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UNE DÉMONSTRATION DU THÉORÈME DE DUALITÉ
DE VERDIER

L'Enseignement Mathématique, t. 31 (1985), p. 227-247

par Pierre-Paul Grivel

Introduction

Soit R un anneau commutatif unitaire. Désignons par D(X) la catégorie

dérivée de la catégorie K(X) des complexes de faisceaux de R-modules sur

un espace topologique X.
Si / : X -» Y" est une application continue entre espaces localement

compacts, on peut définir des foncteurs R/i : D(X) -> D(Y) et /! : D(Y) - D(X),

qui généralisent les foncteurs image directe et image inverse. On a alors le

résultat suivant qui a été annoncé par Verdier dans [V].

Théorème de dualité. Si lefoncteur f t est de dimension cohomologique

finie et si l'anneau R est noethérien, on a un isomorphisme fonctoriel

R XY -am
' (Rfis/ ') ; » ') - R/*R #»fn ' K* ; f\@ '))

dans D + (Y), où j/'eObD~(X) et J'eObDb(Y).
Ce théorème, qui à l'origine a joué un rôle en géométrie algébrique,

trouve aujourd'hui son utilisation dans l'homologie d'intersection et la
théorie des ^-modules.

Cette note est la suite obligée de [Gr]. Elle développe les détails de la
démonstration du théorème de dualité en suivant un argument qui était
déjà esquissé dans [V]. Je remercie N. Spaltenstein qui m'a suggéré la
possibilité de définir directement et explicitement l'isomorphisme entre les
deux foncteurs et à qui je dois également l'idée du lemme fondamental 3.4.

On reprend ici les notations introduites dans [Gr], à une exception
près cependant. L'anneau de base est noté R (au lieu de A) et le faisceau
^nstant sur X de fibre R est noté Rx (au lieu de A).
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1. Les foncteurs f* et/^
1.1. Un faisceau ^ e ObSh(X) est R-plat si le foncteur — ®TP est exact.

R

(S'il n'y a pas d'ambiguïté sur l'anneau de base R on dira simplement

que TP est plat et on écrira — ®TP).

Un faisceau TP est plat si et seulement si, pour tout x e X, la fibre TPX

est un iUmodule plat. De plus TP est plat si et seulement si TPV est plat

pour tout U e Ouv(A).

1.2. Proposition. La catégorie Sh(X) admet suffisamment d'objets plats.

Démonstration. Il faut montrer que pour tout e ObSh(X) il existe un

épimorphisme 0 0* -> 0 où 0 est un faisceau plat.
Notons W l'ensemble des couples (U ; s) où U e Ouv(X) et s e !F(U).

Un tel couple détermine un morphisme s: Ru -> TF de faisceaux sur X

([Go], chap. II, remarque 2.9.1). Ces morphismes induisent un morphisme

© Rv -> 3F qui par construction même est surjectif. Or le faisceau Rv est
w

plat; donc d'après 1.1., ([Go], chap. II, 2.7) et [Bo2], chap. I, §2, prop. 2),

le faisceau © Rv est plat.
w

1.3. Corollaire. Tout faisceau TF sur X admet une résolution plate

TPm - & - 0.

1.4. Soit X et Y deux espaces localement compacts. Considérons une
application continue / : X - Y telle que le foncteur /1 soit de dimension

cohomologique finie.

Proposition. Soit XT un faisceau sur X, f \-mou et plat. Alors pour

tout faisceau sé sur X, le faisceau sX (g) XT est f \-mou.

Démonstration. D'après le corollaire 1.3 on peut trouver une résolution

0 -» sX - 0 de sX par des faisceaux de la forme TP
y © Rv(j ^ 0). Comme XT

wo-

est plat la suite TP% ® XT -» sX ® XT -> 0 est une résolution de sX ® XT.

Supposons que la dimension cohomologique de f\ est inférieure à n et

posons 0Ï Ker(d„® 1^). Alors la suite

o @ 0>n® xr ^ -^0o<g)xr^sx®xr^o
est une résolution bornée du faisceau Tiï. Comme XT est /t-mou, les faisceaux
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9>} <g> © Ru ® # © ^i/(0sont /j-mous ([Gr], lemme 2.10).
TT, TTj

L'argument standard utilisé dans ([Gr], th. 2.12) montre que sé ® Jf est

/i-mou.

