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MÉTHODE DU CERCLE ADÉLIQUE

ET

PRINCIPE DE HASSE FIN

POUR CERTAINS SYSTÈMES DE FORMES

par Renaud Danset

Introduction

A) Présentation générale

Soit, pour tout ce travail, / (fi,fr) un ensemble de r formes,

de degré d & 2, en n variables x (xl5..., x„) et à coefficients entiers.

On prendra toujours r ^ n. (N.B. : « forme » signifie « polynôme homogène »).

Une conjecture attribuée à Artin dit que, si d est impair et n > rd2,

le système diophantien / 0 admet des solutions entières non triviales (on

dit que / représente zéro). Cette conjecture tente de préciser l'idée selon

laquelle si d est impair, ou pair mais avec des conditions nécessaires

évidentes et s'il y a suffisamment de variables, alors le système / représente
zéro.

Birch (1957, Homogeneous forms of odd degree in a large number of
variables, Mathematika 4, 102-105) montre, pour r 1, qu'il existe une fonction

d h» N(d) telle que toute forme de degré impair d, en n variables avec

n > N(d) représente zéro; mais sa méthode conduit à des valeurs N(d)

astronomiques.
En fait cette conjecture est tellement inaccessible que, dans le cas le plus

simple, d 3 et r 1, Davenport (cf. bibliographie) a démontré, à la suite
d'un énorme et remarquable travail, que toute forme cubique à coefficients
entiers ayant au moins 16 variables, représente zéro. Non seulement 16 n'est

pas 10, mais rien d'aussi précis n'est connu pour les autres couples (d,r).
Une forme plus faible de la conjecture d'Artin est la suivante: pour tout

d ^ 2, si n > rd2, le système / 0 admet des solutions non triviales dans

Qp (on dit que / représente zéro dans QP) pour tout entier premier p.
Le cas d 2, r 1 constitue le Théorème de Hasse (cf. par exemple
Borevitch-Chafarevitch, chapitre I, théorème 5). Le cas d 3, r 1 a été
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démontré simultanément mais de manières différentes par Demyanov (1950,
On cubic forms in discretely normed fields, Dokl. Akad. Nauk. SSSR

(N.S.) 74, 889-891) par Lewis (Cubic homogeneous polynomials over p-adic
number-fields, Annals Math. 56, 1952, 473-478) et Davenport (Cubic forms in
32 variables, cf. bibliographie). Le cas à 2, r 2 a été démontré par
Demyanov, une démonstration simplifiée se trouvant dans Birch, Lewis,

Murphy, Simultaneous quadratic forms, Amer. J. Math. 84, n° 1, 1962,

110-115.

Cette seconde conjecture n'a, elle aussi, été démontrée pour aucun autre
couple (d, r). Cependant Brauer (1945, A note on systems of homogeneous
algebraic equations, Bull. Amer. Math. Soc. 51, 749-755) a montré, pour
r 1, qu'il existe une fonction d i— M(d) telle que toute forme de degré d

ayant au moins M(d) variables représente zéro dans QP pour tout p. Dans

son travail cité ci-dessus, Birch a utilisé ce résultat de Brauer, malheureusement
la méthode, on l'a déjà dit, ne donne pas des valeurs M(d) raisonnables.

On peut citer aussi Ax et Kochen (1965, Diophantine problems over local
fields, I, II, Amer. J. Math. 87, 605-645) qui ont prouvé que pour un degré d

donné, la seconde conjecture est vraie pour toutes les valeurs de p sauf
peut-être pour un nombre fini, dépendant de d et dans le cas r 1.

Lang a aussi démontré que si la conjecture était vraie pour r — 1, elle était
également vraie pour tout r > 1. (On quasi algebraic closure, Ann. Math. 55,

n° 2, 1952, 373-390). Enfin Terjanian (C.R. Acad. Sei., 262, 1966, A612) a

construit un polynôme homogène de degré 4 à 18 variables qui ne représente

pas 0 dans Q2 ce qui constitue un contre-exemple à la conjecture, mais

d'un type particulier... Notons pour terminer qu'il est facile de montrer
que la valeur hypothétique r d2 est une borne inférieure (cf. Borevitch-
Shafarevitch, Ch. I, § 6-5).

