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diary. Dated as above, it states that "the arithmetic-geometric mean is itself

an integral quantity" (see [12, X.l, p. 544]). However, this statement is not

so easy to interpret. If we turn to Gauss' unpublished manuscript of 1800

(where we got the example M(%/2, 1)), we find (1.7) and (1.8) as expected,

but also the observation that a complete solution of the differential equation

(1.12) is given by

A B
(1.13) + A, Be CK }

M(1 -f/c, 1—k) M(l, k)

(see [12, III, p. 370]). In eighteenth century terminology, this is the "complete
integral" of (1.12) and thus may be the "integral quantity" that Gauss was

referring to (see [12, X.l, pp. 544-545]). Even if this is so, the second proof
must predate December 23, 1799 since it uses the same differential equation.

In § 3 we will study Gauss' early work on the agM in more detail.
But one thing should be already clear: none of the three proofs of Theorem 1.1

discussed so far live up to Gauss' May 30, 1799 prediction of "an entirely
new field of analysis." In order to see that his claim was justified, we will
need to study his work on the agM of complex numbers.

2. The arithmetic-geometric mean of complex numbers

The arithmetic-geometric mean of two complex numbers a and b is not
easy to define. The immediate problem is that in our algorithm

a0 a, b0 b

(2.1)

an+i(an + bn)/2 bn+1(anbn)112 n 0, 1, 2,

there is no longer an obvious choice for In fact, since we are
presented with two choices for bn+1 for all n ^ 0, there are uncountably
many sequences {a„}„°°=0 and {£>„}„% for given a and b. Nor is it clear
that any of these converge

We will see below (Proposition 2.1) that in fact all of these sequences
converge, but only countably many have a non-zero limit. The limits of
these particular sequences then allow us to define M{a, b) as a multiple
valued function of a and b. Our main result (Theorem 2.2) gives the relationship

between the various values of M(a,b). This theorem was discovered
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by Gauss in 1800, and we will follow his proof, which makes extensive use

of theta functions and modular functions of level four.
We first restrict ourselves to consider only those as and b"s such that

a # 0, b ¥" 0 and a / ± b. (If a 0, b 0 or a + h, one easily sees that the

sequences (2.1) converge to either 0 or a, and hence are not very interesting.)
An easy induction argument shows that if a and b satisfy these restrictions,
so do an and bn for all n ^ 0 in (2.1).

We next give a way of distinguishing between the two possible choices

for each bn + 1.

Definition. Let a, b e C* satisfy a / ±b. Then a square root b1 of ab is

called the right choice if | a1 — b1 | ^ | ax + bx | and, when | a1 — bt |

I ax + b1 I, we also have Im[bjafi > 0.

To see that this definition makes sense, suppose that Im(bjafi 0.

Then b1/a1 re R, and thus

I a1 - b1 I I ax I I 1 - r | ^ | a1 f j 1 + r \ | a1 + b1 \

since r / 0. Notice also that the right choice is unchanged if we switch a

and b, and that if a and b are as in § 1, then the right choice for (ab)1/2 is the

positive one.

It thus seems natural that we should define the agM using (2.1) with
bn+l always the right choice for (anbn)1/2. However, this is not the only
possibility: one can make some wrong choices for bn + 1 and still get an

interesting answer. For instance, in Gauss' notebooks, we find the following
example :

n an bn

0 3.0000000 1.0000000
1 2.0000000 -1.7320508
2 .1339746 1.8612098i

3 .0669873 + .9306049i .3530969 + .3530969i

4 .2100421 + .6418509i .2836903 + .6208239i
5 .2468676 + .6313374i .2470649 + .6324002i

6 .2469962 + .6318688i .2469962 + .63186851

(see [12, III, p. 379]). Note that is the wrong choice but bn is the right
choice for n ^ 2. The algorithm appears to converge nicely.

Let us make this idea more precise with a definition.
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Definition. Let a,beC* satisfy a # ±b. A pair of sequences {an}f=0
and {bn}f=0 as in (2-1) is called good if bn + 1 is the right choice for
(anbn)112 for all but finitely many n ^ 0.