1.5. Théorème. Supposons que l'anneau R est noethérien. Soit SF un

faisceau plat sur X. Alors 9F admet une f i-résolution 0 - J* - JT

dans laquelle les faisceaux Jfj sont plats {j ^ 0).

Démonstration. Soit 0 -> -> la résolution flasque canonique de

F ([Go], chap. II, 4.3) et posons £Fj Coker (d \cj~1 -#) (;>1).

Supposons que la dimension cohomologique de /j est inférieure à n.

Alors la suite exacte

0 - & -> -> -> ^" + 1 - 0

est une /i-résolution de En effet les faisceaux ^ (O^j^n) étant flasques,
ils sont /i-mous ([Br], chap. II, coroll. 2.5 et [Gr], lemme 2.10) et par un

argument standard ([Gr], th. 2.12) le faisceau £Fn + i est aussi /i-mou.
Il reste donc à montrer que les faisceaux (Fj (O^j^n) et £Fn + 1 sont plats.
La construction de la résolution flasque étant inductive, il suflit de

démontrer par récurrence que, pour tout entier j ^ 0, les faisceaux <£j

et iFJ + 1 sont plats.
Pour tout U e Ouv(X) on a ^°(U) n 9Fx. Par hypothèse les modules

xeU

9*x sont plats sur l'anneau noethérien R, donc ^°(U) est un module plat
(voir Appendice A). Il en résulte que pour tout xeX le module #x

lim <g°(U) est plat ([Bo2], chap. I, § 2, prop. 2) et par suite est
Uerx

un faisceau plat.
De plus considérons la suite exacte scindée ([Br], chap. II, § 2)

0 <% -+ -+ 0

dans laquelle les deux premiers termes sont des modules plats. Alors le
module 9F x est aussi plat ([Bo2], chap. I, §2, prop. 2) donc le faisceau 9F1

est plat.

Maintenant supposons que les faisceaux et 9Fq+1 sont plats pour
0 q ^ p — 1 avec p ^ 1. On a (FP(U) 9F px. Par hypothèse de récur-

xeU
rence les modules 9F x sont plats, donc le même argument que précédemment
montre que le faisceau #p est plat et en considérant la suite exacte scindée

0 9FP -+ <FP^ 9FP+1 _ 0
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on en déduit que le faisceau ^p+l est plat.

1.6. Soit / : X - Y une application continue entre espaces localement

compacts, telle que le foncteur /j soit de dimension cohomologique finie
et soit Jf un faisceau sur X qui soit /i-mou et plat. La composition des

foncteurs

~ f,
Sh{X) Sh(X) -l Sh(Y)

définit un foncteur f*:Sh(X)-+Sh(Y) qui commute aux sommes directes

puisque chacun des foncteurs qui le compose commute aux sommes directes

([Gr], th. 2.15).

1.7. Proposition. Le fondeur f* est exact.

Démonstration. Soit 0 - sé' - stf - sé" -> 0 une suite exacte de

faisceaux sur X. Comme X est plat la suite

o ® xr ^ ® xr ^ s?" (g)jr-*o
est exacte et formée de faisceaux /t-mous en vertu de la proposition 1.4.

Il résulte alors des propriétés du foncteur Rlf j que la suite

0 fisé'®X) -+ 0

est exacte.

1.8. Rappelons que le foncteur

f\x. Sh(Y)-est défini de la façon suivante ([Gr], § 3) : pour tout faisceau sur 7

et pour tout U g Ouv(2Q on pose

f\x[ß)(U) Hom[fiXuY®).
Il est évident que le foncteur est exact gauche et qu'il commute

aux produits directs.



THÉORÈME DE DUALITÉ 231

2. Les foncteurs E et F

2.1. Soit / : X -> 7 une application continue entre espaces localement

compacts telle que le foncteur f\ soit de dimension cohomologique finie.

Soit Xf un faisceau sur X, /i-mou et plat.

2.2. La composition des foncteurs

fyr 1 xom
Sh(X) x Sh(Y) -+ ShmSh(Y) x Sh(Y) -+ Sh{Y)

définit un bifoncteur

Sh(X)° x Sh(Y) -> S/2(7)

2.3. Soit un faisceau sur et un faisceau sur 7. Le
foncteur E[sé ; — ): Sh(Y) S/z(7) est exact gauche et commute aux produits
directs. Le foncteur E( — \@ï) \ Sh(X)° -> S/i(7) est exact gauche et transforme
les sommes directes en produits directs.

