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METHODE DU CERCLE ADELIQUE
ET
PRINCIPE DE HASSE FIN

POUR CERTAINS SYSTEMES DE FORMES

par Renaud DANSET

INTRODUCTION

A) PRESENTATION GENERALE

Soit, pour tout ce travail, f = (fy,.., f,) un ensemble de r formes,
de degré d > 2, en n variables x = (xy,.., X,) et a coefficients entiers.
On prendra toujours r < n. (N.B.: « forme » signifie « polyndme homogene »).

Une conjecture attribuée a Artin dit que, si d est impair et n > rd?,
le systéme diophantien f = 0 admet des solutions entiéres non triviales (on
dit que f représente zéro). Cette conjecture tente de préciser I'ideée selon
laquelle si d est impair, ou pair mais avec des conditions nécessaires €vi-
dentes et s’il y a suffisamment de variables, alors le systéme f représente
Z€r0.

Birch (1957, Homogeneous forms of odd degree in a large number of
variables, Mathematika 4, 102-105) montre, pour r = 1, qu’il existe une fonc-
tion d — N(d) telle que toute forme de degré impair d, en n variables avec
n > N(d) représente zéro; mais sa methode conduit a des valeurs N(d)
astronomiques.

En fait cette conjecture est tellement inaccessible que, dans le cas le plus
simple, d = 3 et r = 1, Davenport (cf. bibliographie) a démontré, a la suite
d’un énorme et remarquable travail, que toute forme cubique a coefficients
entiers ayant au moins 16 variables, représente zéro. Non seulement 16 n’est
pas 10, mais rien d’aussi precis-n’est connu pour les autres couples (d, r).

Une forme plus faible de la conjecture d’Artin est la suivante: pour tout
d>2,si n> rd? le systtme f = 0 admet des solutions non triviales dans
Qp (on dit que f représente zéro dans Qp) pour tout entier premier p.
Le cas d = 2, r = 1 constitue le Théoréme de Hasse (cf. par exemple
Borevitch-Chafarevitch, chapitre I, théoréme 5). Le cas d = 3, r = 1 a été
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démontré simultanément mais de maniéres différentes par Demyanov (1950,
On cubic forms in discretely normed fields, Dokl. Akad. Nauk. SSSR
(N.S.) 74, 889-891) par Lewis (Cubic homogeneous polynomials over p-adic
number-fields, Annals Math. 56, 1952, 473-478) et Davenport (Cubic forms in
32 variables, cf. bibliographie). Le cas d = 2, r = 2 a été démontré par
Demyanov, une démonstration simplifiée se trouvant dans Birch, Lewis,
Murphy, Simultaneous quadratic forms, Amer. J. Math. 84, n° 1, 1962,
110-115.

Cette seconde conjecture n’a, elle aussi, €té démontrée pour aucun autre
couple (d, r). Cependant Brauer (1945, A note on systems of homogeneous
algebraic equations, Bull. Amer. Math. Soc. 51, 749-755) a montré, pour
r = 1, qu’il existe une fonction d — M(d) telle que toute forme de degré d
ayant au moins M(d) variables représente zéro dans Q, pour tout p. Dans
son travail cité ci-dessus, Birch a utilisé ce résultat de Brauer, malheureusement
la méthode, on I'a déja dit, ne donne pas des valeurs M(d) raisonnables.

On peut citer aussi Ax et Kochen (1965, Diophantine problems over local
fields, I, II, Amer. J. Math. 87, 605-645) qui ont prouvé que pour un degré d
donné, la seconde conjecture est vraie pour toutes les valeurs de p sauf
peut-€tre pour un nombre fini, dépendant de d et dans le cas r = 1.
Lang a aussi demontré que si la conjecture était vraie pour r = 1, elle était
egalement vraie pour tout r > 1. (On quasi algebraic closure, Ann. Math. 55,
n® 2, 1952, 373-390). Enfin Terjanian (C.R. Acad. Sci., 262, 1966, A612) a
construit un polynome homogene de degré 4 a 18 variables qui ne représente
pas 0 dans Q, ce qui constitue un contre-exemple a la conjecture, mais
d’'un type particulier..! Notons pour terminer qu’il est facile de montrer
que la valeur hypothétique r d*> est une borne inférieure (cf Borevitch-
Shafarevitch, Ch. I, § 6-5).