The following proposition shows the special role played by good sequences.

Proposition 2.1. If a,beC* satisfy a ^ ±b, then any pair of
sequences {an}f= 0 and {bn}f=0 as in (2.1) converge to a common limit,
and this common limit is non-zero if and only if {an}f=0 and {bn}f=0 are
good sequences.

Proof. We first study the properties of the right choice b1 of (ab)112

in more detail. Let 0 ^ ang(a, b) < n denote the unoriented angle between a

and b.

Then we have :

To prove (2.2), note that

\a1-b1\\a1+b1\ (1/4) I a - b\2.
Since | a1 — b1 j ^ | a1 + b% |, (2.2) follows immediately. To prove (2.3), let
ôj ang(u1, bfi and 0 ang(a, b). From the law of cosines

I ± hi I
2

I a1 I
2 + I b% I

2 + 2 | a1 | | b1 | cosôj

we see that ^ n/2 because | ax - b1 | ^ | a1 + b1 j. Thus

ang(a1,b1) 0X ^ 71 — 0X ang(al5 —bf).

To compare this to 0, note that one of ±b1, say b\, satisfies ang{a,b\)
ang(b\ b) 0/2. Then the following picture

(2.2) Ï - bx I ^ (1/2) \a - b\

ang(u!, bfi ^ (1/2) ang(u, b).(2.3)

a b

0 e/2
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shows that ang(al9 b\) ^ 0/2. Since b\ ±bl9 the above inequalities imply
that

ang(a1, bx) ^ ang^, b\) ^ (1/2) ang(a, 6),

proving (2.3).

Now, suppose that {uR}^°=0 and {bn}n o are not good sequences. We set

Mn max{| an |, | bn |}, and it suffices to show that lim Mn 0. Note that
n~> oo

Mn + 1 ^ Mn for n ^ 0. Suppose that for some n,bn + 1 is not the right choice

for (anbn)1/2. Then —bn+1 is the right choice, and thus (2.2), applied to an

and bn, implies that

I + 2
I (1/2) \an + 1 - bn+1 I ^ (1/4) I an - bn | ^ (1/2)M„.

However, we also have \bn + 2\ ^ Mn. It follows easily that

(2.4) Mn + 3 <(3/4)M„.

Since {an}*L0 and {bn}fm0 are not good sequences, (2.4) must occur infinitely
often, proving that lim Mn 0.

n~* oo

Next, suppose that {un}^°=0 and {bn}n=o are good sequences. By neglecting
the first N terms for N sufficiently large, we may assume that bn + 1 is

the right choice for all n ^ 0 and that ang(a, b) < n (this is possible by (2.3)).

We also set 0„ ang(a„, bn). From (2.2) and (2.3) we obtain

(2.5) \an - bn \ < 2'" I a - b\, 0„ ^ 2'" 0O

Note that an — an+l (1/2) (an — bn\ so that by (2.5),

\an-an+1\ < 2"<"+1>|a - &|

Hence, if m > n, we see that

m - 1 /m — 1 \
I K Z I a* - ß* + 1

I Z 2~"I+1) | a - b <2"" | - h |.
k=n \k=n J

Thus {a„}®= o converges because it is a Cauchy sequence, and then (2.5)

implies that lim an lim bn.
n~* oo n~* oo

It remains to show that this common limit is nonzero. Let

m„ min{| f, | |}.

Clearly | bn + 1
| ^ mn. To relate \ an + 1\ and m„, we use the law of cosines:
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(2k+1|)2 I a„ 12 + \bn\2 + 2\an\ |cos0„

> 2m2 (1 + cos0„) 4m2 cos2(9„/2).

It follows that m„+1 ^ cos(0„/2)m„ since 0 «S 0„ < (this uses (2.5) and the

fact that 0O ang(a, b) < n).Using(2.5) again, we obtain

(See [16, p. 38]. When 0O 0, the right hand side is interpreted to be 1.) We

thus have

for all n ^ 1. Since 0 ^ 0O < n, it follows that lim an lim bn ^ 0. QED

We now define the agM of two complex numbers.

