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232 P.-P. GRIVEL

2.7. La construction du morphisme X et la démonstration du théorème fera

l'objet du paragraphe 3.

2.8. Corollaire. Le fondeur : Sh(Y) — S/i(X) est adjoint à droite au

fondeur f*:Sh{X)^Sh(Y).

Démonstration. En effet prenons les sections globales dans l'isomorphisme
du théorème 2.6. On obtient ainsi un isomorphisme

HomSMy)(/jV);0) «0%,^;/^«))
2.9. Corollaire. Le foncteur f]-yr:Sh(Y)-^Sh(X) se restreint à un

foncteur f \x: Inj(7) -> Inj(2Q.

Démonstration. Soit 0 -> sé' - sé -> j/" -> 0 une suite exacte de

faisceaux sur X et soit f un faisceau injectif sur Y. En appliquant
successivement à cette suite les foncteurs exacts f* et HomSh{Y)(— ; puis en

utilisant l'isomorphisme du corollaire 2.8, on obtient une suite exacte

0 HomShm(srf";/y/)) -> /y/))
-» Homam(/; /y/)) - 0

Il en résulte que le faisceau est injectif.

3. L'isomorphisme L

3.1. On reprend les hypothèses du N° 2.1. Le résultat suivant permet de

simplifier la construction de X en passant d'une situation locale à une

situation globale.

Lemme. Soit ILeOuv(y): posons W et considérons le

diagramme commutatif

w L x

M I r

W -> Y
J
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où j et f sont des inclusions et f est la restriction de f à W'.

Alors f'} est de dimension cohomologique finie et si JT est un faisceau

sur X f \-mou et plat alors f * Jf est f'-mou et plat.

De plus si sé e Sh{X) et ^ e Sh(Y) on a des isomorphismes canoniques

(3.1.1) y*/ïV)
(3.1.2) ï*j\m

Démonstration. Il est évident que f\ est de dimension cohomologique

finie. Pour tout xgW' on a - XTx donc d'après 1.1 le faisceau

/*Jf est plat. Enfin pour tout y e W on a (/ * ^)\r~Hy) ^ \

^

résulte alors de ([Gr] 2.8) que / * XT est f '-mou.

On a f * (sé (g) Jf) « / * sé ® f * Jf, donc pour démontrer (3.1.1) il suffit

de démontrer que pour tout faisceau J* sur X on a

/*/!(#-) f\(f*^) •

Or pour tout y g W on a, d'après ([Gr], prop. 2.6),

r/i(n fmy rc(f-\y)^lf-Hy))
rc(f'-\y);(f*^)\r-Hy)) f\(f*&)y

Maintenant soit U g Ouv(VF) c= Ouv(X). On a évidemment (/ * jC)u

f*m et d'après (3.1.1) on a /j(/ * ;éY b) j* f\{XYv). Donc pour
démontrer (3.1.2) il suffit de démontrer que

Hom(/\(Jf fi; $) Hom(j*/!(jrl/);;*^).
Mais cet isomorphisme est évident car d'après ([Gr], prop. 2.6) le support
du faisceau /\{Xrv) est contenu dans W.

3.2. Pour définir un morphisme de faisceaux

il faut construire une famille {^,^(fP)Veouv(Y) de morphismes

@\W)-*Hom(rf|r,(F); f\S@)\rw>)
qui soient compatibles avec les morphismes de restriction.

Compte tenu du lemme 3.1 il suffit donc de définir pour toute application

f: X -> Y et pour tout faisceau JC sur X qui satisfont les hypothèses
du N° 2.1, un morphisme (que par abus on note encore X)

X: Homl/jV); âf) Hom(rf; f^j)
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qui vérifie la condition suivante :

(3.2.1) Si JLeOuv(Y) et si on pose, avec les notations du lemme 3.1,

s#' f * j/, XT / * JT et j * J*, alors on a un diagramme com-

mutatif

Hom(/fV);<0) X Horn(j/;/^))
I I

Hom(/; *V) ; ^') ^ ; /^(OT))

dans lequel les flèches verticales sont les morphismes naturels de restriction.