Le lien entre les deux conjectures précédemment citées est ce qu'on
appelle le Principe de Hasse; si le systétme f = O représente zéro dans R
et dans tous les Qp alors il représente zéro dans Q. Le cas d = 2, r = 1
constitue le Théoréme de Minkowsky-Hasse (cf. Borevitch-Shafarevitch,
ch. I, §7), associé au théoreme de Hasse mentionné ci-dessus, il devient le
théoreme de Meyer: toute forme quadratique a coefficients entiers, indéfinie et
ayant au moins cing variables, représente zéro. Malheureusement Selmer (The
diophantine equation ax® + by* + cz® = 0, Acta Math. 85, n° 3-4, 1951,
203-362) a montré en particulier que la forme cubique 3x® + 4y° + 573
représente zéro dans R et dans tous les Qp mais pas dans Q. Enfin il existe
beaucoup d’autres contre-exemples qui infirment le Principe de Hasse lorsque
d = 3.
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Que peut-on faire avec deux conjectures inaccessibles et un Principe
faux ?... Restreindre considérablement ses ambitions!

Il existe plusieurs fagons d’affaiblir le Principe de Hasse (cf. M. de
La Palice); celle qui est utilisée dans ce travail se definit comme suit et
s’appelle

PrRINCIPE DE HASSE FIN: Si le systéme diophantien f = 0 posséde une
solution non singuliére (N.B.: cette derniére est forcément non triviale!)
dans R et dans tous les Qp, alors le systeme f représente zéro dans Q.

Cette nouvelle version ne résiste pas mieux au contre-exemple de Selmer
mais l'expérience a montré sa validité pour des classes suffisamment impor-
tantes de systémes [ et en particulier pour ceux considérés dans ce travail

Pour obtenir ses résultats sur les formes cubiques, évoqués ci-dessus
(cf. également le paragraphe 5D du présent travail) Davenport utilise la
méthode dite « du cercle » de Hardy et Littlewood. Birch (Forms in many
variables, 1962, cf. bibliographie et § SB du présent travail) s’inspire des
resultats de Davenport en les généralisant considérablement. Enfin,
W. M. Schmidt, vers 1980, reprend la méthode du cercle comme l'avait fait
Birch mais pourlecas d = 2, r > 1.

Puisque la méthode du cercle étudie un certain type de sommes trigo-
nometriques associees au systeme f, il a paru intéressant d’exprimer la propriété
précise de ces sommes qui permet le succes du principe de Hasse fin pour les
systémes f concernés.

Cette propriété (constituée par les hypotheses (H1) et (H2) ci-dessous
formulées) n’est pas de tout repos. Trouver une qualité du systéme f qui
entraine cette propriété des sommes trigonométriques associées et donc
I'application du Principe de Hasse fin, est un probléme difficile que chaque
auteur traite a sa fagon, qui ne constitue pas lobjet du présent travail
mais qui est résumé au paragraphe 5. Notons dailleurs que les dites
«qualités », méme si leurs auteurs parviennent & leur donner une expression
concise, sont difficilement compréhensibles d’un titulaire du baccalauréat et
que leur vérification dans des cas généraux, c'est-a-dire exception faite des
exercices « faits pour », n’est pas évidente.

Puisque la méthode du cercle établit une formule asymptotique, réduite
en fait a sa partie principale dont le coefficient est le produit de facteurs
représentant toutes les places de Q, il a paru intéressant de donner un exposé
adélique de cette méthode, suivant ainsi une tendance générale de ces derniéres
années et plus particuliérement Lachaud (1982 « une présentation adélique
de la série singuliére et du probléme de Waring » cf. bibliographie).
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On obtient ainsi:
1°) Une présentation unifiée des arcs majeurs.

2°) Une expression globale pour la série singuliere et l'intégrale singu-
liere qui met en évidence la transformée de Gauss globale F* (selon la
notation d’Igusa, cf. bibliographie) associ¢e a une fonction de Schwarz-
Bruhat d’un type précis.

Remarque. Un résultat analogue pour d’autres fonctions de Schwarz-
Bruhat est une des espérances que ce travail peut susciter.

3°) L’exposé¢ d’'une méthode suffisamment générale comme le montrent
les exemples du paragraphe 5 et dont les hypothéses initiales sont nettement
dégageées.

4°) La démonstration au lemme 1-6 d’'une majoration geénérale d’une
somme de modules d’intégrales oscillantes.

