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THEOREME DE DUALITE 231

2. LES FONCTEURS E ET F

21. Soit f:X — Y une application continue entre espaces localement
compacts telle que le foncteur f soit de dimension cohomologique finie.
Soit A" un faisceau sur X, fi-mou et plat.

2.2. La composition des foncteurs

‘%X H om

Sh(X) x Sh(Y) 1 "SI0 Sh(Y) x Sh(Y) — Sh(Y)

definit un bifoncteur

E(—; —): SH(X)° x Sh(Y) — Sh(Y)

23. Soit &/ un faisceau sur X et % un faisceau sur Y. Le
foncteur E(«/ ; —): Sh(Y) — Sh(Y) est exact gauche et commute aux produits
directs. Le foncteur E(— ; %): Sh(X)® — Sh(Y) est exact gauche et transforme
les sommes directes en produits directs.

En effet cela résulte des propriétés analogues du foncteur # o, de la
proposition 1.7 et de ([Gr], th. 2.15).

24. La composition des foncteurs

H om f

SK(X) x Sh(Y) 103 L Spoxy  shx) - Sh(X) L3 Sh(Y)

définit un bifoncteur

F(—; —): Sh(X)° x Sh(Y) — Sh(Y)

25. Soit .o/ un faisceau sur X et # un faisceau sur Y. Le foncteur
F(sZ; —): Sh(Y) — Sh(Y) est exact gauche et commute aux produits directs.

Le foncteur F(— ; %): Sh(X)° - Sh(Y) est exact gauche et transforme les
sommes directes en produits directs. En effet cela résulte des propriétés
analogues des foncteurs #om» et f, et du N° 1.8.

26. THEOREME. Il existe un isomorphisme de bifoncteurs

AE(—;—)—> F(—;—).
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2.7. La construction du morphisme A et la démonstration du théoréme fera
I'objet du paragraphe 3.

2.8. COROLLAIRE. Le foncteur f! :Sh(Y)— Sh(X) est adjoint a droite au
Joncteur [ : Sh(X) — Sh(Y).

Démonstration. En effet prenons les sections globales dans I'isomorphisme
du théoreme 2.6. On obtient ainsi un isomorphisme

HomSh(Y)(f!f(ﬂ) ’ 93) = HOmSh(X)(JZ{;f‘!;((%))
2.9. CoRrROLLAIRE. Le foncteur f' :Sh(Y) > Sh(X) se restreint d un
foncteur  f :Inj(Y) — Inj(X).

Démonstration. Soit 0 - &/’ »> o/ - /" - 0 une suite exacte de
faisceaux sur X et soit # un faisceau injectif sur Y. En appliquant succes-
sivement a cette suite les foncteurs exacts f 'X et Homg,y(— ; .#), puis en
utilisant l'isomorphisme du corollaire 2.8, on obtient une suite exacte

0 — Homg, (2" ; f1(#)) » Homg (o ; £1(5))
- HomSh(X)(JZ/IQ f}(f)) - 0.

I en résulte que le faisceau f!(#) est injectif.

3. L’ISOMORPHISME A
3.1. On reprend les hypotheses du N° 2.1. Le résultat suivant permet de

simplifier la construction de A en passant d’une situation locale a une
situation globale.

LEMME. Soit W e Ouv(Y): posons W' = f~YW) et considérons le
diagramme commutatif

w4 X

f’l lf
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