3.3. L'existence du morphisme X du théorème 2.6. est donc contenue dans le

résultat plus précis suivant, dont la démonstration sera donnée au N° 3.7.

Proposition. Pour toute application f : X -> Y et tout faisceau Jf
sur X qui satisfont les hypothèses du N° 2.1, il existe un morphisme de

bifoncteurs

X:Hom(/f(-); -) » Ilom(- :/! -))

qui vérifie la condition (3.2.1

De plus on a les propriétés suivantes :

(3.3.1) Si s/ © séjalors
jeJ jeJ

(3.3.2) Si 3ë alors v. nwiel iel

3.4. Le fait fondamental qui permet de construire explicitement X est

formulé de la façon suivante.

Lemme. Pour tout sé e Sh(X) il existe une famille

n* V)}(U V)eOuv(X) x Ouv(y)

de morphismes

iïU,V):s/(U)0 fj(JTu)- /jV)
qui vérifie les propriétés suivantes:

(3.4.1) Si UeOuw(X) et Va LeOuv(Y) alors le diagramme
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W) ® Pv\vl J-

J*(U)®Mjru)(V) • Ui

est commutatif

(3.4.2) Si U' a UeOuv(X)et F e Ouv(Y) alors le diagramme

3?{U) (g /îpftr) (F) Uw® r"f .e(F) ^ /,(jf „) (F)

Pu-, e ® /) (K) i l

^(L/') (g /.(jr^) (F) — /;V)(F)
H(F,F)

foi) fü' U est le morphisme induit par le morphisme canonique d'extension

rv. v: X v, - XVj) est commutatif.

(3.4.3) p^ est fonctoriel par rapport à sé.

(3.4.4) Si X © X; alors p^ — © p^
jeJ jeJ

Démonstration. Il suffit de définir, pour tout U g Ouv(2f) et Fe Ouv(T),
une application bilinéaire

p(U ; V):X(U) x f}{Xv) (V) - X) (V).

Rappelons que sé ® JC est le faisceau des sections de l'espace étalé

M(x®x) - n xx® xx.
xeX

Soit te/îfJ^MK) Donc t g ^C/n/"1^); Jf); de

plus le support | 11 de t est fermé dans /~1(V) et l'application /^ : 111 -> V
est propre.

Soit encore s g X{U). Considérons l'application

f: U n f~\V) -+ X(sé®X)
définie en posant, pour tout x e U n

— Punf-l(V),u(S)x ® C
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On a donc feF(Unf 1{V)\ ([T] ; chap, 4, 4.9). Comme

I r\ c= I p[/n/^i(F),c/(s) I n I 11 c= I 11,

le support I f \ de r est fermé dans /_1(F)? si bien qu'on peut étendre

f par zéro sur /_1(K)\(7 n f~1(V) pour obtenir une section

Soit un compact K a V ; alors /\\,\(K) est compact car

f\\r\(K) (.f-\K)n\t\)n\r\
et /_1(K) n | 11 est compact par hypothèse. Il en résulte que

On définit alors l'application bilinéaire p(£/, V) en posant

p(C, V)(s;t) r

Les propriétés (3.4.1), (3.4.2), (3.4.3) et (3.4.4) se vérifient par calculs directs

à partir de cette définition.

3.5. Désignons par

f]' Hornel/) O fi*Tv)
le sous-espace de

f] Hornel/) ® H*rv) ); M V))
(U, F)eOuv(X) x Ouv(y)

des familles de morphismes

\|/(C7, K): ^(C) (g) fpfj (V) - 0(V)

qui vérifient les conditions suivantes :

(3.5.1) Si U e Ouv(X) et V a V e Ouv(L) alors le diagramme

s/(U)®M*rv){V) ——- âny)

® Pv,v i I Pv,v

st(U)®fi(xrv)(V') ——- a(V)

est commutatif.
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(3.5.2) Si U'<=UeOuv(X) et F e Ouv(F) alors le diagramme

stf(U) <g> /:(.^'( (F) W) ® ^..„(F) f !pfy) (F)

Pu-, u ® i ^

sé(\J')(g)/i(JTct) (F) W
est commutatif.

