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L’Enseignement Mathématique, t. 31 (1985), p. 227-247

UNE DEMONSTRATION DU THEOREME DE DUALITE
DE VERDIER

par Pierre-Paul GRIVEL

INTRODUCTION

Soit R un anneau commutatif unitaire. Désignons par D(X) la catégorie
dérivée de la catégorie K(X) des complexes de faisceaux de R-modules sur
un espace topologique X.

Si f:X — Y est une application continue entre espaces localement
compacts, on peut définir des foncteurs Rfy: D(X) — D(Y) et f L D(Y) - D(X),
qui généralisent les foncteurs image directe et image inverse. On a alors le
résultat suivant qui a été annoncé par Verdier dans [V].

THEOREME DE DUALITE. Si le foncteur f1 est de dimension cohomologique
finie et si Panneau R est noethérien, on a un isomorphisme fonctoriel

R #om (RA(A):B) = RER Hom (47 fI(B))
dans D*(Y), ou o e€ObD (X) et % € ObD(Y).

Ce théoréme, qui a lorigine a joué un rdle en géometrie algeébrique,
trouve aujourd’hui son utilisation dans I’homologie d’intersection et la
théorie des Z-modules.

Cette note est la suite obligée de [Gr]. Elle développe les détails de la
démonstration du théoréme de dualité en suivant un argument qui était
déja esquissé dans [V]. Je remercie N. Spaltenstein qui m’a suggéré la
possibilite de définir directement et explicitement lisomorphisme entre les
deux foncteurs et & qui je dois également I'idée du lemme fondamental 3.4.

On reprend ici les notations introduites dans [Gr], & une exception
prés cependant. L’anneau de base est noté R (au lieu de A) et le faisceau
. constant sur X de fibre R est noté Ry (au lieu de A).
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1. LES FONCTEURS f ET fl,

1.1. Un faisceau 2 € ObSh(X) est R-plat si le foncteur —®Z est exact.
R

(S’il n’y a pas d’ambiguité sur I'anneau de base R on dira simplement
que £ est plat et on écrira — ®2).

Un faisceau £ est plat si et seulement si, pour tout x € X, la fibre 2,
est un R-module plat. De plus £ est plat si et seulement si £, est plat
pour tout U € Ouv(X).

1.2.  PROPOSITION. La catégorie Sh(X) admet suffisamment dobjets plats.

Démonstration. Il faut montrer que pour tout # € ObSh(X) il existe un
epimorphisme #Z - # — 0 ou 2 est un faisceau plat.

Notons W l’ensemble des couples (U;s) ou U e Ouv(X) et se #(U).
Un tel couple détermine un morphisme S§: R, - &% de faisceaux sur X
([Go], chap. II, remarque 2.9.1). Ces morphismes induisent un morphisme
@ Ry —» & qui par construction méme est surjectif. Or le faisceau Ry est
w

plat; donc d’apres 1.1., ([Go], chap. II, 2.7) et [Bo2], chap. 1, § 2, prop. 2),
le faisceau @ R, est plat.
w

1.3. CoOROLLAIRE. Tout faisceau F sur X admet une résolution plate
P - % -0

1.4. Soit X et Y deux espaces localement compacts. Considérons une appli-
cation continue f:X — Y telle que le foncteur f| soit de dimension
cohomologique finie.

PROPOSITION.  Soit A" un faisceau sur X, fi-mou et plat. Alors pour
tout faisceau f sur X, le faisceau o Q A est fi-mou.

Démonstration. D’aprés le corollaire 1.3 on peut trouver une résolution
P, - o — 0de o par des faisceaux de la forme 2; = 63 Ry(j=0). Comme A

est plat la suite Z @ A — o4 Q A — 0 est une resolutlon de o/ ® A
Supposons que la dimension cohomologique de f) est inférieure a n et
posons # = Ker(d,®1,). Alors la suite

0B >2P, QA 5>..oPy QA > A QA -0

est une résolution bornée du faisceau 4. Comme %~ est f1-mou, les faisceaux ;




i
1
!
!
1
{

THEOREME DE DUALITE 229

P;Q A = EB Ry ® A = €B A (0<j<n)sont fi-mous ([Gr], lemme 2.10).

L’argument standard utilisé dans ([Gr], th. 2.12) montre que & @ A  est
f!-mou.

1.5. THEOREME. Supposons que lanneau R est noethérien. Soit F un
faisceau plat sur X. Alors &% admet une fi-résolution 0 — F — A,
dans laquelle les faisceaux A sont plats (j=0).