B) NOTATIONS ET HYPOTHESES PRINCIPALES

Soient f = (f;,.., f,) r formes de degré d > 2, en n variables
x = (x{, .., X,) avec r < n et a coefficients entiers.

Soit g un polyndme quelconque de degré < d et a coefficients entiers,
en les variables x.

Remarque. Tout ce travail pourrait se faire sans mentionner un tel
polyndme g, sur ce point on pourra lire la remarque finale du paragraphe 1
et le paragraphe 5A.

Soit 4 une boite de dimension n (parallélépipédé de cotés paralléles
aux axes de R" ou encore: {x e R"|1 < i < n,q; < x < b;}) et de cotés au
plus égaux a 1 (le.:1 <i<nb, —a <1 }

Soit P € R, et destiné a étre tres grand.

Soit € > 0 et destiné a €tre tres petit.

Soit ve Z".

Soit a« = (g, ...,o,)€(R/Z) ouencore: 1 <i<r0<auo <L

Soit la somme trigonométrique

Sy = Y exp [m( 5 oc,-f,-(x)+g(x)ﬂ

XePBNL" Jj=1

On définit les hypotheses suivantes concernant les sommes trigono-
métriques S(o) et donc le systeme f:
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(H1) Il existe une constante Q > 0 telle que pour tout A > 0, pour tout
polyndéme g de degré < d, pour toute boite # incluse dans un domaine
borné de R”, pour tout P > 0, pour tout & > 0, pour tout x e (R/Z),
on ait l'alternative suivante:

ou bien 1) | S(o) | « ProAaets

J]a constante impliquée dans le symbole « « » dépendant seulement des
coefficients des formes f;, du domaine borné dans lequel la boite # est
choisie, de ¢ > 0 et, a cause de cette constante, I'inegalité étant triviale
pour P petit;

_ a a a,
ou bien ii) 1l existe des approximations rationnelles 5 = (—ql—, - ;) de

o = (o, ..., &) telles que
pgcd(a,, .., a,,q) = 1 (on ne considére que les a;#0),
1 <q< P,
0<aq <aqg,

(I<i<n|qo —a| < P77,

(H2) Q étant la constante définie dans 'hypothese (H1), on a
Q>r+1.

Remarques.

a) Comme annoncé précédemment, '’hypothese (H1) peut faire frémir.
En plus romance, elle énonce une propriété fréquemment rencontrée ou
désirée chez les sommes trigonomeétriques: ou bien on dispose d’une bonne
majoration du module des sommes trigonométriques étudiées (ici les sommes
S()), ou bien le coefficient principal de 'exposant (ici la variable o) posseéde
de bonnes approximations rationnelles.

b) On peut remarquer quen raison du théoréme classique d’approxi-
. mation rationnelle simultanée de r nombres réels (cf. Hardy and Wright,
4¢ edition, paragraphe 11.12) le cas ii), et donc P'hypothése (H1), sont

.o Y
triviaux pour A > ——d.
r+ 1

¢) On a preferé distinguer les hypotheéses (H1) et (H2) car elles jouent
des roles trés distincts dans les démonstrations de ce travail.

d) Pour une justification de ces hypotheses, on doit voir le paragraphe SA.
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e) L’ensemble des o e(R/Z), qui satisfont aux conditions de bonne
approximation rationnelle énoncées dans ii), constitue ce qu'on appelle clas-
siquement les arcs majeurs. L’origine de ce nom se comprend en observant
lecasr = 1.

L’ensemble complémentaire du précédent dans (R/Z)" constitue les arcs
mineurs. Dans la plupart des applications de la méthode du cercle, dont le
nom se comprend soudain mieux (prendre encore le cas r = 1 et se demander
ce quest R/Z), le traitement de ces arcs mineurs est la partie la plus
delicate car il s’agit d’obtenir, sur eux, une « bonne » majoration du module
des sommes trigonométriques étudiées.

On comprend donc que ’hypothése (H1) avec le cas i) escamote comple-
tement cette difficulté qui, bien entendu, réapparait selon un Principe de
conservation bien connu, dans le probléme, déja évoqué, consistant a trouver
une propriété du systéme f qui entraine I’hypothese (H1) (et aussi (H2)
d’ailleurs!). Pour cet aspect qui, cela a déja été dit, sort du cadre de ce
travail mais lui est immédiatement associ¢, il faut lire le paragraphe 5.

Si le lecteur a eu la patience de lire ce qui précede, il sait que le
but de ce travail est de montrer que les systémes f, dont les sommes trigo-
nométriques & () associées répondent aux hypotheses (H1) et (H2), observent
le principe de Hasse fin.