Definition. Let a,beC* satisfy a ^ ±b. A nonzero complex number p
is a value of the arithmetic-geometric mean M {a, b) of a and b if there

are good sequences {an}„ 0 and {bn}f=0 as in (2.1) such that

p lim an lim bn.

Thus M(a, b) is a multiple valued function of a and b and there are a

countable number of values. Note, however, that there is a distinguished
value of M{a, b), namely the common limit of {an}f=0 and {bn}„ 0 where

bn+l is the right choice for (anbn)1/2 for all n ^ 0. We will call this the

simplest value of M(a-, b). When a and b are positive real numbers, this

simplest value is just the agM as defined in § 1.

We now come to the major result of this paper, which determines how
the various values of M(a, b) are related for fixed a and b.

Theorem 2.2. Fix a, b g C* which satisfy a ^ ±b and | a | ^ | b |,
and let p and X denote the simplest values of M(a,b) and M(a + b,a — b)

respectively. Then all values p' of M(a, b) are given by the formula

However, it is well known that

smU

n cos(0o/2 —
k= 1 uo
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I d ic
~7 ~ 1" ~r »

II \i X

where d and c are arbitrary relatively prime integers satisfying
d 1 mod 4 and cm 0 mod 4.

Proof Our treatment of the agM of complex numbers thus far has

been fairly elementary. The proof of this theorem, however, will be quite
different ; we will finally discover the "entirely new field of analysis" predicted
by Gauss in the diary entry quoted in § 1. In the proof we will follow
Gauss' ideas and even some of his notations, though sometimes translating
them to a modern setting and of course filling in the details he omitted
(Gauss' notes are extremely sketchy and incomplete — see [12, III, pp. 467-

468 and 477-478]).
The proof will be broken up into four steps. In order to avoid writing a

treatise on modular functions, - we will quote certain classical facts without
proof.

Step 1. Theta Functions
Let § {t g C : Imx > 0} and set q enlx. The Jacobi theta functions

are defined as follows :

00p(t)1 + 2 y q"2 ©3(t, 0),
n= 1

oo

q(x)1 + 2 £ (-D"q"2 ©4(t,0),
n= 1

oo

r(x) 2 X ©2(t, 0).
n 1

Since | q | < 1 for x g §, these are holomorphic functions of x. The notation

p, q and r is due to Gauss, though he wrote them as power series in
e~n\ Ret > 0 (thus he used the right half plane rather than the upper half
plane § — see [12, III, pp. 383-386]). The more common notation 03, 04
and ©2 is from [36, p. 464] and [32, p. 27].

A wealth of formulas are associated with these functions, including the

product expansions :

oo

pW fi (i~q2")(1+q2""1)2,
n 1

00

(2.6) q(x)n (l-q2")(l-q2"_1)2.
n=l
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oo

r(x) 2q1/4 J] (l-q2")(l+q2")2,
n= 1

(which show that p(x),q(x)andr(x) are nonvanishing on §), the

transformations :

p(t+ 1) q(x), p( - 1/t) - ix)1/2p(x),

(2.7) q(x+l) p{x), q—!x)1/2r(x),

r(x+1) e"mr(x),1/t)

(where we assume that Re( — ix)1'2 > 0), and finally the identities

p(x)2 4- q{x)2 « 2p{2x)2

(2.8) p{t)2 - <?(x)2 - 2r(2x)2

P(t)<3(t) - g(2x)2

and

p(2x)2 + r(2x)2 p(x)2

(2.9) p(2x)2 - r(2x)2 - q{x)2

q(xf + r(x)4 p(x)4

Proofs of (2.6) and (2.7) can be found in [36, p. 469 and p. 475], while

one must turn to more complete works like [32, pp. 118-119] for proofs of
(2.8). (For a modern proof of (2.8), consult [34].) Finally, (2.9) follows easily
from (2.8). Of course, Gauss knew all of these formulas (see [12, III,
pp. 386 and 466-467]).

What do these formulas have to do with the agM? The key lies in (2.8):

one sees that p(2x)2 and q{2x)2 are the respective arithmetic and geometric
means of p(x)2 and q(x)2l To make the best use of this observation, we
need to introduce the function k'(x) q(x)2/p(x)2.