Démonstration. Soit 0 - # — € la résolution flasque canonique de
7 ([Go], chap. I, 4.3) et posons Z’ = Coker(d: %'~ '->%’) (j=1)

Supposons que la dimension cohomologique de f est inférieure a n.
Alors la suite exacte

0 F 56" @ 5 .. ¢ > F" 50

est une f-résolution de &. En effet les faisceaux 4’ (0<j<n) étant flasques,
ils sont fi-mous ([Br], chap. II, coroll. 2.5 et [Gr], lemme 2.10) et par un
argument standard ([Gr], th. 2.12) le faisceau Z"*! est aussi fj-mou.
Il reste donc a4 montrer que les faisceaux %’ (0<j<n) et Z"*! sont plats.
La construction de la résolution flasque étant inductive, il suffit de
démontrer par récurrence que, pour tout entier j > 0, les faisceaux %’
et Z/*1 sont plats.
Pour tout U € Ouv(X) on a ¥°(U) = [] #,. Par hypothése les modules

xeU

¥ . sont plats sur I'anneau noethérien R, donc ¥°(U) est un module plat
(voir Appendice A). Il en résulte que pour tout xe X le module #°
= li_{n %°(U) est plat ([Bo2], chap. I, §2, prop. 2) et par suite %° est

Ue¥
un faisceau plat.
De plus considérons la suite exacte scindée ([Br], chap. II, § 2)

0-F, 622150

dans laquelle les deux premiers termes sont des modules plats. Alors le
module & ; est aussi plat ([Bo2], chap. 1, § 2, prop. 2) donc le faisceau !
est plat.

Maintenant supposons que les faisceaux #¢ et 29*! sont plats pour
0<g<p-—1lavecp>1 Ona%"U)= [[Z?~. Par hypothése de récur-

xeU
rence les modules 2% sont plats, donc le méme argument que précédemment

montre que le faisceau %7 est plat et en considérant la suite exacte scindée

022 >5%2 > F2*l 50
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on en déduit que le faisceau Z**?! est plat.

1.6. Soit f:X — Y une application continue entre espaces localement
compacts, telle que le foncteur f) soit de dimension cohomologique finie
et soit # un faisceau sur X qui soit fi-mou et plat. La composition des
foncteurs

QX

Sh(X) — Sh(x)D3 sh(y)

définit un foncteur f 'X: Sh(X) — Sh(Y) qui commute aux sommes directes
puisque chacun des foncteurs qui le compose commute aux sommes directes
([Gr], th. 2.15).

1.7. PROPOSITION. Le foncteur f ‘:{ est exact.

Démonstration. Soit 0 - o/’ > o/ —» /" - 0 une suite exacte de
faisceaux sur X. Comme %~ est plat la suite

O A" AN > A QA > A" QAN -0

est exacte et formée de faisceaux fi1-mous en vertu de la proposition 1.4,
Il résulte alors des propriétés du foncteur R'f) que la suite

0 - fA'QA) > HARA) = (A" @A) -0

est exacte.

1.8. Rappelons que le foncteur
fiSh(Y) = Sh(X)

est défini de la fagon suivante ([Gr], §3): pour tout faisceau # sur Y
et pour tout U € Ouv(X) on pose

[ (%) (U) = Hom(f (A v); B) .

Il est évident que le foncteur f! est exact gauche et qu’il commute
aux produits directs.
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2. LES FONCTEURS E ET F

21. Soit f:X — Y une application continue entre espaces localement
compacts telle que le foncteur f soit de dimension cohomologique finie.
Soit A" un faisceau sur X, fi-mou et plat.

2.2. La composition des foncteurs

‘%X H om

Sh(X) x Sh(Y) 1 "SI0 Sh(Y) x Sh(Y) — Sh(Y)

definit un bifoncteur

E(—; —): SH(X)° x Sh(Y) — Sh(Y)

23. Soit &/ un faisceau sur X et % un faisceau sur Y. Le
foncteur E(«/ ; —): Sh(Y) — Sh(Y) est exact gauche et commute aux produits
directs. Le foncteur E(— ; %): Sh(X)® — Sh(Y) est exact gauche et transforme
les sommes directes en produits directs.

En effet cela résulte des propriétés analogues du foncteur # o, de la
proposition 1.7 et de ([Gr], th. 2.15).