En effet cela résulte des propriétés analogues du foncteur #m, de la
proposition 1.7 et de ([Gr], th. 2.15).

2.4. La composition des foncteurs

Sh(X)xSh(Y) lsh(X)-lf*Sh{X)x *7"

définit un bifoncteur

F(— ; -):Sh{X)°x^
2.5. Soit si un faisceau sur Xet@unfaisceau sur Le foncteur
F(s/ ; — ): Sh(Y) -» Sh(Y) est exact gauche et commute aux produits directs.

Le foncteur F(~ Sh(X)° -> Sh(Y) est exact gauche et transforme les
sommes directes en produits directs. En effet cela résulte des propriétés
analogues des foncteurs XCom et et du N° 1.8.

2.6. Théorème. Il existe un isomorphisme de bifoncteurs
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2.7. La construction du morphisme X et la démonstration du théorème fera

l'objet du paragraphe 3.

2.8. Corollaire. Le fondeur : Sh(Y) — S/i(X) est adjoint à droite au

fondeur f*:Sh{X)^Sh(Y).

Démonstration. En effet prenons les sections globales dans l'isomorphisme
du théorème 2.6. On obtient ainsi un isomorphisme

HomSMy)(/jV);0) «0%,^;/^«))
2.9. Corollaire. Le foncteur f]-yr:Sh(Y)-^Sh(X) se restreint à un

foncteur f \x: Inj(7) -> Inj(2Q.

Démonstration. Soit 0 -> sé' - sé -> j/" -> 0 une suite exacte de

faisceaux sur X et soit f un faisceau injectif sur Y. En appliquant
successivement à cette suite les foncteurs exacts f* et HomSh{Y)(— ; puis en

utilisant l'isomorphisme du corollaire 2.8, on obtient une suite exacte

0 HomShm(srf";/y/)) -> /y/))
-» Homam(/; /y/)) - 0

Il en résulte que le faisceau est injectif.

3. L'isomorphisme L

3.1. On reprend les hypothèses du N° 2.1. Le résultat suivant permet de

simplifier la construction de X en passant d'une situation locale à une

situation globale.

Lemme. Soit ILeOuv(y): posons W et considérons le

diagramme commutatif

w L x

M I r

W -> Y
J
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où j et f sont des inclusions et f est la restriction de f à W'.

Alors f'} est de dimension cohomologique finie et si JT est un faisceau

sur X f \-mou et plat alors f * Jf est f'-mou et plat.

De plus si sé e Sh{X) et ^ e Sh(Y) on a des isomorphismes canoniques

(3.1.1) y*/ïV)
(3.1.2) ï*j\m

Démonstration. Il est évident que f\ est de dimension cohomologique

finie. Pour tout xgW' on a - XTx donc d'après 1.1 le faisceau

/*Jf est plat. Enfin pour tout y e W on a (/ * ^)\r~Hy) ^ \

^

résulte alors de ([Gr] 2.8) que / * XT est f '-mou.

On a f * (sé (g) Jf) « / * sé ® f * Jf, donc pour démontrer (3.1.1) il suffit

de démontrer que pour tout faisceau J* sur X on a

/*/!(#-) f\(f*^) •

Or pour tout y g W on a, d'après ([Gr], prop. 2.6),

r/i(n fmy rc(f-\y)^lf-Hy))
rc(f'-\y);(f*^)\r-Hy)) f\(f*&)y

Maintenant soit U g Ouv(VF) c= Ouv(X). On a évidemment (/ * jC)u

f*m et d'après (3.1.1) on a /j(/ * ;éY b) j* f\{XYv). Donc pour
démontrer (3.1.2) il suffit de démontrer que

Hom(/\(Jf fi; $) Hom(j*/!(jrl/);;*^).
Mais cet isomorphisme est évident car d'après ([Gr], prop. 2.6) le support
du faisceau /\{Xrv) est contenu dans W.

3.2. Pour définir un morphisme de faisceaux

il faut construire une famille {^,^(fP)Veouv(Y) de morphismes

@\W)-*Hom(rf|r,(F); f\S@)\rw>)
qui soient compatibles avec les morphismes de restriction.

