Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 31 (1985)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: UNE DEMONSTRATION DU THEOREME DE DUALITE DE VERDIER
Autor: Grivel, Pierre-Paul

Kapitel: 3. L'ISOMORPHISME

DOI: https://doi.org/10.5169/seals-54567

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-54567
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

232 P.-P. GRIVEL

2.7. La construction du morphisme A et la démonstration du théoréme fera
I'objet du paragraphe 3.

2.8. COROLLAIRE. Le foncteur f! :Sh(Y)— Sh(X) est adjoint a droite au
Joncteur [ : Sh(X) — Sh(Y).

Démonstration. En effet prenons les sections globales dans I'isomorphisme
du théoreme 2.6. On obtient ainsi un isomorphisme

HomSh(Y)(f!f(ﬂ) ’ 93) = HOmSh(X)(JZ{;f‘!;((%))
2.9. CoRrROLLAIRE. Le foncteur f' :Sh(Y) > Sh(X) se restreint d un
foncteur  f :Inj(Y) — Inj(X).

Démonstration. Soit 0 - &/’ »> o/ - /" - 0 une suite exacte de
faisceaux sur X et soit # un faisceau injectif sur Y. En appliquant succes-
sivement a cette suite les foncteurs exacts f 'X et Homg,y(— ; .#), puis en
utilisant l'isomorphisme du corollaire 2.8, on obtient une suite exacte

0 — Homg, (2" ; f1(#)) » Homg (o ; £1(5))
- HomSh(X)(JZ/IQ f}(f)) - 0.

I en résulte que le faisceau f!(#) est injectif.

3. L’ISOMORPHISME A
3.1. On reprend les hypotheses du N° 2.1. Le résultat suivant permet de

simplifier la construction de A en passant d’une situation locale a une
situation globale.

LEMME. Soit W e Ouv(Y): posons W' = f~YW) et considérons le
diagramme commutatif

w4 X

f’l lf



THEOREME DE DUALITE 233

on j et j sont des inclusions et f' est la restriction de f a W.
Alors f; est de dimension cohomologique finie et si A~ est un faisceau

sur X fg-mou et plat alors j * A" est f;-mou et plat.
De plus si o/ € SW(X) et % e Sh(Y) on a des isomorphismes canoniques

(3.L1) RIY ) = £ )

!

3.12) JEIUB) = S % B).

Démonstration. 11 est évident que f ; est de dimension cohomologique
finie. Pour tout xe W’ on a (j/*X4), = A, donc d’aprés 1.1 le faisceau
j*A est plat. Enfin pour tout ye W on a (j*A) -1 = Y ATEITRSR
résulte alors de ([Gr] 2.8) que j * & est f -mou.

Onaj*(AQH) =j*o ®j*A,donc pour démontrer (3.1.1) il suffit
de démontrer que pour tout faisceau % sur X on a

J¥NF) = f(*F).
Or pour tout y € W on a, d’apres ([Gr], prop. 2.6),
J*UF), = N(F), = T Fr-0)
= T(f 010 * P p-1) = [U*F),

Maintenant soit U e Ouv(W’) = Ouv(X). On a évidemment (j * %)y
= j*(Ay) et dapres (3.1.1) on a f (j*A'y) = j* fi(H#"y). Donc pour
démontrer (3.1.2) il suffit de démontrer que

Hom(f\(# y); ) = Hom(j* fi(X y);j* ).

Mais cet isomorphisme est évident car d’apres ([Gr], prop. 2.6) le support
du faisceau f1(#") est contenu dans W.

3.2. Pour définir un morphisme de faisceaux
Mozt Hom| fj“ (2); B) = [ Hom|d; [ (B))
il faut construire une famille {A_; 4(W)}wcouvy, de morphismes
. A .
A, (W) Hom(f! (L) Byw) = Hom(/ -1y TP - 1m)

qui soient compatibles avec les morphismes de restriction.