Then we have :

Lemma 2.3. Let a,beC* satisfy a # ±b, and suppose there is x g §
such that k'(x) b/a. Set p a/p(x)2 and, for n ^ 0, an p p(2"x)2
and bn p q(2nx)2. Then

Ö) {an}n o and {bn}„ o are Qood sequences satisfying (2.1

(ii) lim an lim bn p
n-+ oo n~+ oo

Proof. We have a0 aby definition, and b0 b follows easily from
fc'(x) b/a. As we observed above, the other conditions of (2.1) are clearly
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satisfied. Finally, note that exp(7u2"x) 0 as n -> oo, so that lim p(2"x)2
n-*oo

lim q(lnx)2 1, and (ii) follows. Since p ^ 0, Proposition 2.1 shows that
n~> oo

{an}n o an<3 {^«}r=o are good sequences. QED

Thus every solution x of /c'(x) b/a gives us a value p a/p(x)2 of
M(a, b). As a first step toward understanding all solutions of k'(x) b/a, we
introduce the region ^ § :

F, {xG§:|Rex| 1, I Re(l/x) | ^ 1}

Fx shaded

-I 0 I

The following result is well known.

Lemma 2.4. k'2 assumes every value in C — {0, 1} exactly once in

F\ F1 — (dF1n{xe§) : RexcO}).

A proof can be found in [36, pp. 481-484]. Gauss was aware of similar
results which we will discuss below. He drew F1 as follows (see [12, III,
p. 478]).

I

-1

Raum für t und

Note that our restrictions on a and b ensure that (b/a)2 e C — {0,1}.
Thus, by Lemma 2.4, we can always solve k'(x)2 (b/a)2, i.e., k'(x) ±b/a.
We will prove below that

(2.10) k'
2t+1 - k'M,
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which shows that we can always solve k'(x) b/a. Thus, for every a and b

as above, M(a, b) has at least one value of the form a/p(x)2, where k\x) b/a.

Three tasks now remain. We need to find all solutions x of k'(x) b/a,

we need to see how the values a/p(x)2 are related for these x's, and we need

to prove that all values of M(a, b) arise in this way. To accomplish these

goals, we must first recast the properties of k'(x) and p(x)2 into more modern

terms.

Step 2. Modular Forms of Weight One.

The four lemmas proved here are well known to experts, but we include
their proofs in order to show how easily one can move from the classical

facts of Step 1 to their modern interpretations. We will also discuss what
Gauss had to say about these facts.

We will use the transformation properties (2.7) by way of the group

SL(2, Z) ^ : a, b, c, d e Z, ad —be lj
which acts on § by linear fractional transformations as follows : if

(a
b\ ax + b

- e SL(2, Z) and xe§, then yx
c dj cx + d

For example, if

S-(°1 o) and T C ') then S,°^' r,-,+ 1-

which are the transformations in (2.7). It can be shown that S and T
generate SL(2,Z) (see [29, Ch. VII, Thm. 2]), a fact we do not need here.

We will consider several subgroups of SL(2, Z). The first of these is T(2),
the principal congruence subgroup of level 2 :

T(2) {y e SL{2,Z):y Q ^ mod 2}

Note that -1 e T(2) and that T(2)/{ ± 1} acts on §.

Lemma 2.5.

(i) T(2)/{ + l} acts freely on §>.

(ii) T(2) is generated by -1, U^ ^ and Q
®

j
(iü) Given r e §, there is y e T(2) such that
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Proof. Let y \ J be an element of T(2).
Ve dJ

(i) If t g § and yi t, then we obtain ex2 + (d — a)x — b 0. If c 0,

then y + 1 follows immediately. If c # 0, then (d — a)2 + 4 be < 0 because

xe§. Using ad — be 1, this becomes (a + d)2 < 4, and thus + d 0

since u and d are odd. However, b and c are even so that

1 ad — be ad — a2 mod 4

This contradiction proves (i).