Compte tenu du lemme 3.1 il suffit donc de définir pour toute application

f: X -> Y et pour tout faisceau JC sur X qui satisfont les hypothèses
du N° 2.1, un morphisme (que par abus on note encore X)

X: Homl/jV); âf) Hom(rf; f^j)
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qui vérifie la condition suivante :

(3.2.1) Si JLeOuv(Y) et si on pose, avec les notations du lemme 3.1,

s#' f * j/, XT / * JT et j * J*, alors on a un diagramme com-

mutatif

Hom(/fV);<0) X Horn(j/;/^))
I I

Hom(/; *V) ; ^') ^ ; /^(OT))

dans lequel les flèches verticales sont les morphismes naturels de restriction.

3.3. L'existence du morphisme X du théorème 2.6. est donc contenue dans le

résultat plus précis suivant, dont la démonstration sera donnée au N° 3.7.

Proposition. Pour toute application f : X -> Y et tout faisceau Jf
sur X qui satisfont les hypothèses du N° 2.1, il existe un morphisme de

bifoncteurs

X:Hom(/f(-); -) » Ilom(- :/! -))

qui vérifie la condition (3.2.1

De plus on a les propriétés suivantes :

(3.3.1) Si s/ © séjalors
jeJ jeJ

(3.3.2) Si 3ë alors v. nwiel iel

3.4. Le fait fondamental qui permet de construire explicitement X est

formulé de la façon suivante.

Lemme. Pour tout sé e Sh(X) il existe une famille

n* V)}(U V)eOuv(X) x Ouv(y)

de morphismes

iïU,V):s/(U)0 fj(JTu)- /jV)
qui vérifie les propriétés suivantes:

(3.4.1) Si UeOuw(X) et Va LeOuv(Y) alors le diagramme
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W) ® Pv\vl J-

J*(U)®Mjru)(V) • Ui

est commutatif

(3.4.2) Si U' a UeOuv(X)et F e Ouv(Y) alors le diagramme

3?{U) (g /îpftr) (F) Uw® r"f .e(F) ^ /,(jf „) (F)

Pu-, e ® /) (K) i l

^(L/') (g /.(jr^) (F) — /;V)(F)
H(F,F)

foi) fü' U est le morphisme induit par le morphisme canonique d'extension

rv. v: X v, - XVj) est commutatif.

(3.4.3) p^ est fonctoriel par rapport à sé.

(3.4.4) Si X © X; alors p^ — © p^
jeJ jeJ

Démonstration. Il suffit de définir, pour tout U g Ouv(2f) et Fe Ouv(T),
une application bilinéaire

p(U ; V):X(U) x f}{Xv) (V) - X) (V).

Rappelons que sé ® JC est le faisceau des sections de l'espace étalé

M(x®x) - n xx® xx.
xeX

Soit te/îfJ^MK) Donc t g ^C/n/"1^); Jf); de

plus le support | 11 de t est fermé dans /~1(V) et l'application /^ : 111 -> V
est propre.

Soit encore s g X{U). Considérons l'application

f: U n f~\V) -+ X(sé®X)
définie en posant, pour tout x e U n

— Punf-l(V),u(S)x ® C
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On a donc feF(Unf 1{V)\ ([T] ; chap, 4, 4.9). Comme

I r\ c= I p[/n/^i(F),c/(s) I n I 11 c= I 11,

le support I f \ de r est fermé dans /_1(F)? si bien qu'on peut étendre

f par zéro sur /_1(K)\(7 n f~1(V) pour obtenir une section

Soit un compact K a V ; alors /\\,\(K) est compact car

f\\r\(K) (.f-\K)n\t\)n\r\
et /_1(K) n | 11 est compact par hypothèse. Il en résulte que

On définit alors l'application bilinéaire p(£/, V) en posant

p(C, V)(s;t) r

Les propriétés (3.4.1), (3.4.2), (3.4.3) et (3.4.4) se vérifient par calculs directs

à partir de cette définition.