Compte tenu du lemme 3.1 il suffit donc de définir pour toute appli-
cation f: X — Y et pour tout faisceau " sur X qui satisfont les hypothéses
du N° 2.1, un morphisme (que par abus on note encore 1)

A Hom(f‘!”/(,szi); %) — Hom(< ; f(B))




234 P.-P. GRIVEL

qui vérifie la condition suivante:

(3.2.1) Si WeOuv(Y) et si on pose, avec les notations du lemme 3.1,
A =jFA, A =j*A et B = j*%, alors on a un diagramme com-
mutatif

Hom( fj“ (); B) LY Hom(o ; (%))
l l
Hom(f ; Y B = Hom(o/"; ' (')

dans lequel les fleches verticales sont les morphismes naturels de restriction.

3.3. L’existence du morphisme A du théoréme 2.6. est donc contenue dans le
résultat plus précis suivant, dont la démonstration sera donnée au N° 3.7.

PROPOSITION. Pour toute application f:X — Y et tout faisceau XA
sur X qui satisfont les hypothéses du N° 2.1, il existe un morphisme de
bifoncteurs

A Hom(f!f(—); —) - Hom(—; fL(-))

A

qui vérifie la condition (3.2.1).
De plus on a les propriétés suivantes :

jeJ jed

iel iel

3.4. Le fait fondamental qui permet de construire explicitement A est
formulé de la fagon suivante. '

LEMME. Pour tout .o/ € Sh(X) il existe une famille

Hey = {H(U, V)}(U, V)eOuv(X) x Ouv(Y)

de morphismes
WU, V): (V) ® [1(H o) (V) = [ () (V)

qui vérifie les propriétés suivantes:

(341) Si UeOuv(X) et V' < VeOuv(Y) alorsle diagramme



.
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wu,v)

A(U) @ fH ) (V) - ST ()

lywy ® pvi,v ! L pvv

AUV @ [(H ) (V) gy~ [1E V)
est commutatif

(342) Si U < UeOuv(X) et VeOuv(Y) alors le diagramme

SU)Q [ H ) V) _tew @V )@ fi(H ) (V)

pv.u ® 1f!(xfu,) %) ! I U, v)

A(U) @ f1(A y) (V) A S &)1

(ou ¥y y est le morphisme induit par le morphisme canonique d extension
oyt Ay = A y) est commutatif.

(34.3) u, est fonctoriel par rapport a .

(344) Si o = D A; alors pny = D Uy, .

jed jeJ

Démonstration. 1l suffit de définir, pour tout U € Ouv(X) et V € Ouv(Y),
une application bilinéaire

wWU; V) (U) x fo(Ay) (V) = L RA) (V).

Rappelons que o ® A est le faisceau des sections de Pespace étalé
HARQA ) =1 A, QA ,.

xeX
Soit t e fi(A ) (V) = Lo (f ~'(V); H'y). Donc te (U f~1(V); X); de
plus le support |t | de t est fermé dans f~ (V) et 'application St =V
est propre.
Soit encore s € .o/(U). Considérons 'application
FrUNfNV) > PARQA)

definie en posant, pour tout xe U n f~Y(V),

Ax) = Puns-t1vy, lS)x @ t,
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On a donc Fe I(Un f~1(V); 4 @A) ([T]; chap. 4, 4.9). Comme

|7l < | puns-1m o) I 01t < |t],

le support | 7| de 7 est fermé dans f~'(V), si bien quon peut étendre
F par zéro sur f~YV)\U n f~YV) pour obtenir une section

rel(f~1(V), QX).
Soit un compact K < V; alors f |T,|1(K) est compact car
S K) = (f~{K)nle) 7]
et fHK) N |t] est compact par hypothése. Il en résulte que
re Lo (f MV AQH) = [UARH) (V).
On définit alors I'application bilinéaire WU, V) en posant
WU, V)(s;t) = r

Les propriétés (3.4.1), (3.4.2), (3.4.3) et (3.4.4) se vérifient par calculs directs
a partir de cette définition.

3.5. Désignons par
[T Hom(e£(U) ® fH o) (V): BV))
le sous-espace de

Hom(/(U) @ f1(A v) (V); B(V))

(U, V)eOuv(X) x Ouv(Y)

des familles de morphismes

WU, V): L(U) Q@ fi(A ) (V) —> B(V)

qui vérifient les conditions suivantes:

(3.5.1) Si U eOuv(X)et V' < Ve Ouv(Y) alors le diagramme

AU ® f1(H o) (V) . aw)
IM(U) & Py, v ! ! Py v
2(U) @ f1(H ) (V) i B(V)

est commutatif.
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(352) SiU < UeOuv(X)et Ve Ouv(Y) alors le diagramme

L)@ A ) (V) _Law @TvdV) — g(U) @ fiA ) (V)

pu,u @ 1f!(9(U,)(V) ! ) YU, V)

AU @ fA v) (V) o BV)

est commutatif.