(ii) We start with a variation of the Euclidean algorithm. Given y as

above, let r1 a — 2<z1c, where a1eZ is chosen so that | | is minimal.
Then | rl | ^ | e |, and hence | | < \c \ since a and c have different parity.
Thus

a 2axc + rl I ri I < I c I
•

Note that c and also have different parity. Continuing this process, we

obtain

c 2a2r1 + r2, \r2|< | r2

r12a3 r2 + r3 \r3|< | |,

r2n-i — 2a2n+1 r2n + r2n + x >~2n+i — ill
r2„2 a2n+2r2n + 1+ 0,

since GCD(a, c) 1. Then one easily computes that

'±1 *

*
y-a2n + 2 jj~a2n+i y-a2 jj~a 1 _j 0

Since the left-hand side is in T(2), the right-hand side must be of the form

± Um, and we thus obtain

y _ jja! ya2 ^ jja2n+1 ya2n + 2 jjm ^

(iii) Fix t e §. The quadratic form | xt + y |
2 is positive definite for

x, y e R, so that for any S ç Z2, | xt -f y |
2 assumes a minimum value at

some (x, y) e S. In particular, | ex + d | 2, where y (ü ^ e T(2), assumes a
Ve dJ

minimum value at some y0 e F(2). Since Im yx Im t | ex + | "2, we see
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that x' y0x has maximal imaginary part, i.e., Im x' ^ Im yx' for y e T(2).

Since Im x' Im Ux\ we may assume that | Re x' | < 1. Applying the above

inequality to V±]- e T(2), we obtain

Im x' ^ Im V±1x' Im x' I 2x' ± 1 I"2

Thus I 2x ± 1 I ^ 1, or I x ± (1/2) | ^ 1/2. This is equivalent to | Re 1/x' | ^ 1,

and hence x' e F1. QED

We next study how p(x) and q(x) transform under elements of T(2).

Lemma 2.6. Let y (û ] e T(2), and assume that a d 1 mod 4.

\c d,

Then

(i) p(yx)2 (cx + d)p(x)2

(ii) q(yx)2 ic(cx + d) q(x)2.

Proof. From (2.7) and V^ ^ ^ we obtain

p{Ux)2p(t)2 p{Vx(2t+ 1)

(2-11) q(Ux)2<j(t)2 q(Vx)2

Thus (i) and (ii) hold for U and V. The proof of the previous lemma shows

that y is in the subgroup of T(2) generated by U and V. We now proceed
by induction on the length of y as a word in U and V.

(i) If y ^ and p(yx)2 (cx + d) p(x)2 then (2.11) implies that

p(Uyx)2 p(yx)2 (cx + d) p(x)2

p(Kyx)2 (2yx+l) p(yx)2 (2yx+ 1) (cx + d) p(x)2

((2a + c)x + (2b + d))p(x)2

However Uy Vy so that (i) now holds for
\c d) \2a + c 2b + dJ

Uy and Vy.

(ii) Using (2.11) and arguing as above, we see that if y ^ ^

Vbl Ua" Vbn, then

^(yT)2 — l)Ebi(cx + d) q(x)2
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However, U and V commute modulo 4, so that

t=GL, 2?')mod4-

Thus c 21.bi mod 4, and (ii) follows. QED

Note that (2.10) is an immediate consequence of Lemma 2.6.

In order to fully exploit this lemma, we introduce the following subgroups
of T(2):

T(2)o (ye T(2): a1 mod 4},

r2(4) {ye T(2)o : c 0 mod 4}

Note that T(2) {± 1} • F(2)0 and that r2(4) has index 2 in r(2)0. From
Lemma 2.6 we obtain

p(yx)2(ct + d) p(x)2, y e r(2)0
(2.12)

q{yx)2 (cx+ d) q(y e T2(4).

Since these functions are holomorphic on §, one says that p(x)2 and q(x)2

are weak modular forms of weight one for r(2)0 and r2(4) respectively.
The term more commonly used is modular form, which requires that the

functions be holomorphic at the cusps (see [30, pp. 28-29] for a precise

definition). Because T(2)0 and T2(4) are congruence subgroups of level

N 4, this condition reduces to proving that

(2.13) (cx + d) ~1 p(yx)2 (cx + d) ~1 q(yx)2

are holomorphic functions of q1/2 exp(27iix/4) for all y e SL(2, Z). This will
be shown later.

