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242 P.-P. GRIVEL

4. LE THEOREME DE DUALITE

41. Soit f:X — Y une application continue entre espaces localement
compacts telle que le foncteur f soit de dimension cohomologique finie. -

Supposons pour toute la suite de ce paragraphe que I'anneau R est
noethérien. D’aprés le théoréme 1.5 on peut trouver une f)-résolution
0 - Ry —» A " du faisceau Ry par des faisceaux plats.

42. Si o/ € ObK(X) on définit un complexe double f ’f.(&i ') en posant
[f ',[ ()79 = f ‘,W(yiq), les différentielles étant induites par celles
de " et de o/ respectivement. En prenant le complexe simple associé
on en déduit un foncteur, encore noté f ‘;’[, de K(X) dans K(Y).

Si " € ObK(Y) on peut encore définir un complexe triple

Homl [ (4); B)
en posant
[Homl [ () BN = Homlf7 (479 B),

les différentielles étant induites par celle de 4, de o/ et de # respec-
tivement. Le complexe simple associé a ce complexe triple est canoniquement
isomorphe au complexe simple associ¢ au complexe double des homomor-
phismes du complexe simple associé au complexe double f "’{ (o7 ) dans le
complexe 4 . '

43. D’une fagon analogue on définit un complexe double f! (%) en
posant [fL«(#)]"% = f _,(#%. En prenant le complexe simple associ¢
on en déduit un foncteur, encore noté¢ f -, de K(Y) dans K(X).

On peut aussi définir le complexe triple #omdo/ "5 f1, (%)) en posant

[.}fom(&/.; f;,(.@ .))]p’ B = %0//%(%_‘1; !x_p(gé’r)).

Le complexe simple associ¢ a ce complexe triple est canoniquement 1so-
morphe au complexe simple associé au complexe double des homomorphismes
du complexe o/ dans le complexe simple associé au complexe double

fAB),

4.4. PROPOSITION. [l existe un isomorphisme de complexes de faisceaux sur Y

I g}fom(f'x(&f),,@) — f*c%”om.(ﬂ'; f'y[(gf))

Démonstration. Le corollaire 3.11 fournit, pour tout (p, ¢, ¥) € Z x Z x Z,

un isomorphisme ‘
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AP T [g}fom(f‘lx/(&( .); 9?‘)]‘” r [f*,}fam(&f’; f'x(%’ '))]p‘ L

compatibles avec les différentielles. On en deéduit un isomorphisme de
compiexes triples. En passant aux complexes simples associés on obtient
I'isomorphisme A .

45. Rappelons ([Gr], corollaire 3.10) qu’on définit le foncteur f ! comme
étant le foncteur dérivé du foncteur [, -.

46. THEOREME. Soit o/ un objet de la catégorie dérivée D~ (X) et
A un objet de la catégorie dérivée DP(Y). Dans la catégorie D™(Y)
on a un isomorphisme canonique

R #om Rf(A); B) = R R Hom' (75 f(RB)).

Démonstration. Soit o/ € ObD ™ (X) et soit 0 - Ry — 4~ une fi-réso-
lution du faisceau constant R, par des faisceaux plats (théoreme 1.5).
Ona o @Ry = donc 0> &/ — o/ @ 4 est une résolution de
/" par des faisceaux fi-mous (proposition 1.4) donc fi-acycliques ([Gr]
lemme 2.10).

Comme par hypothese f est de dimension cohomologique finie le foncteur
Rf1: D(X) — D(Y) existe et est donné par Rf (/) = f'f (27 7); il induit un

foncteur Rf1: D™ (X) —» D (Y) ([H] chap. 1, corollaire 5.3).
Maintenant soit % e ObD’(Y) et soit 0 - # — # une résolution
injective de 4. On a évidemment

R(H o o (f) % Lgory)) = R Hom o (Rf1 X 1poy)
donc ([H] chap. I, § 6).
4.6.1) R Hom RAOL 5 B) = Hom (f7 () £7).

D'un autre c6té les faisceaux f1, «(#°) sont injectifs (corollaire 2.9), donc les
faisceaux Hom (&5 fl,(F) et fofom (47 fL+(#7) sont flasques
([Go] chap. II, lemme 7.3.2 et théoréme 3.1.1). On a ainsi ([H], chap. I,
prop. 5.4)

R(f*OXO-ﬁZ.O(lK(X) X fj%’.)) = Rf* o R %04}2. o (ID(X) X Rf‘le.) .

Donc

A [452) R R Hom (" fAB) = [ Hom (L5 fL(F).
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Le théoreme résulte alors du fait que les membres de droite des égalités
(4.6.1) et (4.6.2) sont isomorphes en vertu de la proposition 4.4.

4.7. Appliquons le théoréme 4.6 au cas ou &/ = f !(93'). Comme les
foncteurs f, et # o sont exacts gauche, en appliquant le foncteur coho-
mologique H°, puis en prenant les sections globales, on obtient un iso-
morphisme

Hom o (Rf1(f (% ): B") = Hompe( (B ); f1(#)).

L’image de 1f'

!z PAT cet isomorphisme permet donc de définir une fleche
d’adjonction

Rflof!“’li)b()/)-

APPENDICE A:

LES MODULES PLATS SUR UN ANNEAU NOETHERIEN

A.l1. Soit R un anneau commutatif unitaire et soit E un R-module. On sait
que le foncteur —®E est toujours exact a droite. On dit alors que E est
un module plat si ce foncteur est aussi exact a gauche. Cette condition est
équivalente au fait que pour tout R-module M et M’ et pour tout homo-
morphisme injectif u: M' — M, '’homomorphisme u®l;: M'QFE - MQE
est encore injectif ([Bo2], chap. I, § 2, prop. 1).

A.2. Soit a un idéal de R. L’inclusion j: a — R induit un homomorphisme
j:a®E — E obtenu en composant I’homomorphisme j®1, avec I'isomor-
phisme canonique R®E = E. On a alors le résultat suivant ([Bo2], chap. I,
§ 2, N° 3, remarque 1).

LEMME. Pour que E soit un R-module plat il faut et il suffit que,
pour tout idéal a de R de type fini, Phomomorphisme j:a®E — E
soit injectif.

A3. LeMME. Soit E un R-module de présentation finie et soit {F}i
une famille de R-modules. Alors 'homomorphisme canonique

o EQ(]F;) » [[(EQF))

iel iel

est un isomorphisme.
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