24. La composition des foncteurs

H om f

SK(X) x Sh(Y) 103 L Spoxy  shx) - Sh(X) L3 Sh(Y)

définit un bifoncteur

F(—; —): Sh(X)° x Sh(Y) — Sh(Y)

25. Soit .o/ un faisceau sur X et # un faisceau sur Y. Le foncteur
F(sZ; —): Sh(Y) — Sh(Y) est exact gauche et commute aux produits directs.

Le foncteur F(— ; %): Sh(X)° - Sh(Y) est exact gauche et transforme les
sommes directes en produits directs. En effet cela résulte des propriétés
analogues des foncteurs #om» et f, et du N° 1.8.

26. THEOREME. Il existe un isomorphisme de bifoncteurs

AE(—;—)—> F(—;—).
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2.7. La construction du morphisme A et la démonstration du théoréme fera
I'objet du paragraphe 3.

2.8. COROLLAIRE. Le foncteur f! :Sh(Y)— Sh(X) est adjoint a droite au
Joncteur [ : Sh(X) — Sh(Y).

Démonstration. En effet prenons les sections globales dans I'isomorphisme
du théoreme 2.6. On obtient ainsi un isomorphisme

HomSh(Y)(f!f(ﬂ) ’ 93) = HOmSh(X)(JZ{;f‘!;((%))
2.9. CoRrROLLAIRE. Le foncteur f' :Sh(Y) > Sh(X) se restreint d un
foncteur  f :Inj(Y) — Inj(X).

Démonstration. Soit 0 - &/’ »> o/ - /" - 0 une suite exacte de
faisceaux sur X et soit # un faisceau injectif sur Y. En appliquant succes-
sivement a cette suite les foncteurs exacts f 'X et Homg,y(— ; .#), puis en
utilisant l'isomorphisme du corollaire 2.8, on obtient une suite exacte

0 — Homg, (2" ; f1(#)) » Homg (o ; £1(5))
- HomSh(X)(JZ/IQ f}(f)) - 0.

I en résulte que le faisceau f!(#) est injectif.

3. L’ISOMORPHISME A
3.1. On reprend les hypotheses du N° 2.1. Le résultat suivant permet de

simplifier la construction de A en passant d’une situation locale a une
situation globale.

LEMME. Soit W e Ouv(Y): posons W' = f~YW) et considérons le
diagramme commutatif

w4 X

f’l lf
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on j et j sont des inclusions et f' est la restriction de f a W.
Alors f; est de dimension cohomologique finie et si A~ est un faisceau

sur X fg-mou et plat alors j * A" est f;-mou et plat.
De plus si o/ € SW(X) et % e Sh(Y) on a des isomorphismes canoniques

(3.L1) RIY ) = £ )

!

3.12) JEIUB) = S % B).

Démonstration. 11 est évident que f ; est de dimension cohomologique
finie. Pour tout xe W’ on a (j/*X4), = A, donc d’aprés 1.1 le faisceau
j*A est plat. Enfin pour tout ye W on a (j*A) -1 = Y ATEITRSR
résulte alors de ([Gr] 2.8) que j * & est f -mou.

Onaj*(AQH) =j*o ®j*A,donc pour démontrer (3.1.1) il suffit
de démontrer que pour tout faisceau % sur X on a

J¥NF) = f(*F).
Or pour tout y € W on a, d’apres ([Gr], prop. 2.6),
J*UF), = N(F), = T Fr-0)
= T(f 010 * P p-1) = [U*F),

Maintenant soit U e Ouv(W’) = Ouv(X). On a évidemment (j * %)y
= j*(Ay) et dapres (3.1.1) on a f (j*A'y) = j* fi(H#"y). Donc pour
démontrer (3.1.2) il suffit de démontrer que

Hom(f\(# y); ) = Hom(j* fi(X y);j* ).

Mais cet isomorphisme est évident car d’apres ([Gr], prop. 2.6) le support
du faisceau f1(#") est contenu dans W.

3.2. Pour définir un morphisme de faisceaux
Mozt Hom| fj“ (2); B) = [ Hom|d; [ (B))
il faut construire une famille {A_; 4(W)}wcouvy, de morphismes
. A .
A, (W) Hom(f! (L) Byw) = Hom(/ -1y TP - 1m)

qui soient compatibles avec les morphismes de restriction.

