1 i — n + 2 i n + 2

oo

and s„ < 2s„ + 1 < £ V
i n + 1

2. Now we give various ways of representing real numbers.

First, the dyadic representation, which may of course be easily obtained

directly :

Corollary 1. Every real number x,0<x< 1, may be written uniquely
co i

in the form x £ —: (with l^n1<n2<n3<..
j=i 2J

Proof This has been shown in proposition 2, taking s1 -.

Corollary 2. Every positive real number x may be written in the form
co i

x Y — (with n1 <n2<n3 <...).
j=inj

Proof We consider the sequence f - ] which is decreasing with limit

00 1 12equal to zero, and we note that Y - oo and - ^ for every n ^ 1.

=i n n n + 1

Thus by Kakeya's theorem and the above remark, every x > 0 is represent-

able as indicated.
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Corollary 3. Every positive real number x may be written as

00 I
v V — (where <p2 <p3 < • • is the increasing sequence of prime^ Pi..

numbers).

Proof We consider the sequence (—J which is decreasing with

CO I
limit equal to zero. As Euler proved £ — oo. By Tschebycheffs theorem

i= 1 Pi

(proof of Bertrand's "postulate") there is a prime in each interval (n, 2n) ;

1 2
thus pi + 1 < 2 Pi and — < for every i > 1. By Kakeya's theorem and

Pi Pi + i
the above remark, every x > 0 is representable as indicated.

3. Now we shall represent real numbers by means of Fibonacci numbers
and we begin giving some properties of these numbers.

The Fibonacci numbers are: F1 F2 1 and for every n ^ 3, Fn is

defined by the recurrence relation Fn Fn_1 + Fn_2.
Thus the sequence of Fibonacci numbers is

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,

In the following proposition, we give a closed form expression for the
Fibonacci numbers; this is due to Binet (1843).

Let a
2

— §°^en number) and ß — —-, so

i + ß 1, aß -1, thus a, ß are the roots of X2 - X — 1 0 and

-l<ß<0<l<a.
We have

a* _ ß" a«-i ~n + 1

Lemma 1. For every n ^ 1, Fn — and < F <
75 Ts " yr

a" — ß"
Proof We consider the sequence of numbers Gn — for n ^ 1

75
Then G1 G2«1 ; moreover

_ _ a"-1 - ß""1 a""2 - ß"~2
Ln-1 + Gn_2 — — 1-

sß V5
g"~2(a+ 1) - [r";jp, HI _ ß"

V5 V5
a.,
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because a2 a + 1, ß2 ß + 1. Therefore the sequence (Gn)n>1 coincides

with the Fibonacci sequence.
Now we establish the estimates.

If n ^ 1 then — ß)" — < a"-1 — a"ß a"(a—1) a" + 1
— a", so

a"

a" — ß" a" + (—ß)w an + 1

F L_ < : ljL' 75 7s 75*

Similarly, if n ^ 2 then (— ß)" < an~2 —oc"~1ß a"_1(oc —1)

a" - ß" a" — —ß)" a"-1
a" — a" so Fn —— ^ — > —— ; this is also true when

v/5 V5 V5
n 1.

°° 1

For every m ^ 1 let Im £Ls p Ilm '

n 1 r n

We have :

Lemma 2. For every m ^ 1, Im < oo, ^ < I2 < 13,..., and

lim Im co.

Proof. We have

r V ^ 1/m
AU/m y /IV"1 _

{y/S)11"*11"
m „^L \a"-1) J

jbi \a1/m/ a1/m — 1

noting that < 1.

Next, we have

00 2 00 2

^m—1
17 1/m—1 ^ ^ r? 1/m

^m

n=irn' n=irn

Finally

- V _L v
1/m

-m 171/m ^ \ a««+1
,j=! F„1/m „t^i \oc"+7 a1/m a1/m - 1 '

thus lim /m co.
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Proposition 3. For every positive real number x there exists a unique
co °c 1

m > 1 such that x£ but x is not of the form £ Fi/(m-i)j=i ï ij

Proof. First we note that each of the sequences 1/m
is decreasing

<

V " Jn>l
with limit equal to zero. By the above proposition, there exists m ^ 1

such that Im_1 < x ^ Im (with 7o 0).

1 2 2m
We observe that — ^^ for m ^ 1, because Fn + 1 Fn

Fn Fn +1 Fn + 1

4- Fn_x < 2 Fn. By proposition 1 and a previous remark, x is representable
00 1

as indicated, while the last assertion follows from x > 7m_x £ —i/m-i •

; i -F
,•

°° 1

The number £ — appears to be quite mysterious. As we have
n=lFn

seen V5 < 7t < V5 —-—.
a — 1

4. In 1899, Landau gave an expression of in terms of Lambert series
CO

and Jacobi theta series. The Lambert series is TJx) £ it is
n= 1 1 — Xn

convergent for 0 < x < 1, as easily verified by the ratio test.