36, LEMME. Pour tout </ € SW(X) et % e Sh(Y) il existe un isomorphisme
¥, 5 Hom(s/; f1,(®) - [| Hom(/(U) ® f1(H ) (V); B(V))

qui vérifie les propriétés suivantes:

-

(3.6.1) W, 4 est fonctoriel par rapport a o eta %.

JjeJ jeJ

iel iel

Démonstration. Par définition un morphisme € Hom(o/; [ (%))
consiste en une famille

{U( U)}UeOuv(X) € H Hom(&/(U); Hom(fg(,%fu); 93))

UeOuv(X)

de morphismes compatibles avec les morphismes de restriction et si s € 2/(U)
alors Y(U) (s) est une famille

W) () Mveown € 11 Hom(f1(A ) (V); B(V))

VeOuv(Y)

de morphismes compatibles avec les morphismes de restriction. Pour tout
Ue Ouv(X) et ¥V e Ouv(Y) on définit un morphisme

W(U, V) e Hom(s/(U); Hom(f (A y) (V); B(V))

§n posant (U, V) (s) = W(U) (s) (V) pour tout s e o/(U). De plus on a un
Isomorphisme canonique

U, V): Hom(d(U); Hom(f!(%fu) (V); QB(V))
— Hom(+/(U) ® fi(H ) (V); B(V)) .
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On pose alors (U, V) = U, V) (WU, V)). Les conditions (3.5.1) et (3.5.2)
sont satisfaites.
En effet la condition (3.5.1) est équivalente a la commutativité du

diagramme

Sy (V) VUG - pw)

Py v ! L Py

A ) (V' _ - BV
SA ) (V') TR (V)

et cette commutativité résulte des conditions de compatibilité des morphismes

W(U) (s) (V).

De méme la condition (3.5.2) est équivalente a la commutativite du

diagramme

2U) WU V) Hom(f(x ) (V); B(V))
Pu,u ! ! Hom(r—U’,U(V); Ig&(V))

AU Hom(f(A y-) (V); B(V))

WU, v)

et cette commutativité résulte des conditions de compatibilit¢é des mor-
phismes Y(U).
On peut donc définir le morphisme ¥, 4 en posant

Tﬂ,@(‘l’) = {\I’(U, V)}(U, ¥)eOuv(X) x Ouv(Y)

Les propriétés (3.6.1), (3.6.2) et (3.6.3) se vérifient immédiatement par calculs

directs.
On obtient le morphisme réciproque de ¥ 4 en associant a la famille

(WU, V)} . vreouin < owm € || Hom(Z(U) @ f1(H ) (V); B(YV))

le morphisme de faisceaux V:/ — f| (%), défini en posant, pour tout
U € Ouv(X) et s € A(U), U(U) (s) = Yy(U) ou Y(U): fu(A ) = % est le mor-
phisme de faisceaux donné, pour tout V € Ouv(Y), par | 4

V(U) (V) = U, V)" (W(U, V) (s) -
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37. Démonstration de la proposition 3.3. Si o/ € Sh(X) et % e Sh(Y) on
définit un morphisme

Ay 5 Hom( fj“ («£); B) - Hom(/ ; f1(B))

de la fagon suivante. Soit @ eHom(f“Y(&i); 2); pour tout U e Ouv(X) et
¥ € Ouv(Y) considérons le morphisme

YU, V) = o(V)owU, V): Z(U) @ f(A y) (V)= BV),

ot WU, V) est le morphisme défini dans le lemme 3.4. Il résulte immédia-
tement des propriétés (3.4.1) et (3.4.2) et des conditions de compatibilité
des morphismes ¢(V), que les morphismes (U, V) satisfont les conditions
(3.5.1) et (3.5.2). On peut donc poser

I (D IP:«,I@ ({W(U, V)}(U, V)eOuv(X)XOuv(Y))'

Plus explicitement, si U € Ouv(X), V e Ouv(Y), se L (U) et te fi(HA ) (V)
on a

Mg, (@) (U) (5) (V) (1) = o(V) o (U, V) (s;1).

