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228 P.-P. GRIVEL

1. LES FONCTEURS f ET fl,

1.1. Un faisceau 2 € ObSh(X) est R-plat si le foncteur —®Z est exact.
R

(S’il n’y a pas d’ambiguité sur I'anneau de base R on dira simplement
que £ est plat et on écrira — ®2).

Un faisceau £ est plat si et seulement si, pour tout x € X, la fibre 2,
est un R-module plat. De plus £ est plat si et seulement si £, est plat
pour tout U € Ouv(X).

1.2.  PROPOSITION. La catégorie Sh(X) admet suffisamment dobjets plats.

Démonstration. Il faut montrer que pour tout # € ObSh(X) il existe un
epimorphisme #Z - # — 0 ou 2 est un faisceau plat.

Notons W l’ensemble des couples (U;s) ou U e Ouv(X) et se #(U).
Un tel couple détermine un morphisme S§: R, - &% de faisceaux sur X
([Go], chap. II, remarque 2.9.1). Ces morphismes induisent un morphisme
@ Ry —» & qui par construction méme est surjectif. Or le faisceau Ry est
w

plat; donc d’apres 1.1., ([Go], chap. II, 2.7) et [Bo2], chap. 1, § 2, prop. 2),
le faisceau @ R, est plat.
w

1.3. CoOROLLAIRE. Tout faisceau F sur X admet une résolution plate
P - % -0

1.4. Soit X et Y deux espaces localement compacts. Considérons une appli-
cation continue f:X — Y telle que le foncteur f| soit de dimension
cohomologique finie.

PROPOSITION.  Soit A" un faisceau sur X, fi-mou et plat. Alors pour
tout faisceau f sur X, le faisceau o Q A est fi-mou.

Démonstration. D’aprés le corollaire 1.3 on peut trouver une résolution
P, - o — 0de o par des faisceaux de la forme 2; = 63 Ry(j=0). Comme A

est plat la suite Z @ A — o4 Q A — 0 est une resolutlon de o/ ® A
Supposons que la dimension cohomologique de f) est inférieure a n et
posons # = Ker(d,®1,). Alors la suite

0B >2P, QA 5>..oPy QA > A QA -0

est une résolution bornée du faisceau 4. Comme %~ est f1-mou, les faisceaux ;
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P;Q A = EB Ry ® A = €B A (0<j<n)sont fi-mous ([Gr], lemme 2.10).

L’argument standard utilisé dans ([Gr], th. 2.12) montre que & @ A  est
f!-mou.

1.5. THEOREME. Supposons que lanneau R est noethérien. Soit F un
faisceau plat sur X. Alors &% admet une fi-résolution 0 — F — A,
dans laquelle les faisceaux A sont plats (j=0).

Démonstration. Soit 0 - # — € la résolution flasque canonique de
7 ([Go], chap. I, 4.3) et posons Z’ = Coker(d: %'~ '->%’) (j=1)

Supposons que la dimension cohomologique de f est inférieure a n.
Alors la suite exacte

0 F 56" @ 5 .. ¢ > F" 50

est une f-résolution de &. En effet les faisceaux 4’ (0<j<n) étant flasques,
ils sont fi-mous ([Br], chap. II, coroll. 2.5 et [Gr], lemme 2.10) et par un
argument standard ([Gr], th. 2.12) le faisceau Z"*! est aussi fj-mou.
Il reste donc a4 montrer que les faisceaux %’ (0<j<n) et Z"*! sont plats.
La construction de la résolution flasque étant inductive, il suffit de
démontrer par récurrence que, pour tout entier j > 0, les faisceaux %’
et Z/*1 sont plats.
Pour tout U € Ouv(X) on a ¥°(U) = [] #,. Par hypothése les modules

xeU

¥ . sont plats sur I'anneau noethérien R, donc ¥°(U) est un module plat
(voir Appendice A). Il en résulte que pour tout xe X le module #°
= li_{n %°(U) est plat ([Bo2], chap. I, §2, prop. 2) et par suite %° est

Ue¥
un faisceau plat.
De plus considérons la suite exacte scindée ([Br], chap. II, § 2)

0-F, 622150

dans laquelle les deux premiers termes sont des modules plats. Alors le
module & ; est aussi plat ([Bo2], chap. 1, § 2, prop. 2) donc le faisceau !
est plat.

Maintenant supposons que les faisceaux #¢ et 29*! sont plats pour
0<g<p-—1lavecp>1 Ona%"U)= [[Z?~. Par hypothése de récur-

xeU
rence les modules 2% sont plats, donc le méme argument que précédemment

montre que le faisceau %7 est plat et en considérant la suite exacte scindée

022 >5%2 > F2*l 50
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on en déduit que le faisceau Z**?! est plat.

1.6. Soit f:X — Y une application continue entre espaces localement
compacts, telle que le foncteur f) soit de dimension cohomologique finie
et soit # un faisceau sur X qui soit fi-mou et plat. La composition des
foncteurs

QX

Sh(X) — Sh(x)D3 sh(y)

définit un foncteur f 'X: Sh(X) — Sh(Y) qui commute aux sommes directes
puisque chacun des foncteurs qui le compose commute aux sommes directes
([Gr], th. 2.15).

1.7. PROPOSITION. Le foncteur f ‘:{ est exact.

Démonstration. Soit 0 - o/’ > o/ —» /" - 0 une suite exacte de
faisceaux sur X. Comme %~ est plat la suite

O A" AN > A QA > A" QAN -0

est exacte et formée de faisceaux fi1-mous en vertu de la proposition 1.4,
Il résulte alors des propriétés du foncteur R'f) que la suite

0 - fA'QA) > HARA) = (A" @A) -0

est exacte.

1.8. Rappelons que le foncteur
fiSh(Y) = Sh(X)

est défini de la fagon suivante ([Gr], §3): pour tout faisceau # sur Y
et pour tout U € Ouv(X) on pose

[ (%) (U) = Hom(f (A v); B) .

Il est évident que le foncteur f! est exact gauche et qu’il commute
aux produits directs.




	1. Les foncteurs $f_!^K$ et $f_K^!$