Compte tenu du lemme 3.1 il suffit donc de définir pour toute appli-
cation f: X — Y et pour tout faisceau " sur X qui satisfont les hypothéses
du N° 2.1, un morphisme (que par abus on note encore 1)

A Hom(f‘!”/(,szi); %) — Hom(< ; f(B))
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qui vérifie la condition suivante:

(3.2.1) Si WeOuv(Y) et si on pose, avec les notations du lemme 3.1,
A =jFA, A =j*A et B = j*%, alors on a un diagramme com-
mutatif

Hom( fj“ (); B) LY Hom(o ; (%))
l l
Hom(f ; Y B = Hom(o/"; ' (')

dans lequel les fleches verticales sont les morphismes naturels de restriction.

3.3. L’existence du morphisme A du théoréme 2.6. est donc contenue dans le
résultat plus précis suivant, dont la démonstration sera donnée au N° 3.7.

PROPOSITION. Pour toute application f:X — Y et tout faisceau XA
sur X qui satisfont les hypothéses du N° 2.1, il existe un morphisme de
bifoncteurs

A Hom(f!f(—); —) - Hom(—; fL(-))

A

qui vérifie la condition (3.2.1).
De plus on a les propriétés suivantes :

jeJ jed

iel iel

3.4. Le fait fondamental qui permet de construire explicitement A est
formulé de la fagon suivante. '

LEMME. Pour tout .o/ € Sh(X) il existe une famille

Hey = {H(U, V)}(U, V)eOuv(X) x Ouv(Y)

de morphismes
WU, V): (V) ® [1(H o) (V) = [ () (V)

qui vérifie les propriétés suivantes:

(341) Si UeOuv(X) et V' < VeOuv(Y) alorsle diagramme



.
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wu,v)

A(U) @ fH ) (V) - ST ()

lywy ® pvi,v ! L pvv

AUV @ [(H ) (V) gy~ [1E V)
est commutatif

(342) Si U < UeOuv(X) et VeOuv(Y) alors le diagramme

SU)Q [ H ) V) _tew @V )@ fi(H ) (V)

pv.u ® 1f!(xfu,) %) ! I U, v)

A(U) @ f1(A y) (V) A S &)1

(ou ¥y y est le morphisme induit par le morphisme canonique d extension
oyt Ay = A y) est commutatif.

(34.3) u, est fonctoriel par rapport a .

(344) Si o = D A; alors pny = D Uy, .

jed jeJ

Démonstration. 1l suffit de définir, pour tout U € Ouv(X) et V € Ouv(Y),
une application bilinéaire

wWU; V) (U) x fo(Ay) (V) = L RA) (V).

Rappelons que o ® A est le faisceau des sections de Pespace étalé
HARQA ) =1 A, QA ,.

xeX
Soit t e fi(A ) (V) = Lo (f ~'(V); H'y). Donc te (U f~1(V); X); de
plus le support |t | de t est fermé dans f~ (V) et 'application St =V
est propre.
Soit encore s € .o/(U). Considérons 'application
FrUNfNV) > PARQA)

definie en posant, pour tout xe U n f~Y(V),

Ax) = Puns-t1vy, lS)x @ t,
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On a donc Fe I(Un f~1(V); 4 @A) ([T]; chap. 4, 4.9). Comme

|7l < | puns-1m o) I 01t < |t],

le support | 7| de 7 est fermé dans f~'(V), si bien quon peut étendre
F par zéro sur f~YV)\U n f~YV) pour obtenir une section

rel(f~1(V), QX).
Soit un compact K < V; alors f |T,|1(K) est compact car
S K) = (f~{K)nle) 7]
et fHK) N |t] est compact par hypothése. Il en résulte que
re Lo (f MV AQH) = [UARH) (V).
On définit alors I'application bilinéaire WU, V) en posant
WU, V)(s;t) = r

Les propriétés (3.4.1), (3.4.2), (3.4.3) et (3.4.4) se vérifient par calculs directs
a partir de cette définition.

3.5. Désignons par
[T Hom(e£(U) ® fH o) (V): BV))
le sous-espace de

Hom(/(U) @ f1(A v) (V); B(V))

(U, V)eOuv(X) x Ouv(Y)

des familles de morphismes

WU, V): L(U) Q@ fi(A ) (V) —> B(V)

qui vérifient les conditions suivantes:

(3.5.1) Si U eOuv(X)et V' < Ve Ouv(Y) alors le diagramme

AU ® f1(H o) (V) . aw)
IM(U) & Py, v ! ! Py v
2(U) @ f1(H ) (V) i B(V)

est commutatif.
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(352) SiU < UeOuv(X)et Ve Ouv(Y) alors le diagramme

L)@ A ) (V) _Law @TvdV) — g(U) @ fiA ) (V)

pu,u @ 1f!(9(U,)(V) ! ) YU, V)

AU @ fA v) (V) o BV)

est commutatif.