3.5. Désignons par

f]' Hornel/) O fi*Tv)
le sous-espace de

f] Hornel/) ® H*rv) ); M V))
(U, F)eOuv(X) x Ouv(y)

des familles de morphismes

\|/(C7, K): ^(C) (g) fpfj (V) - 0(V)

qui vérifient les conditions suivantes :

(3.5.1) Si U e Ouv(X) et V a V e Ouv(L) alors le diagramme

s/(U)®M*rv){V) ——- âny)

® Pv,v i I Pv,v

st(U)®fi(xrv)(V') ——- a(V)

est commutatif.
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(3.5.2) Si U'<=UeOuv(X) et F e Ouv(F) alors le diagramme

stf(U) <g> /:(.^'( (F) W) ® ^..„(F) f !pfy) (F)

Pu-, u ® i ^

sé(\J')(g)/i(JTct) (F) W
est commutatif.

3.6. Lemme. Pour tout sé e Sh(X) et e Sh(Y) il existe un isomorphisme

4W Hom(^; f^â») - El' Hornel/) (g) /,(Jf „) (F); «(F))

qui uéri/ie les propriétés suivantes :

(3.6.1) est fonctoriel par rapport à sé et à

(3.6.2) Si siï© s#j alors ]1
jeJ jeJ

(3.6.3) Si «-n«. alors V*.*-* UV*.*-
iel ie/

Démonstration. Par définition un morphisme \(/ e Homf^ ; /^(J))
consiste en une famille

{^(^)}ueouv(X) e n Hornel/) ; Hom(/i(jT„) ; ;#))
l/eOuv(X)

de morphismes compatibles avec les morphismes de restriction et si s e srf(U)
alors \|/(L/) (s) est une famille

mu)(s)(F)}Ke0uvW e n Hom(/!(jru) (F) ;

FeOuv(r)

de morphismes compatibles avec les morphismes de restriction. Pour tout
V e Ouv(AT) et Kg Ouv(7) on définit un morphisme

MU, V) g Hornel/); Homf/ipfj,) (V);&(V))

en posant vj/((7, F) (s) \J/(L7) (s) (F) pour tout s e stf(U). De plus on a un
isomorphisme canonique

0(1/, F): Hom(s/(U); Hom(/!(jT[/) (F); 0(F))
-> Hornel/) 0 /»(Jfu) (F); #(F)).
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n

On pose alors v|f(U, V) $([/, V)($(U, V)). Les conditions (3.5.1) et (3.5.2)

sont satisfaites.

En effet la condition (3.5.1) est équivalente à la commutativité du

diagramme

/jpfuHO K)(s) &(V)

Pv.vi i Pv,v

/!(Jfc,)(F) Tm I/'W / ^(F)
Mu, i7)^)

et cette commutativité résulte des conditions de compatibilité des morphismes

MU)(s)(V).
De même la condition (3.5.2) est équivalente à la commutativité du

diagramme

s/(U) ^u< Y1Hom(/i(Jf[;) (V);mV))

Pv.v I I Hom(ry.

Hom(f\(*u')(V);£(V))
W,V)

et cette commutativité résulte des conditions de compatibilité des

morphismes v|f{U).

On peut donc définir le morphisme ^ ^ en posant

L)}([/; F)e0uv(X) x0uv(F)

Les propriétés (3.6.1), (3.6.2) et (3.6.3) se vérifient immédiatement par calculs

directs.

On obtient le morphisme réciproque de ^ ^ en associant à la famille

L)}((/j K)eoUV(Ä-) xouv(r) e I"! Hom(j/(L) ® f\(^u) (^0» <^(K))

le morphisme de faisceaux défini en posant, pour tout

U e Ouv(20 et 5 e s/(U), v|/(L) (5) i|/s(L0 où v|/s(L) : /|(Jf y) & est le

morphisme de faisceaux donné, pour tout V e Ouv(Y), par

UU)(V) m,Vj-'WU,V)) (s).
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3.7. Démonstration de la proposition 3.3. Si sé e Sh(X) et @ e Sh{Y) on

définit un morphisme

X^t9: -+ Hom(,s/; f^))
de la façon suivante. Soit cp e Hom(/^(rf); $)',pourtout UeOuv(X) et

V e Ouv(Y) considérons le morphisme

MU, V) cp(F) o p(u, F): J*(U) (g) fi(Jfv) (F) -+ #(F),

où ji(L/, F) est le morphisme défini dans le lemme 3.4. Il résulte immédiatement

des propriétés (3.4.1) et (3.4.2) et des conditions de compatibilité
des morphismes cp(F), que les morphismes MU, F) satisfont les conditions
(3.5.1) et (3.5.2). On peut donc poser

^,^(9) ^ {{MU, V)}(U, K)eOuv(I) X Ouv(u) *

Plus explicitement, si U e Ouv(2Q, F e Ouv( Y), s e et te f \(JT v) (F)
on a

W<p) (U) M W (0 - <P(*0 ° m, F) (s; t).