Jacobi theta series, which are of crucial importance, for example in the
theory of elliptic functions, are defined as follows, for 0 < | q \ < 1 and
zgC:

dl(z,q) i £ (~1)"?("4) e(2n-l)mz
n — co

2 q1/4sin nz —2 q914sin 3 nz+ 2 q2S/4 sin 5nz —

02(z, q) £ q{"+^) e(2n-i)%iz
n — oo

2 g1'4 cos niz+ 2 g9'4 cos 3 + 2 #25/4 cos 5tiz +
CO

03(?, q) £ 4"2 e2n"iz
n — oo

1 + 2g cos 2ttz + 2g4 cos 4tcz + 2q9 cos 6rcz +

04(z, q) L
n — oo

1-2q cos 2nz + 2q* cos 4kz — 2<?9 cos 6ttz +
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In particular, we have

0,(0, q) m 0

02(O, q) 2qm + 2 + 2 +

03(O ,q)1 + + 2 +

04(O, q)

Now we prove Landau's result :

Proposition 4. We have:

00 1 r-» I y - V5
n=i r In

wa _
2

2) X - v/5(1 + 2ß4 + 2ß16 + 2ß36 + -- )(ß+ß9 + ß25+--
« 0 F2n- 1

A- y C03(0'ß) - 02,°' ß4» e^°' ß4) •

Proof:

i ys
1) We have — —

17

V5
_ y^ß"

¥„ a" — ß" (-l)"-ß2"
ßn

P

SO

1 oo 1 oo ß2n oo oo oo oo

-7=^^=1 T315; E Z ß<4t+2)" Z Z ß(4'+2,n
yj5 " 1 * 2n w 1 J- P n 1 k-0 k 0 « 1

ß4 ß2 ß6 ß10
+ < ^ „,n + •••

1 - ß4'42 1 - ß2
'

1 - ß6
'

1 - ß10

Since | ß | < 1, then

00 1 r-ir=^n=1 r2„
L(ß2) - L(ß4) l('W5( _ L(l=hâ>
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2) Now we have

I i > iR„ oFln-i n 0 1 + P n 0

(-ß+ß3-ß5+ß7-ß9+...)
+ (-ß3+ß9-ß15+ß21-...)

+ (-ß5+ß15-ß25+ß35-...)

+ (-ß7+ß21-ß35 + ß49-...) +...

Now we need to determine the coefficient of ßm (for m odd) remarking that

since the series is absolutely convergent, its terms may be rearranged.

If m is odd and d divides m, then ßm appears in the horizontal line
m

beginning with — ßd with the sign

!+
when d 3 (mod 4)

— when à 1 (mod 4).

Thus the coefficient em of ßm is sm ô3(m) — ô^m) where

$i(m) =#{d\\^d^m, d\m and d 1 (mod 4)}

ô3(m) # {d \ 1 ^ d ^ m, d\m and d 3 (mod 4)}

A well-known result of Jacobi (see Hardy & Wright's book, page 241)

relates the difference S^m) — Ô3(m) with the number r(m) r2(m) of
representations of m as sums of two squares. Precisely, let r(m) denote the

number of pairs (s, t) of integers (including the zero and negative integers)
such that m s2 + t2. Jacobi showed that

r(m) 4 [ô^m) - S3(m)]

It follows that the number r'(m) of pairs (5, t) of integers with s > t ^ 0

and m s2 + t2 is

I rM u—— when m is not a square
L o

r'(m) <

f r(m) — 4 r(m) -I- 4
1

3 h 1 - 3 when m is a square\ o o

(the first summand above corresponds to the representation of m as a sum
of two non-zero squares).
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Therefore

e« - r(m)

2r'(m) when m is not a square

(2r'(m) — 1) when m is a square

Since m is odd then 5 ^ t (mod 2) and therefore
1 oo 1 oo

"/= I J I <*P"
/ 5 n 0 F 2n+ 1 m= 1

V m ndd

So

Ä 1

- 2(l + ß4+ß16 + ß36 + ...)(ß+ß9 + ß25 +

+ (ß+ß9 + ß25 +

- (1 +2ß4 + 2ß16 + 2ß36 + (ß + ß9 + ß25 +

- v</5(l + 2ß4 + 2ß16 + 2ß36 + ...)(ß + ß9 + ß25+
n 0 F2„+i

We may now express this formula in terms of Jacobi series. Namely

1 + 2ß4 + 2ß16 + 2ß36 + (l + 2ß + 2ß4 + 2ß9 + 2ß16 +

- (2ß + 2ß9 + 2ß25 + 03(O, ß) - 02(O, ß4)

so

i r~n 0 r 2nd

75
2

03(O, ß) - 02(O, ß4) 02(0, ß4) •

An unpublished formula of Gert Almqvist (1983) gives another expression

of /x only in terms of Jacobi theta series:

e2( o, - T 1

+ -K — log ej x, -
0 \dx

cot nxdxi.

Carlitz considered also in 1971 the following numbers:
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Clearly, all the above series are convergent. Carlitz showed that

S3, S7, Sn,... e Q(y/5), While S4k rk+ rfork 1 and rk,r'keQ.
One may ask: what kind of number is S0? Are the numbers S0, SL, S2

algebraically independent
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