36, LEMME. Pour tout </ € SW(X) et % e Sh(Y) il existe un isomorphisme
¥, 5 Hom(s/; f1,(®) - [| Hom(/(U) ® f1(H ) (V); B(V))

qui vérifie les propriétés suivantes:

-

(3.6.1) W, 4 est fonctoriel par rapport a o eta %.

JjeJ jeJ

iel iel

Démonstration. Par définition un morphisme € Hom(o/; [ (%))
consiste en une famille

{U( U)}UeOuv(X) € H Hom(&/(U); Hom(fg(,%fu); 93))

UeOuv(X)

de morphismes compatibles avec les morphismes de restriction et si s € 2/(U)
alors Y(U) (s) est une famille

W) () Mveown € 11 Hom(f1(A ) (V); B(V))

VeOuv(Y)

de morphismes compatibles avec les morphismes de restriction. Pour tout
Ue Ouv(X) et ¥V e Ouv(Y) on définit un morphisme

W(U, V) e Hom(s/(U); Hom(f (A y) (V); B(V))

§n posant (U, V) (s) = W(U) (s) (V) pour tout s e o/(U). De plus on a un
Isomorphisme canonique

U, V): Hom(d(U); Hom(f!(%fu) (V); QB(V))
— Hom(+/(U) ® fi(H ) (V); B(V)) .
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On pose alors (U, V) = U, V) (WU, V)). Les conditions (3.5.1) et (3.5.2)
sont satisfaites.
En effet la condition (3.5.1) est équivalente a la commutativité du

diagramme

Sy (V) VUG - pw)

Py v ! L Py

A ) (V' _ - BV
SA ) (V') TR (V)

et cette commutativité résulte des conditions de compatibilité des morphismes

W(U) (s) (V).

De méme la condition (3.5.2) est équivalente a la commutativite du

diagramme

2U) WU V) Hom(f(x ) (V); B(V))
Pu,u ! ! Hom(r—U’,U(V); Ig&(V))

AU Hom(f(A y-) (V); B(V))

WU, v)

et cette commutativité résulte des conditions de compatibilit¢é des mor-
phismes Y(U).
On peut donc définir le morphisme ¥, 4 en posant

Tﬂ,@(‘l’) = {\I’(U, V)}(U, ¥)eOuv(X) x Ouv(Y)

Les propriétés (3.6.1), (3.6.2) et (3.6.3) se vérifient immédiatement par calculs

directs.
On obtient le morphisme réciproque de ¥ 4 en associant a la famille

(WU, V)} . vreouin < owm € || Hom(Z(U) @ f1(H ) (V); B(YV))

le morphisme de faisceaux V:/ — f| (%), défini en posant, pour tout
U € Ouv(X) et s € A(U), U(U) (s) = Yy(U) ou Y(U): fu(A ) = % est le mor-
phisme de faisceaux donné, pour tout V € Ouv(Y), par | 4

V(U) (V) = U, V)" (W(U, V) (s) -
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37. Démonstration de la proposition 3.3. Si o/ € Sh(X) et % e Sh(Y) on
définit un morphisme

Ay 5 Hom( fj“ («£); B) - Hom(/ ; f1(B))

de la fagon suivante. Soit @ eHom(f“Y(&i); 2); pour tout U e Ouv(X) et
¥ € Ouv(Y) considérons le morphisme

YU, V) = o(V)owU, V): Z(U) @ f(A y) (V)= BV),

ot WU, V) est le morphisme défini dans le lemme 3.4. Il résulte immédia-
tement des propriétés (3.4.1) et (3.4.2) et des conditions de compatibilité
des morphismes ¢(V), que les morphismes (U, V) satisfont les conditions
(3.5.1) et (3.5.2). On peut donc poser

I (D IP:«,I@ ({W(U, V)}(U, V)eOuv(X)XOuv(Y))'

Plus explicitement, si U € Ouv(X), V e Ouv(Y), se L (U) et te fi(HA ) (V)
on a

Mg, (@) (U) (5) (V) (1) = o(V) o (U, V) (s;1).