De cette dernière formule il découle facilement que la condition de compatibilité

(3.2.1) est satisfaite si on remarque que par définition on a

/: ' W><n UViin
pour tout F e Ouv(lF) c= Ouv(Y)

et rjm(u)
pour tout Ue Ouv(W') <= Ouv(X).

La bifonctorialité de Xest une conséquence de (3.4.3) et (3.6.1). De plus
les propriétés (3.3.1) et (3.3.2) sont des conséquences de (3.4.3), (3.6.2) et
(3.6.3).

3-8. Il faut montrer maintenant que le morphisme de faisceaux

X^ 3/1:XC\ iM) -+ ; fy(-3$))

est un isomorphisme. D'après le N° 3.2 il suffit donc de montrer que le
morphisme
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Horn-> Hom(i, (ß))

est un isomorphisme. On commence par considérer le cas où stf Rv.
On note X le morphisme XRv m défini dans la proposition 3.3.

3.9. Lemme. Pour tout ouvert U de X, le morphisme

X: Hom(f?&„);#) Horn(/?„; f^âS))

est un isomorphisme.

Démonstration. L'isomorphisme canonique g : Jf v Rv ® Jf ([Go]
chap. II, 2.9) induit un isomorphisme g:Hom(f^(Ru);ß)^ /%{&) (U),.

D'après ([Go], chap. II, Remarque 2.9.1) on a aussi un isomorphisme
canonique h: Hom(Ru; f\^ß)) -> f\Jß){U). Pour démontrer que X est un
isomorphisme, il suffit donc de démontrer que le diagramme

Horn{fpR„y,a) ^ Horn

/
r*m(u)

est commutatif.
Notons 1 la section unité de Rv au-dessus de U. Soit V g Ouv(Y)

et t g /i(Jfu) (F). Il est immédiat, d'après les définitions, que l'on a

n(i/,K)(l;t) ** g(f-\v))(t
Soit (p g Hom(/^(Rt/); $). On a alors, compte tenu de la formule du N° 3.7,

h(X(<p)) (V) (t) X(<p) (U) (1) (V) (t) <p(F) o p(U, V) (1 ; t)

<9(V)og[f-\V))(t) g{q>)(V)(t);

ainsi on a h ° X g.

3.10. Proposition. Pour tout sé g Sh(X) et tout $ g Sh(Y) le morphisme

V«: Hom(/^);J) -> Hom(^;

est un isomorphisme.



THÉORÈME DE DUALITÉ 241

Démonstration. La démonstration se fait en trois^ étapes.

i) Soit Î7 g Ouv(L) et supposons que sä Rv\ alors XRutâ8 est un

isomorphisme d'après le lemme 3.9.

ii) Supposons que sä — © Rb - D'après (3.3.1) on a tâS YlXRu @,

donc Xjj,# est un isomorphisme d'après l'étape i).

iii) Soit sä un faisceau sur X.

D'après le corollaire 1.3 on peut trouver une suite exacte

«â 0* ->• sä * 0

où les faisceaux et 1 sont de la forme © Rv. Considérons le diagramme

commutatif

0 0

1 i
Horn(f*(sä);&) t Hom(j^; /!

i 1

Hom(/^); 0S) V* Hom(^; /^
i 1

Hom(/g Hom(J ; f\x

Les colonnes de ce diagramme sont exactes car les foncteurs Hom(/^( — ); $)
et Hom(— ;/!r(^)) sont exacts gauche. Les deux flèches X^tâ9 et %%tâS sont
des isomorphismes en vertu de l'étape ii). On en déduit alors aisément que
l,,j<t3 est un isomorphisme.

3.11. Corollaire. Pour tout sä e Sh(X) et tout äS e Sh(Y) le morphisme
de faisceaux

K.«: ; •#)-»

L un isomorphisme.
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4. Le théorème de dualité

4.1. Soit f : X -+ Y une application continue entre espaces localement

compacts telle que le foncteur f\ soit de dimension cohomologique finie.

