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228 P.-P. GRIVEL

1. Les foncteurs f* et/^
1.1. Un faisceau ^ e ObSh(X) est R-plat si le foncteur — ®TP est exact.

R

(S'il n'y a pas d'ambiguïté sur l'anneau de base R on dira simplement

que TP est plat et on écrira — ®TP).

Un faisceau TP est plat si et seulement si, pour tout x e X, la fibre TPX

est un iUmodule plat. De plus TP est plat si et seulement si TPV est plat

pour tout U e Ouv(A).

1.2. Proposition. La catégorie Sh(X) admet suffisamment d'objets plats.

Démonstration. Il faut montrer que pour tout e ObSh(X) il existe un

épimorphisme 0 0* -> 0 où 0 est un faisceau plat.
Notons W l'ensemble des couples (U ; s) où U e Ouv(X) et s e !F(U).

Un tel couple détermine un morphisme s: Ru -> TF de faisceaux sur X

([Go], chap. II, remarque 2.9.1). Ces morphismes induisent un morphisme

© Rv -> 3F qui par construction même est surjectif. Or le faisceau Rv est
w

plat; donc d'après 1.1., ([Go], chap. II, 2.7) et [Bo2], chap. I, §2, prop. 2),

le faisceau © Rv est plat.
w

1.3. Corollaire. Tout faisceau TF sur X admet une résolution plate

TPm - & - 0.

1.4. Soit X et Y deux espaces localement compacts. Considérons une
application continue / : X - Y telle que le foncteur /1 soit de dimension

cohomologique finie.

Proposition. Soit XT un faisceau sur X, f \-mou et plat. Alors pour

tout faisceau sé sur X, le faisceau sX (g) XT est f \-mou.

Démonstration. D'après le corollaire 1.3 on peut trouver une résolution

0 -» sX - 0 de sX par des faisceaux de la forme TP
y © Rv(j ^ 0). Comme XT

wo-

est plat la suite TP% ® XT -» sX ® XT -> 0 est une résolution de sX ® XT.

Supposons que la dimension cohomologique de f\ est inférieure à n et

posons 0Ï Ker(d„® 1^). Alors la suite

o @ 0>n® xr ^ -^0o<g)xr^sx®xr^o
est une résolution bornée du faisceau Tiï. Comme XT est /t-mou, les faisceaux
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9>} <g> © Ru ® # © ^i/(0sont /j-mous ([Gr], lemme 2.10).
TT, TTj

L'argument standard utilisé dans ([Gr], th. 2.12) montre que sé ® Jf est

/i-mou.

1.5. Théorème. Supposons que l'anneau R est noethérien. Soit SF un

faisceau plat sur X. Alors 9F admet une f i-résolution 0 - J* - JT

dans laquelle les faisceaux Jfj sont plats {j ^ 0).

Démonstration. Soit 0 -> -> la résolution flasque canonique de

F ([Go], chap. II, 4.3) et posons £Fj Coker (d \cj~1 -#) (;>1).

Supposons que la dimension cohomologique de /j est inférieure à n.

Alors la suite exacte

0 - & -> -> -> ^" + 1 - 0

est une /i-résolution de En effet les faisceaux ^ (O^j^n) étant flasques,
ils sont /i-mous ([Br], chap. II, coroll. 2.5 et [Gr], lemme 2.10) et par un

argument standard ([Gr], th. 2.12) le faisceau £Fn + i est aussi /i-mou.
Il reste donc à montrer que les faisceaux (Fj (O^j^n) et £Fn + 1 sont plats.
La construction de la résolution flasque étant inductive, il suflit de

démontrer par récurrence que, pour tout entier j ^ 0, les faisceaux <£j

et iFJ + 1 sont plats.
Pour tout U e Ouv(X) on a ^°(U) n 9Fx. Par hypothèse les modules

xeU

9*x sont plats sur l'anneau noethérien R, donc ^°(U) est un module plat
(voir Appendice A). Il en résulte que pour tout xeX le module #x

lim <g°(U) est plat ([Bo2], chap. I, § 2, prop. 2) et par suite est
Uerx

un faisceau plat.
De plus considérons la suite exacte scindée ([Br], chap. II, § 2)

0 <% -+ -+ 0

dans laquelle les deux premiers termes sont des modules plats. Alors le
module 9F x est aussi plat ([Bo2], chap. I, §2, prop. 2) donc le faisceau 9F1

est plat.

Maintenant supposons que les faisceaux et 9Fq+1 sont plats pour
0 q ^ p — 1 avec p ^ 1. On a (FP(U) 9F px. Par hypothèse de récur-

xeU
rence les modules 9F x sont plats, donc le même argument que précédemment
montre que le faisceau #p est plat et en considérant la suite exacte scindée

0 9FP -+ <FP^ 9FP+1 _ 0
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on en déduit que le faisceau ^p+l est plat.

1.6. Soit / : X - Y une application continue entre espaces localement

compacts, telle que le foncteur /j soit de dimension cohomologique finie
et soit Jf un faisceau sur X qui soit /i-mou et plat. La composition des

foncteurs

~ f,
Sh{X) Sh(X) -l Sh(Y)

définit un foncteur f*:Sh(X)-+Sh(Y) qui commute aux sommes directes

puisque chacun des foncteurs qui le compose commute aux sommes directes

([Gr], th. 2.15).

1.7. Proposition. Le fondeur f* est exact.

Démonstration. Soit 0 - sé' - stf - sé" -> 0 une suite exacte de

faisceaux sur X. Comme X est plat la suite

o ® xr ^ ® xr ^ s?" (g)jr-*o
est exacte et formée de faisceaux /t-mous en vertu de la proposition 1.4.

Il résulte alors des propriétés du foncteur Rlf j que la suite

0 fisé'®X) -+ 0

est exacte.

1.8. Rappelons que le foncteur

f\x. Sh(Y)-est défini de la façon suivante ([Gr], § 3) : pour tout faisceau sur 7

et pour tout U g Ouv(2Q on pose

f\x[ß)(U) Hom[fiXuY®).
Il est évident que le foncteur est exact gauche et qu'il commute

aux produits directs.
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