3.6. Lemme. Pour tout sé e Sh(X) et e Sh(Y) il existe un isomorphisme

4W Hom(^; f^â») - El' Hornel/) (g) /,(Jf „) (F); «(F))

qui uéri/ie les propriétés suivantes :

(3.6.1) est fonctoriel par rapport à sé et à

(3.6.2) Si siï© s#j alors ]1
jeJ jeJ

(3.6.3) Si «-n«. alors V*.*-* UV*.*-
iel ie/

Démonstration. Par définition un morphisme \(/ e Homf^ ; /^(J))
consiste en une famille

{^(^)}ueouv(X) e n Hornel/) ; Hom(/i(jT„) ; ;#))
l/eOuv(X)

de morphismes compatibles avec les morphismes de restriction et si s e srf(U)
alors \|/(L/) (s) est une famille

mu)(s)(F)}Ke0uvW e n Hom(/!(jru) (F) ;

FeOuv(r)

de morphismes compatibles avec les morphismes de restriction. Pour tout
V e Ouv(AT) et Kg Ouv(7) on définit un morphisme

MU, V) g Hornel/); Homf/ipfj,) (V);&(V))

en posant vj/((7, F) (s) \J/(L7) (s) (F) pour tout s e stf(U). De plus on a un
isomorphisme canonique

0(1/, F): Hom(s/(U); Hom(/!(jT[/) (F); 0(F))
-> Hornel/) 0 /»(Jfu) (F); #(F)).
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n

On pose alors v|f(U, V) $([/, V)($(U, V)). Les conditions (3.5.1) et (3.5.2)

sont satisfaites.

En effet la condition (3.5.1) est équivalente à la commutativité du

diagramme

/jpfuHO K)(s) &(V)

Pv.vi i Pv,v

/!(Jfc,)(F) Tm I/'W / ^(F)
Mu, i7)^)

et cette commutativité résulte des conditions de compatibilité des morphismes

MU)(s)(V).
De même la condition (3.5.2) est équivalente à la commutativité du

diagramme

s/(U) ^u< Y1Hom(/i(Jf[;) (V);mV))

Pv.v I I Hom(ry.

Hom(f\(*u')(V);£(V))
W,V)

et cette commutativité résulte des conditions de compatibilité des

morphismes v|f{U).

On peut donc définir le morphisme ^ ^ en posant

L)}([/; F)e0uv(X) x0uv(F)

Les propriétés (3.6.1), (3.6.2) et (3.6.3) se vérifient immédiatement par calculs

directs.

On obtient le morphisme réciproque de ^ ^ en associant à la famille

L)}((/j K)eoUV(Ä-) xouv(r) e I"! Hom(j/(L) ® f\(^u) (^0» <^(K))

le morphisme de faisceaux défini en posant, pour tout

U e Ouv(20 et 5 e s/(U), v|/(L) (5) i|/s(L0 où v|/s(L) : /|(Jf y) & est le

morphisme de faisceaux donné, pour tout V e Ouv(Y), par

UU)(V) m,Vj-'WU,V)) (s).
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3.7. Démonstration de la proposition 3.3. Si sé e Sh(X) et @ e Sh{Y) on

définit un morphisme

X^t9: -+ Hom(,s/; f^))
de la façon suivante. Soit cp e Hom(/^(rf); $)',pourtout UeOuv(X) et

V e Ouv(Y) considérons le morphisme

MU, V) cp(F) o p(u, F): J*(U) (g) fi(Jfv) (F) -+ #(F),

où ji(L/, F) est le morphisme défini dans le lemme 3.4. Il résulte immédiatement

des propriétés (3.4.1) et (3.4.2) et des conditions de compatibilité
des morphismes cp(F), que les morphismes MU, F) satisfont les conditions
(3.5.1) et (3.5.2). On peut donc poser

^,^(9) ^ {{MU, V)}(U, K)eOuv(I) X Ouv(u) *

Plus explicitement, si U e Ouv(2Q, F e Ouv( Y), s e et te f \(JT v) (F)
on a

W<p) (U) M W (0 - <P(*0 ° m, F) (s; t).