De cette dernicre formule il découle facilement que la condition de compa-
tibilite (3.2.1) est satisfaite si on remarque que par définition on a

£ W) = i) )
pour tout V' € Ouv(W) < Ouv(Y)
2 [HB)(U) = fL(AB)(U)

pour tout U € Ouv(W’) < Ouv(X).

La bifonctorialit¢ de A est une conséquence de (3.4.3) et (3.6.1). De plus

les propriétés (3.3.1) et (3.3.2) sont des conséquences de (3.4.3), (3.6.2) et
(3.6.3).

38. 1l faut montrer maintenant que le morphisme de faisceaux
Moy, H oo f!f (A); B) = [ Hom(st; f1(B))

" et un isomorphisme. D’aprés le N° 3.2 il suffit donc de montrer que le
k Morphisme
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Mo, Hom(f 7 (/); ) — Hom(Z, f,; ()

est un isomorphisme. On commence par considérer le cas ou o/ = Ry.
On note A le morphisme Ay, 4 défini dans la proposition 3.3.

3.9. LEMME. Pour tout ouvert U de X, le morphisme
L: Hom(f ' (Ry); ) > Hom(Ry; f (%))
est un isomorphisme.
Démonstration. L’isomorphisme canonique g¢g:# y = Ry & A ([Go]
chap. II, 2.9) induit un isomorphisme ¢: Hom(f TK(RU); B) - fL(B) ().
D’aprés ([Go], chap. II, Remarque 2.9.1) on a aussi un isomorphisme cano-

nique h: Hom(Ry; f1(#)) - f! (%) (U). Pour démontrer que A est un iso-
morphisme, il suffit donc de démontrer que le diagramme

Hom(f ); 4 Hom(Ry; f!(%))

X /

[ %% (U

est commutatif.
Notons 1 la section unité de R, au-dessus de U. Soit V € Ouv(Y)
et t € f1i(A y) (V). 1l est immeédiat, d’apres les définitions, que I'on a

WU, VY150 = g(f (V) (©)
Soit @ € Hom(f ',%/(RU); 2). On a alors, compte tenu de la formule du N° 3.7,

h(Me) (V) (1) = Me) (U) (1) (V) (1) = o(V) e w(U, V) (15 1)
= o(V) o g(f M) (O = g(e) (V) (1);

ainsiona hoA = g.

3.10. PROPOSITION. Pour tout o/ € SWX) ettout % € Sh(Y) le morphisme
Mo, o: Hom(f 7 (o#); B) - Hom(e/ ; f ()

est un isomorphisme.
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Démonstration. La démonstration se fait en trois etapes.

i) Soit Ue Ouv(X) et supposons que & = Ry; alors Ag, g €st un
isomorphisme d’apres le lemme 3.9.

ii) Supposons que ./ = @ Ry. D’apres (3.3.1) on a Ay a = Hhry 2>
donc A, 4 est un isomorphisme d’apres I'étape 1),

iii) Soit .27 un faisceau sur X.

Daprés le corollaire 1.3 on peut trouver une suite exacte
2P > >0

ou les faisceaux 2 et 2 sont de la forme @ Ry . Considérons le diagramme

commutatif

0 0
l |
Hom(f[(«/); 8) _ts.2 _ Hom(e/; f1(%)
| |
Hom( fj" (P); B) hp.® Hom(2; f (%))
l l

Hom( f !X(Q) ; B) Ao, @ Hom(2; 1 (%))

Les colonnes de ce diagramme sont exactes car les foncteurs Hom(f"%(—); B)
et Hom(— ; f (%)) sont exacts gauche. Les deux fléches A, 4 et X, 5 sont
des isomorphismes en vertu de I’étape ii). On en déduit alors aisément que

)y z €st un isomorphisme.

3.11. COROLLAIRE. Pour tout o/ € Sh(X) et tout % e Sh(Y) le morphisme
de faisceaux

M.t Hom( [T (A); B) = [ Homld; [L(B)

est un isomorphisme.
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4. LE THEOREME DE DUALITE

41. Soit f:X — Y une application continue entre espaces localement
compacts telle que le foncteur f soit de dimension cohomologique finie. -

Supposons pour toute la suite de ce paragraphe que I'anneau R est
noethérien. D’aprés le théoréme 1.5 on peut trouver une f)-résolution
0 - Ry —» A " du faisceau Ry par des faisceaux plats.

