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THÉORÈME DE DUALITÉ 231

2. Les foncteurs E et F

2.1. Soit / : X -> 7 une application continue entre espaces localement

compacts telle que le foncteur f\ soit de dimension cohomologique finie.

Soit Xf un faisceau sur X, /i-mou et plat.

2.2. La composition des foncteurs

fyr 1 xom
Sh(X) x Sh(Y) -+ ShmSh(Y) x Sh(Y) -+ Sh{Y)

définit un bifoncteur

Sh(X)° x Sh(Y) -> S/2(7)

2.3. Soit un faisceau sur et un faisceau sur 7. Le
foncteur E[sé ; — ): Sh(Y) S/z(7) est exact gauche et commute aux produits
directs. Le foncteur E( — \@ï) \ Sh(X)° -> S/i(7) est exact gauche et transforme
les sommes directes en produits directs.

En effet cela résulte des propriétés analogues du foncteur #m, de la
proposition 1.7 et de ([Gr], th. 2.15).

2.4. La composition des foncteurs

Sh(X)xSh(Y) lsh(X)-lf*Sh{X)x *7"

définit un bifoncteur

F(— ; -):Sh{X)°x^
2.5. Soit si un faisceau sur Xet@unfaisceau sur Le foncteur
F(s/ ; — ): Sh(Y) -» Sh(Y) est exact gauche et commute aux produits directs.

Le foncteur F(~ Sh(X)° -> Sh(Y) est exact gauche et transforme les
sommes directes en produits directs. En effet cela résulte des propriétés
analogues des foncteurs XCom et et du N° 1.8.

2.6. Théorème. Il existe un isomorphisme de bifoncteurs
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2.7. La construction du morphisme X et la démonstration du théorème fera

l'objet du paragraphe 3.

2.8. Corollaire. Le fondeur : Sh(Y) — S/i(X) est adjoint à droite au

fondeur f*:Sh{X)^Sh(Y).

Démonstration. En effet prenons les sections globales dans l'isomorphisme
du théorème 2.6. On obtient ainsi un isomorphisme

HomSMy)(/jV);0) «0%,^;/^«))
2.9. Corollaire. Le foncteur f]-yr:Sh(Y)-^Sh(X) se restreint à un

foncteur f \x: Inj(7) -> Inj(2Q.

Démonstration. Soit 0 -> sé' - sé -> j/" -> 0 une suite exacte de

faisceaux sur X et soit f un faisceau injectif sur Y. En appliquant
successivement à cette suite les foncteurs exacts f* et HomSh{Y)(— ; puis en

utilisant l'isomorphisme du corollaire 2.8, on obtient une suite exacte

0 HomShm(srf";/y/)) -> /y/))
-» Homam(/; /y/)) - 0

Il en résulte que le faisceau est injectif.

3. L'isomorphisme L

3.1. On reprend les hypothèses du N° 2.1. Le résultat suivant permet de

simplifier la construction de X en passant d'une situation locale à une

situation globale.

Lemme. Soit ILeOuv(y): posons W et considérons le

diagramme commutatif

w L x

M I r

W -> Y
J
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