De cette dernicre formule il découle facilement que la condition de compa-
tibilite (3.2.1) est satisfaite si on remarque que par définition on a

£ W) = i) )
pour tout V' € Ouv(W) < Ouv(Y)
2 [HB)(U) = fL(AB)(U)

pour tout U € Ouv(W’) < Ouv(X).

La bifonctorialit¢ de A est une conséquence de (3.4.3) et (3.6.1). De plus

les propriétés (3.3.1) et (3.3.2) sont des conséquences de (3.4.3), (3.6.2) et
(3.6.3).

38. 1l faut montrer maintenant que le morphisme de faisceaux
Moy, H oo f!f (A); B) = [ Hom(st; f1(B))

" et un isomorphisme. D’aprés le N° 3.2 il suffit donc de montrer que le
k Morphisme
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Mo, Hom(f 7 (/); ) — Hom(Z, f,; ()

est un isomorphisme. On commence par considérer le cas ou o/ = Ry.
On note A le morphisme Ay, 4 défini dans la proposition 3.3.

3.9. LEMME. Pour tout ouvert U de X, le morphisme
L: Hom(f ' (Ry); ) > Hom(Ry; f (%))
est un isomorphisme.
Démonstration. L’isomorphisme canonique g¢g:# y = Ry & A ([Go]
chap. II, 2.9) induit un isomorphisme ¢: Hom(f TK(RU); B) - fL(B) ().
D’aprés ([Go], chap. II, Remarque 2.9.1) on a aussi un isomorphisme cano-

nique h: Hom(Ry; f1(#)) - f! (%) (U). Pour démontrer que A est un iso-
morphisme, il suffit donc de démontrer que le diagramme

Hom(f ); 4 Hom(Ry; f!(%))

X /

[ %% (U

est commutatif.
Notons 1 la section unité de R, au-dessus de U. Soit V € Ouv(Y)
et t € f1i(A y) (V). 1l est immeédiat, d’apres les définitions, que I'on a

WU, VY150 = g(f (V) (©)
Soit @ € Hom(f ',%/(RU); 2). On a alors, compte tenu de la formule du N° 3.7,

h(Me) (V) (1) = Me) (U) (1) (V) (1) = o(V) e w(U, V) (15 1)
= o(V) o g(f M) (O = g(e) (V) (1);

ainsiona hoA = g.

3.10. PROPOSITION. Pour tout o/ € SWX) ettout % € Sh(Y) le morphisme
Mo, o: Hom(f 7 (o#); B) - Hom(e/ ; f ()

est un isomorphisme.
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Démonstration. La démonstration se fait en trois etapes.

i) Soit Ue Ouv(X) et supposons que & = Ry; alors Ag, g €st un
isomorphisme d’apres le lemme 3.9.

ii) Supposons que ./ = @ Ry. D’apres (3.3.1) on a Ay a = Hhry 2>
donc A, 4 est un isomorphisme d’apres I'étape 1),

iii) Soit .27 un faisceau sur X.

Daprés le corollaire 1.3 on peut trouver une suite exacte
2P > >0

ou les faisceaux 2 et 2 sont de la forme @ Ry . Considérons le diagramme

commutatif

0 0
l |
Hom(f[(«/); 8) _ts.2 _ Hom(e/; f1(%)
| |
Hom( fj" (P); B) hp.® Hom(2; f (%))
l l

Hom( f !X(Q) ; B) Ao, @ Hom(2; 1 (%))

Les colonnes de ce diagramme sont exactes car les foncteurs Hom(f"%(—); B)
et Hom(— ; f (%)) sont exacts gauche. Les deux fléches A, 4 et X, 5 sont
des isomorphismes en vertu de I’étape ii). On en déduit alors aisément que

)y z €st un isomorphisme.

3.11. COROLLAIRE. Pour tout o/ € Sh(X) et tout % e Sh(Y) le morphisme
de faisceaux

M.t Hom( [T (A); B) = [ Homld; [L(B)

est un isomorphisme.
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