42. Si o/ € ObK(X) on définit un complexe double f ’f.(&i ') en posant
[f ',[ ()79 = f ‘,W(yiq), les différentielles étant induites par celles
de " et de o/ respectivement. En prenant le complexe simple associé
on en déduit un foncteur, encore noté f ‘;’[, de K(X) dans K(Y).

Si " € ObK(Y) on peut encore définir un complexe triple

Homl [ (4); B)
en posant
[Homl [ () BN = Homlf7 (479 B),

les différentielles étant induites par celle de 4, de o/ et de # respec-
tivement. Le complexe simple associé a ce complexe triple est canoniquement
isomorphe au complexe simple associ¢ au complexe double des homomor-
phismes du complexe simple associé au complexe double f "’{ (o7 ) dans le
complexe 4 . '

43. D’une fagon analogue on définit un complexe double f! (%) en
posant [fL«(#)]"% = f _,(#%. En prenant le complexe simple associ¢
on en déduit un foncteur, encore noté¢ f -, de K(Y) dans K(X).

On peut aussi définir le complexe triple #omdo/ "5 f1, (%)) en posant

[.}fom(&/.; f;,(.@ .))]p’ B = %0//%(%_‘1; !x_p(gé’r)).

Le complexe simple associ¢ a ce complexe triple est canoniquement 1so-
morphe au complexe simple associé au complexe double des homomorphismes
du complexe o/ dans le complexe simple associé au complexe double

fAB),

4.4. PROPOSITION. [l existe un isomorphisme de complexes de faisceaux sur Y

I g}fom(f'x(&f),,@) — f*c%”om.(ﬂ'; f'y[(gf))

Démonstration. Le corollaire 3.11 fournit, pour tout (p, ¢, ¥) € Z x Z x Z,

un isomorphisme ‘
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AP T [g}fom(f‘lx/(&( .); 9?‘)]‘” r [f*,}fam(&f’; f'x(%’ '))]p‘ L

compatibles avec les différentielles. On en deéduit un isomorphisme de
compiexes triples. En passant aux complexes simples associés on obtient
I'isomorphisme A .

45. Rappelons ([Gr], corollaire 3.10) qu’on définit le foncteur f ! comme
étant le foncteur dérivé du foncteur [, -.

46. THEOREME. Soit o/ un objet de la catégorie dérivée D~ (X) et
A un objet de la catégorie dérivée DP(Y). Dans la catégorie D™(Y)
on a un isomorphisme canonique

R #om Rf(A); B) = R R Hom' (75 f(RB)).

Démonstration. Soit o/ € ObD ™ (X) et soit 0 - Ry — 4~ une fi-réso-
lution du faisceau constant R, par des faisceaux plats (théoreme 1.5).
Ona o @Ry = donc 0> &/ — o/ @ 4 est une résolution de
/" par des faisceaux fi-mous (proposition 1.4) donc fi-acycliques ([Gr]
lemme 2.10).

Comme par hypothese f est de dimension cohomologique finie le foncteur
Rf1: D(X) — D(Y) existe et est donné par Rf (/) = f'f (27 7); il induit un

foncteur Rf1: D™ (X) —» D (Y) ([H] chap. 1, corollaire 5.3).
Maintenant soit % e ObD’(Y) et soit 0 - # — # une résolution
injective de 4. On a évidemment

R(H o o (f) % Lgory)) = R Hom o (Rf1 X 1poy)
donc ([H] chap. I, § 6).
4.6.1) R Hom RAOL 5 B) = Hom (f7 () £7).

D'un autre c6té les faisceaux f1, «(#°) sont injectifs (corollaire 2.9), donc les
faisceaux Hom (&5 fl,(F) et fofom (47 fL+(#7) sont flasques
([Go] chap. II, lemme 7.3.2 et théoréme 3.1.1). On a ainsi ([H], chap. I,
prop. 5.4)

R(f*OXO-ﬁZ.O(lK(X) X fj%’.)) = Rf* o R %04}2. o (ID(X) X Rf‘le.) .

Donc

A [452) R R Hom (" fAB) = [ Hom (L5 fL(F).
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Le théoreme résulte alors du fait que les membres de droite des égalités
(4.6.1) et (4.6.2) sont isomorphes en vertu de la proposition 4.4.

4.7. Appliquons le théoréme 4.6 au cas ou &/ = f !(93'). Comme les
foncteurs f, et # o sont exacts gauche, en appliquant le foncteur coho-
mologique H°, puis en prenant les sections globales, on obtient un iso-
morphisme

Hom o (Rf1(f (% ): B") = Hompe( (B ); f1(#)).