Cependant, comme la méthode du cercle se préte trés bien a I'’étude du
systéme diophantien f = v (et pas seulement f = 0) qui parait méme mieux
adapté a la nature profonde de celle 1a, il vaut mieux énoncer deux nou-
velles hypothéses pour le cas général dont la restriction au cas v = 0
rappellera irrésistiblement les conditions du Principe de Hasse fin.

(H3) Pour un ¢lément v de Z', le systtme f = v admet une solution
non singuliére dans Z7, pour tout entier premier p.

(H4) Le systéme f = 0 admet une solution non singuliere dans R”".
Remarque. Si v # 0 ’hypothese (H4) ne dit pas que la variété réelle
V) = {xeR"| f(x) = V}

admet un point réel non singulier mais qu’elle admet un point a [linfini
réel non singulier; pour une justification de cette « anomalie », voir le para-
graphe 5C.

Le lecteur sait également que la présentation adoptée dans ce travail
utilise les adéles. Il est temps d’en parler.




METHODE DU CERCLE ADELIQUE 7

C) ADELES

Pour toutes les relations, définitions et propriétés des adéles utilisées
ci-aprés, une référence est Godement (Adéles et ideles, cf. bibliographie).

Soit A 'ensemble des adeles sur Q.

Soit  le caractere de Tate.

Soit ¢ une fonction de Schwarz-Bruhat sur A”, telle que

1) @ est décomposable (i.e.: O(x) = @ (x,) [] ©,(x,))
p
2) Pour tout p premier, on a

0p = lgn
(on note 1 la fonction caractéristique d’'un ensemble E),

3) ¢, = 0 * 1p4 (produit de convolution)

avec 0 fonction de classe C* sur R", a support compact inclus dans un
voisinage de O et, en pratique, aussi petit qu’il sera nécessaire mais fixé
et donc indépendant de la variable P.

Remarque. 11 s’agit la d’une différence notable avec le travail de Birch
(« forms in many variables » cf. bibliographie) qui utilise la fonction 1pg4,
caracteristique de la boite P4, discontinue au bord de celle-ci. En définissant
¢, comme ci-dessus on obtient d’abord une fonction de Schwarz-Bruhat ce
qui permet 'usage d’une formule de Poisson au paragraphe 1. En revanche,
on complique légerement le paragraphe 3 (cf. la remarque importante qui
suit la démonstration du Lemme 3-2).

Soit £ € A", on définit la somme

H(E) = Y o(x¥(<&, f(x)>)

xeQn

avec <&, f(x)> = Z & fix).

Cette somme H(E) est absolument convergente et constante sur les classes
modulo Q', essentiellement parce que le caractére de Tate est trivial sur Q.

Ainsi, pour tout ve Z', I'application & HEW(<E —v>) définit une L
fonction sur (A/Q)" et on a I’égalité

J HEW(<E, —v>)dE = 3 (P(x)j (<, f(x)—v>)dE .
(A1Q)" (A/Q)"

xeQn
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Si f(x) # v, le caractére &+ Y(<¢&, f(x)—v>) n’est pas trivial sur le
groupe (A/Q)" et son intégrale est nulle.

Si f(x) = v, ce caractére est trivial et comme J dg = 1, puisque les
(A/Q)
mesures de Haar sur A" et (A/Q)" sont choisies pour qu’il en soit ainsi! On

obtient I'importante égalité

j HEW(<E —v>)dE = ) ¢u(x)
(A/Q)" xeZn

Sf(x)=v

(la somme Y du second membre ne porte que sur les x € Z" car ¢Q, = IZZ

pour tout p, de plus cette somme représente a peu prés le nombre de solu-
tions entieres du systeme f = v, présentes dans la boite P# < R").

On cherche principalement, dans le présent travail, & comparer la somme
H(&) avec l'intégrale de méme forme, appelée transformée de Gauss globale
(en fait associée au systeéme f, au caractére \y et a la fonction @)

F*E) = j PN( <&, f(x)>)dx .
Arl
On veut obtenir la formule asymptotique suivante: il existe & > 0, tel que

j HEW(<E, —v>)dE = J F*EN(<E, —v>)dE + O(P" ")
(A/Q) r

A
Remarque. L’intégrale portant sur F* est la seule raisonnable car cette
fonction n’est pas en général constante sur les classes modulo Q. De plus

cette intégrale n’est autre, selon les notations d’Igusa (cf. bibliographie) que

1/7}(~—v) = F(v) appelée série singuliere globale (cf. le paragraphe 5F). Le

chapeau /" désigne la transformée de Fourier associée au caractére de Tate
(cf. Godement...).