Supposons pour toute la suite de ce paragraphe que l'anneau R est

noethérien. D'après le théorème 1.5 on peut trouver une f\-résolution
0 -> Rx -> X "

du faisceau Rx par des faisceaux plats.

4.2. Si X'eObK(X) on définit un complexe double {X') en posant

[/f (X')Y,q f*P(X% les différentielles étant induites par celles

de X* et de X" respectivement. En prenant le complexe simple associé

on en déduit un foncteur, encore noté f* de K(X) dans K(Y).
Si X e ObK(Y) on peut encore définir un complexe triple

en posant

les différentielles étant induites par celle de X\ de X' et de X
respectivement. Le complexe simple associé à ce complexe triple est canoniquement
isomorphe au complexe simple associé au complexe double des homomor-

phismes du complexe simple associé au complexe double f* (X ') dans le

complexe & \

4.3. D'une façon analogue on définit un complexe double en

posant f]bir_p{&q). En prenant le complexe simple associé

on en déduit un foncteur, encore noté /î^-, de K(Y) dans K(X).
On peut aussi définir le complexe triple Xom(X' \ /%'($')) en posant

tX#*n(X';f^i@'))Y'q'r
Le complexe simple associé à ce complexe triple est canoniquement
isomorphe au complexe simple associé au complexe double des homomorphismes
du complexe X% dans le complexe simple associé au complexe double

4.4. Proposition. Il existe un isomorphisme de complexes de faisceaux sur Y

X': ->

Démonstration. Le corollaire 3.11 fournit, pour tout (p, q, r) e Z x Z x Z,

un isomorphisme
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compatibles avec les différentielles. On en déduit un isomorphisme de

complexes triples. En passant aux complexes simples associés on obtient

l'isomorphisme X'.

4.5. Rappelons ([Gr], corollaire 3.10) qu'on définit le foncteur /! comme

étant le foncteur dérivé du foncteur

4.6. Théorème. Soit sX' un objet de la catégorie dérivée D~(X) et

J* un objet de la catégorie dérivée Db{Y). Dans la catégorie D + (Y)

on a un isomorphisme canonique

R tfem '(Rfisé ') ; ') R/*R tfom V '
; f\%')) •

Démonstration. Soit sé% e ObD~(X) et soit 0 -> Rx -* X' une /i-réso-
lution du faisceau constant Rx par des faisceaux plats (théorème 1.5).

On a sX
'
® Rx « sX ' donc 0 sX '

-> si '
(g) X ' est une résolution de

si '

par des faisceaux /i-mous (proposition 1.4) donc /i-acycliques ([Gr]
lemme 2.10).

Comme par hypothèse /1 est de dimension cohomologique finie le foncteur

R/j : D(X) -> D(Y) existe et est donné par Rf\(sX") f* (sX"); il induit un

foncteur R/i : D~{X) -> D~(Y) ([H] chap. I, corollaire 5.3).

Maintenant soit J'eObDb(Y) et soit 0 X ß' une résolution
injective de $ '. On a évidemment

R[XX-am o (/, x lxb(y))) R XXom » (R/l X lßb(y))

donc ([H] chap. I, § 6).

(4.6.1) RX#m'(Rf\jX'\X) Xom ' {ff{X ');/').
D'un autre côté les faisceaux /^ •(</*) sont injectifs (corollaire 2.9), donc les

faisceaux XX &m
'
[sX

*

; / ^ • (/ ')) et f^X#X{sX'\•(/')) sont flasques
([Go] chap. II, lemme 7.3.2 et théorème 3.1.1). On a ainsi ([H], chap. I,
prop. 5.4)

R(/*°^^ °(W) x /|r#)) R/*oR^'° Urw x R/3r') •

Donc

(4,5.2) R/.RtfWf.s/';/!(<»•))
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Le théorème résulte alors du fait que les membres de droite des égalités

(4.6.1) et (4.6.2) sont isomorphes en vertu de la proposition 4.4.