In general, it is well known that the square of a theta function is a

modular form of weight one (see [27, Ch. I, § 9]), although the general theory
only says that our functions are modular forms for the group

T(4) {y e SU2, Z) : y Q ^ mod 4}

(see [27, Ch. I, Prop. 9.2]). We will need the more precise information
given by (2.12).

We next study the quotients of § by T(2) and T2(4). From Step 1,

recall the region F1 Ç §. We now define a larger region F:

F {xe§: I Rex I < 1, I t ±1/4 I > 1/4, |x ±3/4 | ^ 1/4}.
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We also set

F\ Fx - {ôF1 n {ie§: Rex < 0})

F F — (ÔF n {x g § : Rex < 0}).

Lemma 2.7. F\ and F' are fundamental domains for T(2) and r2(4)

respectively, and f/ze functions k'2 and k! induce biholomorphic maps

F:§/r(2)4C- {0,1}

k' : §/r2(4) A c - {0, ±1}.

Proof A simple modification of the proof of Lemma 2.6 shows that if

y ^d)e t^ien (CT + ^2 ^(T)4' ^(ï1)4 (cc + d)2 <?(x)4. Thus

k'2 is invariant under T(2).

Given xe§, Lemma 2.5 shows that yx e F1 for some y g T(2). Since

A 2\
U I maps the left vertical line in to the right one and

L » Q ^ maps the left semicircle in to the right one, we may

assume that yx g F } If we also had <jt e F\ for a g T(2), then /c'(ax)2

Ax)2 /c'(yx)2, so that ax yx by Lemma 2.4. This shows that F\ is a

fundamental domain for T(2).

Since T(2)0 ~ T(2)/{± 1}, F\ is also a fundamental domain for T(2)0.
Since T2(4) has index 2 in T(2)0 with 1 and V as coset representatives,
it follows that

F* F\ u V(F\ n{xG§: Rex ^ 0}) u V~\F\ h{xg§: Rex > 0})
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F* shaded

1/2 1/2

is a fundamental domain for r2(4). Since ^ ^ 3J G ^(4) takes the far

left semicircle in dF to the far right one, it follows that F' is a fundamental
domain for r2(4).

It now follows easily from Lemma 2.4 that k'2 induces a bijection
k!2 : §/r(2) - C — {0, 1}. Since F(2)/{ ± 1} acts freely on § by Lemma 2.5,

S/r(2) is a complex manifold and k'2 is holomorphic. A straightforward

argument then shows that k'2 is biholomorphic.
Next note that k! is invariant under T2(4) by (2.12), and thus induces a

map k' : §>/T2(4) C — {0, ±1}. Since §/r(2) §/r(2)0, we obtain a
commutative diagram :

ô/r2(4) ^ c - {o, 1}

fiid
S/r(2)0 *4 c - {o, 1}

where / is induced by T2(4) ç r(2)0 and g is just g(z) z2. Note that g is a

covering space of degree 2, and the same holds for / since |T(2)0 : T2(4)] 2

and r(2)0 acts freely on §. We know that k'2 is a biholomorphism, and

it now follows easily that k' is also. QED

We should point out that r(x)2 has properties similar to p(x)2 and g(x)2.

Specifically, r(x)2 is a modular form of weight one for the group

F2(4)' {yer(2): y s ^ ^ mod 4},

which is a conjugate of T2(4). Furthermore, if we set /c(x) r(x)2/p(x)2,

then k is invariant under r2(4)' and induces a biholomorphism k : £>/r2(4)'
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-»• c - {0, +1}. We leave the proofs to the reader. Note also that /c(t)2

+ fc'(x)2 1 by (2.9).

Our final lemma will be useful in studying the agM. Let F 2 be the

region (1/2)F1, pictured below. Note that F2 ^ F.