Le lien entre les deux conjectures précédemment citées est ce qu'on
appelle le Principe de Hasse; si le système /= 0 représente zéro dans R

et dans tous les QP alors il représente zéro dans Q. Le cas d 2, r 1

constitue le Théorème de Minkowsky-Hasse (cf. Borevitch-Shafarevitch,
ch. I, § 7), associé au théorème de Hasse mentionné ci-dessus, il devient le

théorème de Meyer: toute forme quadratique à coefficients entiers, indéfinie et

ayant au moins cinq variables, représente zéro. Malheureusement Selmer (The

diophantine equation ax3 + by3 + cz3 — 0, Acta Math. 85, n° 3-4, 1951,

203-362) a montré en particulier que la forme cubique 3x3 + 4y3 + 5z3

représente zéro dans R et dans tous les QP mais pas dans Q. Enfin il existe

beaucoup d'autres contre-exemples qui infirment le Principe de Hasse lorsque
d ^ 3.
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Que peut-on faire avec deux conjectures inaccessibles et un Principe

faux?... Restreindre considérablement ses ambitions!
Il existe plusieurs façons d'affaiblir le Principe de Hasse (cf. M. de

La Palice); celle qui est utilisée dans ce travail se définit comme suit et

s'appelle

Principe de Hasse fin: Si le système diophantien / 0 possède une

solution non singulière (N.B.: cette dernière est forcément non triviale!)
dans R et dans tous les QP, alors le système / représente zéro dans Q.

Cette nouvelle version ne résiste pas mieux au contre-exemple de Selmer

mais l'expérience a montré sa validité pour des classes suffisamment importantes

de systèmes / et en particulier pour ceux considérés dans ce travail.
Pour obtenir ses résultats sur les formes cubiques, évoqués ci-dessus

(cf. également le paragraphe 5D du présent travail) Davenport utilise la

méthode dite « du cercle » de Hardy et Littlewood. Birch (Forms in many
variables, 1962, cf. bibliographie et § 5B du présent travail) s'inspire des

résultats de Davenport en les généralisant considérablement. Enfin,
W. M. Schmidt, vers 1980, reprend la méthode du cercle comme l'avait fait
Birch mais pour le cas à 2, r > 1.

Puisque la méthode du cercle étudie un certain type de sommes trigo-
nométriques associées au système /, il a paru intéressant d'exprimer la propriété
précise de ces sommes qui permet le succès du principe de Hasse fin pour les

systèmes / concernés.

Cette propriété (constituée par les hypothèses (Hl) et (H2) ci-dessous

formulées) n'est pas de tout repos. Trouver une qualité du système / qui
entraîne cette propriété des sommes trigonométriques associées et donc
l'application du Principe de Hasse fin, est un problème difficile que chaque
auteur traite à sa façon, qui ne constitue pas l'objet du présent travail
mais qui est résumé au paragraphe 5. Notons d'ailleurs que les dites
« qualités », même si leurs auteurs parviennent à leur donner une expression
concise, sont difficilement compréhensibles d'un titulaire du baccalauréat et

que leur vérification dans des cas généraux, c'est-à-dire exception faite des
exercices « faits pour », n'est pas évidente.

Puisque la méthode du cercle établit une formule asymptotique, réduite
en fait à sa partie principale dont le coefficient est le produit de facteurs
représentant toutes les places de Q, il a paru intéressant de donner un exposé
adélique de cette méthode, suivant ainsi une tendance générale de ces dernières
années et plus particulièrement Lachaud (1982 « une présentation adélique
de la série singulière et du problème de Waring » cf. bibliographie).
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On obtient ainsi :

1°) Une présentation unifiée des arcs majeurs.

2°) Une expression globale pour la série singulière et l'intégrale singulière

qui met en évidence la transformée de Gauss globale F* (selon la

notation d'Igusa, cf. bibliographie) associée à une fonction de Schwarz-

Bruhat d'un type précis.

Remarque. Un résultat analogue pour d'autres fonctions de Schwarz-

Bruhat est une des espérances que ce travail peut susciter.

3°) L'exposé d'une méthode suffisamment générale comme le montrent
les exemples du paragraphe 5 et dont les hypothèses initiales sont nettement
dégagées.

4°) La démonstration au lemme 1-6 d'une majoration générale d'une

somme de modules d'intégrales oscillantes.

B) Notations et Hypothèses principales

Soient / (/j,..., fr) r formes de degré d ^ 2, en n variables

x (xL,..., xn) avec r ^ n et à coefficients entiers.

