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246 P.-P. GRIVEL

ol o est un isomorphisme d’aprés le lemme A3 et j/ = 1 ji est injectif
iel

d’aprés I’hypothése et le lemme A.2. Il en résulte que j est injectif et par

suite le lemme A.2 montre que le module [ | F; est plat.

iel

APPENDICE B:

LE FONCTEUR D
B.1. Reprenons les hypotheses du N° 2.1 mais supposons que Y est un
point. Alors fy = I'(X;—), X est un espace localement compact de
c-dimension finie et 2 est un faisceau c-mou et plat ([Gr] 2.5.1 et 2.9.1).
D’apres la proposition 1.4, pour tout faisceau &/ sur X, le faisceau
o QA est c-mou.

Soit encore N un R-module.
B.2. On définit un foncteur contravariant
D(—): Sh(X)° — Sh(X)
en posant
D(et) = flg4(N).

Plus précisément D(</) est le faisceau défini en posant

D(«/) (U) = Hom(['((«/ ®H)y); N)

pour tout U € Ouv(X) et

py,v = Hom(ry y; 1y)

pour tout U’, U € Ouv(X) tels que U’ <= U.

B.3. Dans ([Bo], V, §7) le théoreme de dualité est démontré, d’une fagon
un peu indirecte, a I'aide du foncteur D. On notera que la propriété fonda-
mentale suivante du foncteur D est une conséquence facile de la proposition
3.10 si on remarque que D(Ry)y = D(Ry) = f, (N).

B.4. THEOREME (A. Borel). Il existe un isomorphisme de foncteurs

w:D(—) = Hom{— ; D(Ry))
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