1

1

1

1

1

"""

1

1

1

1

1

v. \ 1

• /1 '— "s

7 N
M' \

1 ' 1

-I -1/2 0 1/2

F2 shaded

F, Fi indicated by dashed lines

Lemma 2.8.

k'iF,) {ze C — (0, ± 1} : Rez ^ 0},

k\F2) {zeC - {0, ±l}:|z| ^ 1}

Proof. We will only treat k\F2\ the proof for k'iFJ being quite similar.
We first claim that {Jc'(x) : Rex ±1/2} — S1 — {±1}. To see this, note

that Rex ±1/2 and the product expansions (2.6) easily imply that k'(x)

/c'(x)~ \ i.e., I fc'(x) | 1. How much of the circle is covered? It is easy
to see that k'{± 1/2 +it) -> 1 as t -> + oo. To study the limit as t -> 0,

note that by (2.10) we have

k'(±l/2 +it) -+1/2 + —
4

As t - 0, the right-hand side clearly approaches —1. Then connectivity
arguments easily show that all of S1 — {±1} is covered.

Since k' is injective on F by Lemma 2.7, it follows that k'{F2) — S1

is connected. Since | k'(it) \ < 1 for t > 0 by (2.6), we conclude that

k\F2) c {zgC - {0, ±1} : I z I ^ 1}.

Similar arguments show that

k'(F — F2) c {zeC:\z\ > 1}
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Since k'(F) C — {0, +1} by Lemma 2.7, both inclusions must be equalities.

QED

Gauss' collected works show that he was familiar with most of this

material, though it's hard to tell precisely what he knew. For example, he

basically has two things to say about k'(x) :

(i) k'(x) has positive real part for xe Fl9

(ii) the equation k'(x) A has one and only one solution x e F2.

(See [12, III, pp. 477-478].) Neither statement is correct as written. Modifications

have to be made regarding boundary behavior, and Lemma 2.8 shows

that we must require | A | ^ 1 in (ii). Nevertheless, these statements show that
Gauss essentially knew Lemma 2.8, and it becomes clear that he would not
have been greatly surprised by Lemmas 2.4 and 2.7.

Let us see what Gauss had to say about other matters we've discussed. He

was quite aware of linear fractional transformations. Since he used the right
half plane, he wrote

at — bi
t! ad — be 1, a, b, c, d e Z, Ret > 0

cti 4- d

(see [12, III, p. 386]). To prevent confusion, we will always translate formulas
into ones involving te§.

Gauss decomposed an element y g SL(2, Z) into simpler ones by means of
continued fractions. For example, Gauss considers those transformations
x* yx which can be written as

- 1

x! h 2a1
x

(2.14) t" + 2a2

(see [12, X.l, p. 223]). If U^ 2J and Q then CJnV~'lx,

so that for n even we see a similarity to the proof of Lemma 2.5 (ii).

The similarity becomes deeper once we realize that the algorithm used in

fa b\
the proof gives a continued fraction expansion for a/c, where y
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However, since n can be odd in (2.14), we are dealing with more than just
elements of T(2).

Gauss' real concern becomes apparent when we see him using (2.14)

together with the transformation properties of p(x). From (2.7) he obtains

P(t*) J(- "0 - "') • • • - it'" X))

(see [12, X.l, p. 223]). The crucial thing to note is that if x* yx,

y (a j, then — fc) • • • — ix(n~1}) is just cx + d up to a power of i.
\c d)

This tells us how p(x) transforms under those y's described by (2.14). In
general, Gauss used similar methods to determine how p(x), q(x) and r(x)
transform under arbitrary elements y of SL(2, Z). The answer depends in part

on how y J reduces modulo 2. Gauss labeled the possible reductions
Ve dJ

as follows :

a 1 1 1 0 1 0

b 0 1 0 1 1 1

c 0 0 1 1 1 1

d 1 1 1 1 0 0

1 2 3 4 5 6

(see [12, X.l, p. 224]). We recognize this as the isomorphism 5L(2, Z)/T(2)

- SL{2, F2), and note that (2.14) corresponds to cases 1 and 6. Then the

transformations of p{x\ q(x) and r(x) under y
(a

^ j e SL(2, Z) are given by

i 2 3 4 5 6

h 1 p(yx) P(T) <?(?) r(x) qit) r(x) Pit)
(2.15) h~1q(yx) <Ï(T) Pit) Pit) rit) Pit) rit)

IIi-c r(-c) r(t) qit) pit) qit) qit)

where h — (i\cx + d)Y^2 and X is an integer depending on both y and which
one of p(x). q{x) or r(x) is being transformed (see [12, X.l, p. 224]). Note that
Lemma 2.6 can be regarded as giving a careful analysis of X in case 1.