Soit g un polynôme quelconque de degré < d et à coefficients entiers,

en les variables x.

Remarque. Tout ce travail pourrait se faire sans mentionner un tel

polynôme g, sur ce point on pourra lire la remarque finale du paragraphe 1

et le paragraphe 5A.

Soit & une boîte de dimension n (parallélépipède de côtés parallèles
aux axes de R" ou encore : {x g R" | 1 ^ i ^ n, a{ ^ x ^ fcf}) et de côtés au

plus égaux à 1 (i.e. : 1 ^ i ^ n, bt — at < 1).

Soit P g R+ et destiné à être très grand.
Soit s > 0 et destiné à être très petit.
Soit v g 71.

Soit a (<*!,..., ar) g (R/Z)r ou encore : 1 ^ i ^ r, 0 ^ a; < 1.

Soit la somme trigonométrique

On définit les hypothèses suivantes concernant les sommes trigono-
métriques S(et) et donc le système / :

S(a) E exP 2in Ujfj(x) + g{x)
xePâSnZ'
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(Hl) Il existe une constante Q > 0 telle que pour tout A > 0, pour tout

polynôme g de degré < à,pourtoute boîte S incluse dans un domaine

borné de R", pour tout P>0, pour tout e > 0, pour tout a (R/Z)r,

on ait Falternative suivante :

oubien i) \ S(a)| « r"An+e

la constante impliquée dans le symbole « « » dépendant seulement des

coefficients des formes f,,dudomaine borné dans lequel la boîte M est

choisie, de e > 0 et, à cause de cette constante, l'inégalité étant triviale

pour P petit;

a fa± ar\
ou bien ii) Il existe des approximations rationnelles — I ——J de

a (ax,ar) telles que

pgcdia^,ar,q) 1 (on ne considère que les at^0),
1 ^q^P\
0 ^ at < q

(1 ^i<r) | q af - a-x | ^ p~d + A

(H2) Q étant la constante définie dans l'hypothèse (HI), on a

Cl > r + 1

Remarques.

a) Comme annoncé précédemment, l'hypothèse (Hl) peut faire frémir.
En plus romancé, elle énonce une propriété fréquemment rencontrée ou
désirée chez les sommes trigonométriques : ou bien on dispose d'une bonne

majoration du module des sommes trigonométriques étudiées (ici les sommes
5(a)), ou bien le coefficient principal de l'exposant (ici la variable a) possède
de bonnes approximations rationnelles.

b) On peut remarquer qu'en raison du théorème classique d'approximation

rationnelle simultanée de r nombres réels (cf. Hardy and Wright,
4e édition, paragraphe 11.12) le cas ii), et donc l'hypothèse (Hl), sont

r
triviaux pour A ^ d.

r + 1

c) On a préféré distinguer les hypothèses (Hl) et (H2) car elles jouent
des rôles très distincts dans les démonstrations de ce travail.

d) Pour une justification de ces hypothèses, on doit voir le paragraphe 5A.
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e) L'ensemble des a e (R/Z)r, qui satisfont aux conditions de bonne

approximation rationnelle énoncées dans ii), constitue ce qu'on appelle
classiquement les arcs majeurs. L'origine de ce nom se comprend en observant
le cas r 1.

L'ensemble complémentaire du précédent dans (R/Z)r constitue les arcs
mineurs. Dans la plupart des applications de la méthode du cercle, dont le

nom se comprend soudain mieux (prendre encore le cas r 1 et se demander

ce qu'est R/Z), le traitement de ces arcs mineurs est la partie la plus
délicate car il s'agit d'obtenir, sur eux, une « bonne » majoration du module
des sommes trigonométriques étudiées.

On comprend donc que l'hypothèse (Hl) avec le cas i) escamote complètement

cette difficulté qui, bien entendu, réapparaît selon un Principe de

conservation bien connu, dans le problème, déjà évoqué, consistant à trouver
une propriété du système / qui entraîne l'hypothèse (Hl) (et aussi (H2)

d'ailleurs!). Pour cet aspect qui, cela a déjà été dit, sort du cadre de ce

travail mais lui est immédiatement associé, il faut lire le paragraphe 5.