4.7. Appliquons le théorème 4.6 au cas où i' Comme les

foncteurs f ^ et 3tfom sont exacts gauche, en appliquant le foncteur coho-

mologique H°, puis en prenant les sections globales, on obtient un iso-

morphisme

HomDW(R fif •)) <%)HornDw(/!(iT); /!(^')) •

L'image de par cet isomorphisme permet donc de définir une flèche

d'adjonction

R/r»/!- Wp

Appendice A :

Les modules plats sur un anneau noethérien

A.l. Soit R un anneau commutatif unitaire et soit E un R-module. On sait

que le foncteur — est toujours exact à droite. On dit alors que E est

un module plat si ce foncteur est aussi exact à gauche. Cette condition est

équivalente au fait que pour tout R-module M et M' et pour tout homo-

morphisme injectif u: M' - M, l'homomorphisme u<S)lE: M'®E M®E
est encore injectif ([Bo2], chap. I, § 2, prop. 1).

A.2. Soit a un idéal de R. L'inclusion j: a - R induit un homomorphisme

y. a®E -> E obtenu en composant l'homomorphisme j®iE avec l'isomor-

phisme canonique R®E E. On a alors le résultat suivant ([Bo2], chap. I,

§ 2, N° 3, remarque 1).

Lemme. Pour que E soit un R-module plat il faut et il suffit que,

pour tout idéal a de R de type fini, rhomomorphisme j\a®E^E
soit injectif

A.3. Lemme. Soit E un R-module de présentation finie et soit {Lt}te/

une famille de R-modules. Alors l'homomorphisme canonique

a:£0(n F,)- n(^C)
iel iel

est un isomorphisme.
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Démonstration. Soit Lx L0 ^ E -> 0 une présentation de E, dans

laquelle les R-modules L0 et Lx sont libres de type fini. Considérons le

diagramme commutatif

Ly®(U Ft)
iel

CTl

ri(Li®T)
iel

<P' 1 1 <P"

L0<gxn Fi)
iel

CTO n(Wi)
iel

V I i r
E®(Y\Fi)

iel

a
—>•

iel

i 1

0 0

dans lequel les flèches verticales sont induites par cp et v|/ et les flèches

horizontales sont les homomorphismes canoniques. Comme le foncteur

produit tensoriel est exact à droite et le foncteur produit est exact, les

colonnes de ce diagramme sont exactes. Les homomorphismes a0 et Oi
sont des isomorphismes d'après ([Bol], chap. 2, § 3, corollaire 3 de la

proposition 7). Il en résulte que a est un isomorphisme.

A.4. Proposition. Si {Fi}isI est une famille de R-modules plats sur un

anneau noethérien R, alors le R-module ]^| Ft est plat.
iel

Démonstration. Soit a un idéal de R de type fini ; comme R est noethérien,
le R-module a est de présentation finie ([Bo2], chap. 1, § 2, lemme 8).

Considérons le diagramme commutatif

a®(ïïFi) ^ n*.
iel l'e/

a |

iel
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où a est un isomorphisme d'après le lemme A.3 et p ~ Yl h est injectif
iel

d'après l'hypothèse et le lemme A.2. Il en résulte que j est injectif et par
suite le lemme A.2 montre que le module Y[ Ft est plat.

iel

Appendice B :

Le foncteur D

B.l. Reprenons les hypothèses du N° 2.1 mais supposons que Y est un

point. Alors f\ — Tc(2f ; — X est un espace localement compact de

c-dimension finie et Jf est un faisceau omou et plat ([Gr] 2.5.1 et 2.9.1).

D'après la proposition 1.4, pour tout faisceau sé sur X, le faisceau

JT est omou.
Soit encore N un R-module.

B.2. On définit un foncteur contravariant

D( —) : Sh(X)° - Sh(X)

en posant

W
Plus précisément D(s/) est le faisceau défini en posant

D(j*)(U) Hom(rc((s/<g>jY)v);N)

pour tout U e Ouv(Z) et

Pu ,u — Fiom(rU' v ; 1^)

pour tout U\ U e Ouv(X) tels que U' c= U.

B.3. Dans ([Bo], V, § 7) le théorème de dualité est démontré, d'une façon

un peu indirecte, à l'aide du foncteur D. On notera que la propriété
fondamentale suivante du foncteur D est une conséquence facile de la proposition
3.10 si on remarque que D(RX)\V D(RV)

B.4. Théorème (A. Borel). Il existe un isomorphisme de foncteurs

|i: D(-) ->
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