L’image de 1f'

!z PAT cet isomorphisme permet donc de définir une fleche
d’adjonction

Rflof!“’li)b()/)-

APPENDICE A:

LES MODULES PLATS SUR UN ANNEAU NOETHERIEN

A.l1. Soit R un anneau commutatif unitaire et soit E un R-module. On sait
que le foncteur —®E est toujours exact a droite. On dit alors que E est
un module plat si ce foncteur est aussi exact a gauche. Cette condition est
équivalente au fait que pour tout R-module M et M’ et pour tout homo-
morphisme injectif u: M' — M, '’homomorphisme u®l;: M'QFE - MQE
est encore injectif ([Bo2], chap. I, § 2, prop. 1).

A.2. Soit a un idéal de R. L’inclusion j: a — R induit un homomorphisme
j:a®E — E obtenu en composant I’homomorphisme j®1, avec I'isomor-
phisme canonique R®E = E. On a alors le résultat suivant ([Bo2], chap. I,
§ 2, N° 3, remarque 1).

LEMME. Pour que E soit un R-module plat il faut et il suffit que,
pour tout idéal a de R de type fini, Phomomorphisme j:a®E — E
soit injectif.

A3. LeMME. Soit E un R-module de présentation finie et soit {F}i
une famille de R-modules. Alors 'homomorphisme canonique

o EQ(]F;) » [[(EQF))

iel iel

est un isomorphisme.
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. o v ; ;
Démonstration. Soit L, - L, - E — 0 une présentation de E, dans

laquelle les R-modules L, et L, sont libres de type fini. Considérons le

diagramme commutatif

Le(lF) > [IL®F)

¢ | Lo
Lo ® (] F) 2 [1(Lo®F)
Vol Lo
E@([F) = [IESF)
! l
0 0

dans lequel les fleches verticales sont induites par ¢ et | et les fleches
horizontales sont les homomorphismes canoniques. Comme le foncteur
produit tensoriel est exact a droite et le foncteur produit est exact, les
colonnes de ce diagramme sont exactes. Les homomorphismes o, et o,
sont des isomorphismes d’apres ([Bol], chap. 2, §3, corollaire 3 de la
proposition 7). Il en résulte que ¢ est un isomorphisme.

A4. PROPOSITION. Si {F;},.; est une famille de R-modules plats sur un
anneau noethérien R, alors le R-module []F, est plat.
iel
Démonstration. Soit a un ideal de R de type fini; comme R est noethérien,

le R-module a est de présentation finie ([Bo2], chap. 1, §2, lemme 3).
Considérons le diagramme commutatif

-~

a@([[F) & IIF

iel iel
/
c | J

H(Q®Fi)

iel
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ol o est un isomorphisme d’aprés le lemme A3 et j/ = 1 ji est injectif
iel

d’aprés I’hypothése et le lemme A.2. Il en résulte que j est injectif et par

suite le lemme A.2 montre que le module [ | F; est plat.

iel

APPENDICE B:

LE FONCTEUR D
B.1. Reprenons les hypotheses du N° 2.1 mais supposons que Y est un
point. Alors fy = I'(X;—), X est un espace localement compact de
c-dimension finie et 2 est un faisceau c-mou et plat ([Gr] 2.5.1 et 2.9.1).
D’apres la proposition 1.4, pour tout faisceau &/ sur X, le faisceau
o QA est c-mou.

Soit encore N un R-module.
B.2. On définit un foncteur contravariant
D(—): Sh(X)° — Sh(X)
en posant
D(et) = flg4(N).

Plus précisément D(</) est le faisceau défini en posant

D(«/) (U) = Hom(['((«/ ®H)y); N)

pour tout U € Ouv(X) et

py,v = Hom(ry y; 1y)

pour tout U’, U € Ouv(X) tels que U’ <= U.

B.3. Dans ([Bo], V, §7) le théoreme de dualité est démontré, d’une fagon
un peu indirecte, a I'aide du foncteur D. On notera que la propriété fonda-
mentale suivante du foncteur D est une conséquence facile de la proposition
3.10 si on remarque que D(Ry)y = D(Ry) = f, (N).

B.4. THEOREME (A. Borel). Il existe un isomorphisme de foncteurs

w:D(—) = Hom{— ; D(Ry))

g



[Bo]

[Bol]
[Bo2]
[Br]
[Go]
[Gr]

[H]
[T]

[V]
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