Si le lecteur a eu la patience de lire ce qui précède, il sait que le

but de ce travail est de montrer que les systèmes /, dont les sommes
trigonométriques 5^(a) associées répondent aux hypothèses (Hl) et (H2), observent
le principe de Hasse fin.

Cependant, comme la méthode du cercle se prête très bien à l'étude du

système diophantien / v (et pas seulement / 0) qui paraît même mieux

adapté à la nature profonde de celle là, il vaut mieux énoncer deux
nouvelles hypothèses pour le cas général dont la restriction au cas v 0

rappellera irrésistiblement les conditions du Principe de Hasse fin.

(H3) Pour un élément v de Zr, le système / v admet une solution

non singulière dans Znp, pour tout entier premier p.

(H4) Le système / 0 admet une solution non singulière dans R".

Remarque. Si v / 0 l'hypothèse (H4) ne dit pas que la variété réelle

F(v) {xeR" | f(x) v}

admet un point réel non singulier mais qu'elle admet un point à l'infini
réel non singulier; pour une justification de cette « anomalie », voir le

paragraphe 5C.

Le lecteur sait également que la présentation adoptée dans ce travail
utilise les adèles. Il est temps d'en parler.
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C) Adèles

Pour toutes les relations, définitions et propriétés des adèles utilisées

ci-après, une référence est Godement (Adèles et idèles, cf. bibliographie).

Soit A l'ensemble des adèles sur Q.

Soit \J/ le caractère de Täte.

Soit cp une fonction de Schwarz-Bruhat sur A", telle que

1) cp est décomposable (i.e.: cp(x) cp^x^.)
p

2) Pour tout p premier, on a

<Pp

(on note 1£ la fonction caractéristique d'un ensemble E),

3) cpx 0 * \pm (produit de convolution)

avec 9 fonction de classe C20 sur Rn, à support compact inclus dans un

voisinage de 0 et, en pratique, aussi petit qu'il sera nécessaire mais fixé

et donc indépendant de la variable P.

Remarque. Il s'agit là d'une différence notable avec le travail de Birch

(«forms in many variables» cf. bibliographie) qui utilise la fonction 1P@,

caractéristique de la boîte P&, discontinue au bord de celle-ci. En définissant

cpx comme ci-dessus on obtient d'abord une fonction de Schwarz-Bruhat ce

qui permet l'usage d'une formule de Poisson au paragraphe 1. En revanche,

on complique légèrement le paragraphe 3 (cf. la remarque importante qui
suit la démonstration du Lemme 3-2).

Soit % e Ar, on définit la somme

h© y <P(X)\H<^ /(*)>)
;ceQn

avec <Ç,/(x)> É
i 1

Cette somme H(^) est absolument convergente et constante sur les classes
modulo Qr, essentiellement parce que le caractère de Tate est trivial sur Q.

Ainsi, pour tout veZ', l'application q ^ -v>) définit une
fonction sur (A/Q)r et on a l'égalité

(A/QC
H(£M<S, -v>)d% E <PW

xeQn
f(x)-v>)d^.

(A/Q)"
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Si /(x) ^ v, le caractère \ i— \|/( < f{x) — v > n'est pas trivial sur le

groupe (A/Q)r et son intégrale est nulle.

Si f(x) v, ce caractère est trivial et comme dt> 1, puisque les
J (A/Q)r

mesures de Haar sur Ar et (A/Q)r sont choisies pour qu'il en soit ainsi! On
obtient l'importante égalité

Hm(<^ -v>)^ i (PooM
(A/Q)r XEZn

f(x) v

(la somme £ du second membre ne porte que sur les x e Zn car cp^ lz£

pour tout p, de plus cette somme représente à peu près le nombre de
solutions entières du système / v, présentes dans la boîte P& c= R").

On cherche principalement, dans le présent travail, à comparer la somme

H(Q avec l'intégrale de même forme, appelée transformée de Gauss globale
(en fait associée au système /, au caractère \J/ et à la fonction cp)

F*&<P(>#( < Ç, f(x) > )dx
J A"

On veut obtenir la formule asymptotique suivante : il existe 5 > 0, tel que

F*(Ç)\|/(<Ç, -v>)^ + 0{Pn~rd'ô)
(a iQr Ar

Remarque. L'intégrale portant sur F* est la seule raisonnable car cette

fonction n'est pas en général constante sur les classes modulo Q. De plus
cette intégrale n'est autre, selon les notations d'Igusa (cf. bibliographie) que

F*( — v) F(v) appelée série singulière globale (cf. le paragraphe 5F). Le

chapeau ^ désigne la transformée de Fourier associée au caractère de Täte

(cf. Godement...).