D) METHODE DU CERCLE ADELIQUE
Soit £ € A”; on utilisera désormais les notations suivantes

€0 | = Max |§ | et pourtoutp, |G|, = Max|§g ,|,;

1<is<r 1<isr

on deéfinit aussi la fonction

Q) = [[Max(L, ], 1))
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qui jouera un rdle important et dont on peut remarquer qu’elle ne dépend
que des places finies p de £ mais pas de &, .

Enfin on définit, pour chaque A > 0, un arc majeur (noter I'emploi du
singulier)

M) = {E€AT/|E, | < P74 et Q) < P}

Remarque.

a) Pour A suffisamment petit (ceci sera précise en temps voulu) 'appli-
cation canonique A" — (A/Q)", que nous désignerons désormais par la lettre =,
est injective sur M(A). Dans ces conditions, on notera de la méme fagon
M(A) et m(M(A)) en remarquant que les mesures de Haar sur A" et sur
(A/Q)" attribuent respectivement la méme valeur aux ensembles M(A) et
m(M(A)).

b) Ainsi le cercle R/Z de la méthode classique a pour analogue adélique
le quotient compact A/Q et les nombreux arcs majeurs classiques associés & un
meme A > 0, trouvent leur analogue adélique dans un unique ensemble M(A)
(ou m(M(A)) si on préfére). Cette présentation de I'arc majeur adélique est due
a Lachaud (cf. bibliographie).

Au paragraphe 1, au moyen d’une formule de Poisson, on compare, pour
§ e M(A), la somme H(E) et I'intégrale F*(€). On obtient ainsi le

THEOREME 1. Pour A suffisamment petit, il existe 8, > 0 tel que

J (HE) —F*E)W(<E —v>)dE = O(P" "%,
M{(A)

Au paragraphe 2, on majore la somme H(E) sur Iarc mineur adélique
(A/Q)" — n(M(A)), obtenant le

THEOREME 2. Sous les hypothéses (H1) et (H2) et pour B et P
convenablement choisis, il existe &, > 0 tel que

f HEW(<E, —v>)dg = O(pP %),
(A/Q)" ~ n(M(4))

Au paragraphe 3, on majore Iintégrale F*(E&) sur A" — M(A) pour
démontrer le
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THEOREME 3. Sous les hypothéses (H1) et (H2), il existe &3 > 0
tel que

J F*QW(<E, —v>)dE = O(P"""™%).
A" — M(A)

Remarque. Une conséquence du théoréme 3 est que F* € L(A").

Ces trois théorémes permettent d’obtenir la formule asymptotique désirée.

ProrosITION 4.1. Sous les hypotheéses (H1) et (H2), pour % et P
convenablement choisis, pour tout veZ’, il existe & > 0 tel que
AN
Y 9u(x) = F¥(—v) + O(P""77).

xeZn

fx)=v
Au paragraphe 4, on utilise les hypothéses (H3) et (H4) pour rendre
effective la formule asymptotique précédente. On démontre ainsi le

THEOREME 4. Sous les hypothéses (H1), (H2), (H3) et (H4), pour
A et P convenablement choisis, on a

AN
F¥(—v) » pr—m,

Il résulte de tout ceci le

THEOREME PRINCIPAL. Sous les hypothéses (HI1), (H2), (H3) et (H4)
le systeme diophantien f = v admet une infinité de solutions entiéres.

Un corollaire évident de ce Théoreme Principal, pour v = 0, énonce
quun systeme f répondant aux hypothéses (H1) et (H2) observe le
Principe de Hasse fin.

Enfin le paragraphe 5, on 'a déa compris, est consacré a des expli-
cations complémentaires et a des exemples suivant les travaux de Birch,
Davenport et W. M. Schmidt; mais on ne trouvera dans ce paragraphe aucune
démonstration a 'opposé des paragraphes 1 & 4 ou on s’est efforcé d’étre le
plus complet possible.

§ 1. ARC MAJEUR

Le but de ce paragraphe est une bonne majoration de la différence
entre la somme H(E) et l'intégrale F*(§) lorsque & appartient 4 un arc
majeur M(A).
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