De cette dernière formule il découle facilement que la condition de compatibilité

(3.2.1) est satisfaite si on remarque que par définition on a

/: ' W><n UViin
pour tout F e Ouv(lF) c= Ouv(Y)

et rjm(u)
pour tout Ue Ouv(W') <= Ouv(X).

La bifonctorialité de Xest une conséquence de (3.4.3) et (3.6.1). De plus
les propriétés (3.3.1) et (3.3.2) sont des conséquences de (3.4.3), (3.6.2) et
(3.6.3).

3-8. Il faut montrer maintenant que le morphisme de faisceaux

X^ 3/1:XC\ iM) -+ ; fy(-3$))

est un isomorphisme. D'après le N° 3.2 il suffit donc de montrer que le
morphisme
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Horn-> Hom(i, (ß))

est un isomorphisme. On commence par considérer le cas où stf Rv.
On note X le morphisme XRv m défini dans la proposition 3.3.

3.9. Lemme. Pour tout ouvert U de X, le morphisme

X: Hom(f?&„);#) Horn(/?„; f^âS))

est un isomorphisme.

Démonstration. L'isomorphisme canonique g : Jf v Rv ® Jf ([Go]
chap. II, 2.9) induit un isomorphisme g:Hom(f^(Ru);ß)^ /%{&) (U),.

D'après ([Go], chap. II, Remarque 2.9.1) on a aussi un isomorphisme
canonique h: Hom(Ru; f\^ß)) -> f\Jß){U). Pour démontrer que X est un
isomorphisme, il suffit donc de démontrer que le diagramme

Horn{fpR„y,a) ^ Horn

/
r*m(u)

est commutatif.
Notons 1 la section unité de Rv au-dessus de U. Soit V g Ouv(Y)

et t g /i(Jfu) (F). Il est immédiat, d'après les définitions, que l'on a

n(i/,K)(l;t) ** g(f-\v))(t
Soit (p g Hom(/^(Rt/); $). On a alors, compte tenu de la formule du N° 3.7,

h(X(<p)) (V) (t) X(<p) (U) (1) (V) (t) <p(F) o p(U, V) (1 ; t)

<9(V)og[f-\V))(t) g{q>)(V)(t);

ainsi on a h ° X g.

3.10. Proposition. Pour tout sé g Sh(X) et tout $ g Sh(Y) le morphisme

V«: Hom(/^);J) -> Hom(^;

est un isomorphisme.
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Démonstration. La démonstration se fait en trois^ étapes.

i) Soit Î7 g Ouv(L) et supposons que sä Rv\ alors XRutâ8 est un

isomorphisme d'après le lemme 3.9.

ii) Supposons que sä — © Rb - D'après (3.3.1) on a tâS YlXRu @,

donc Xjj,# est un isomorphisme d'après l'étape i).

iii) Soit sä un faisceau sur X.

D'après le corollaire 1.3 on peut trouver une suite exacte

«â 0* ->• sä * 0

où les faisceaux et 1 sont de la forme © Rv. Considérons le diagramme

commutatif

0 0

1 i
Horn(f*(sä);&) t Hom(j^; /!

i 1

Hom(/^); 0S) V* Hom(^; /^
i 1

Hom(/g Hom(J ; f\x

Les colonnes de ce diagramme sont exactes car les foncteurs Hom(/^( — ); $)
et Hom(— ;/!r(^)) sont exacts gauche. Les deux flèches X^tâ9 et %%tâS sont
des isomorphismes en vertu de l'étape ii). On en déduit alors aisément que
l,,j<t3 est un isomorphisme.

3.11. Corollaire. Pour tout sä e Sh(X) et tout äS e Sh(Y) le morphisme
de faisceaux

K.«: ; •#)-»

L un isomorphisme.
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