D) Méthode du cercle adélique

Soit E, g Ar ; on utilisera désormais les notations suivantes

1^1= Max | Çf, œ
| et, pour tout \%p\p Max | \Up

l^i^r l^i^r
on définit aussi la fonction

e® n Max(l, | | p)
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qui jouera un rôle important et dont on peut remarquer qu'elle ne dépend

que des places finies p de E, mais pas de ^.
Enfin on définit, pour chaque À > 0, un arc majeur (noter l'emploi du

singulier)

M(A) {Ç £ AVI ^ | < P~etm ^

Remarque.

a) Pour À suffisamment petit (ceci sera précisé en temps voulu) l'application

canonique Ar -» (A/Q)r, que nous désignerons désormais par la lettre ti,
est injective sur M(A). Dans ces conditions, on notera de la même façon
M (A) et 7i(M(À)) en remarquant que les mesures de Haar sur Ar et sur
(A/Q)r attribuent respectivement la même valeur aux ensembles M(A) et

7t(M(A)).

b) Ainsi le cercle R/Z de la méthode classique a pour analogue adélique
le quotient compact A/Q et les nombreux arcs majeurs classiques associés à un
même À > 0, trouvent leur analogue adélique dans un unique ensemble M(À)
(ou 7i(M(À)) si on préfère). Cette présentation de l'arc majeur adélique est due
à Lachaud (cf. bibliographie).

Au paragraphe 1, au moyen d'une formule de Poisson, on compare, pour
E, g M(A), la somme H(Q et l'intégrale F*(Q. On obtient ainsi le

Théorème 1. Pour A suffisamment petit, il existe Ôx > 0 tel que

(tf(Ç)-F*©)i|/(<Ç, -v>)^ 0(P"-rd-s>).
J M (A)

Au paragraphe 2, on majore la somme H(g) sur l'arc mineur adélique
(A/Q)r — n(M(A)), obtenant le

Théorème 2. Sous les hypothèses (Hl) et (H2) et pour PS et P
convenablement choisis, il existe ô2 > 0 tel que

tf(Ç)\|/(<Ç, — v> i</ç 0(P"-rd~S2).
J (A/Q)1" - n(M(A))

Au paragraphe 3, on majore l'intégrale F*(Q sur Ar - M(A) pour
démontrer le
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Théorème 3. Sous les hypothèses (Hl) et (H2), il existe ô3 > 0

tel que

F*(Ç)\|/(<Ç, -v>)d^ 0{Pn-rd~6a).
J Ar-M(A)

Remarque. Une conséquence du théorème 3 est que F* g L^A').

Ces trois théorèmes permettent d'obtenir la formule asymptotique désirée.

Proposition 4.1. Sous les hypothèses (Hl) et (H2), pour & et P
convenablement choisis, pour tout v g Zr, il existe Ö > 0 tel que

I <pooM A-v) + ckf"-'"-8).
jceZ"

/(x) v

Au paragraphe 4, on utilise les hypothèses (H3) et (H4) pour rendre
effective la formule asymptotique précédente. On démontre ainsi le

Théorème 4. Sous les hypothèses (Hl), (H2), (H3) et (H4), pour
& et P convenablement choisis, on a

A-v) » pn~ri.

Il résulte de tout ceci le

Théorème Principal. Sous les hypothèses (Hl), (H2), (H3) et (H4)
le système diophantien f v admet une infinité de solutions entières.

Un corollaire évident de ce Théorème Principal, pour v 0, énonce

qu'un système f répondant aux hypothèses (Hl) et (H2) observe le

Principe de Hasse fin.

Enfin le paragraphe 5, on l'a déjà compris, est consacré à des

explications complémentaires et à des exemples suivant les travaux de Birch,

Davenport et W. M. Schmidt ; mais on ne trouvera dans ce paragraphe aucune
démonstration à l'opposé des paragraphes 1 à 4 où on s'est efforcé d'être le

plus complet possible.

§ 1. Arc majeur

Le but de ce paragraphe est une bonne majoration de la différence

entre la somme H(Q et l'intégrale F*(£) lorsque Ç appartient à un arc

majeur M(A).
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