An analysis of the other cases may be found in [13, pp. 117-123]. One
consequence of this table is that the functions (2.13) are holomorphic functions
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of q1/2, which proves that p(x)2, q(x)2 and r(x)2 are modular forms, as

claimed earlier.
Gauss did not make explicit use of congruence subgroups, although they

appear implicitly in several places. For example, the table (2.15) shows Gauss

using T(2). As for r(2)0, we find Gauss writing

fc'(yu) ick'(x)

a —b\
where y and, as he carefully stipulates, "ad — be 1,

v -<• d J
a d 1 mod 4, b, c even" (see [12, III, p. 478]). Also, if we ask which
of these y's leave k' unchanged, then the above equation immediately gives

us T2(4), though we should be careful not to read too much into what
Gauss wrote.

More interesting is Gauss' use of the reduction theory of positive definite

quadratic forms as developed in Disquisitiones Arithmeticae (see [11, § 171]).
This can be used to determine fundamental domains as follows. A positive
definite quadratic form ax2 + 2bxy + cy2 may be written a | x — xy |

2 where
T e §. An easy computation shows that this form is equivalent via an
element y of SL(2, Z) to another form a' | x — x'y |

2 if and only if x! y_1x.

Then, given ie§, Gauss applies the reduction theory mentioned above to
I x — xy I

2 and obtains a SL(2, Z) — equivalent form A \ x — x'y \
2 Ax2

+ 2Bxy + Cy2 which is reduced, i.e.

2\B\ ^ A ^ C

(see [11, § 171] and [12, X.l, p. 225]). These inequalities easily imply that
I Rex' I ^ 1/2, I Re 1/x' I ^ 1/2, so that x! lies in the shaded region
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which is well known to be the fundamental domain of SL(2, Z) acting on §
(see [29, Ch. VII, Thm. 1]).

This seems quite compelling, but Gauss never gave a direct connection

between reduction theory and fundamental domains. Instead, he used reduction

as follows : given xe§, the reduction algorithm gives x' yx as

above and at the same time decomposes y into a continued fraction similar
to (2.14). Gauss then applies this to relate p(x') and p(x), etc., bringing us

back to (2.15) (see [12, X.l, p. 225]). But in another place we find such

continued fraction decompositions in close conjunction with geometric
pictures similar to Fl and the above (see [12, VIII, pp. 103-105]). Based

on this kind of evidence, Gauss' editors decided that he did see the connection
(see [12, X.2, pp. 105-106]). Much of this is still a matter of conjecture,
but the fact remains that reduction theory is a powerful tool for finding
fundamental domains (see [6, Ch. 12]) and that Gauss was aware of some
of this power.

Having led the reader on a rather long digression, it is time for us to
return to the arithmetic-geometric mean.

Step 3. The Simplest Value
Let FA {t e F : | x — 1/4 | > 1/4, | x -f 3/4 | > 1/4}. We may picture

FA as follows.

Let a,beC*beas usual, and let t e § satisfy k'{x) b/a. From Lemma 2.3
we know that g a/p(x)2is a value of b). The goal of Step 3 is to
prove the following lemma.

Lemma 2.9. If xeFA, then p is the simplest value of M(aib).

Proof From Lemma 2.3 we know that

(2.16) an \i p(2"t)2 bnp 2"t)2

gives us good sequences converging to p. We need to show that bn + 1 is the
right choice for a„b„)1/2for all n>0.
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The following equivalences are very easy to prove :

I an+ 1 — + 1
I ^ I an+ 1 T + 1

I ^ f ^ 0

an +1 bn +1 I — \ dn +1 + bn +1 \ o Re I — 0
\an+ly

Recalling the definition of the right choice, we see that we have to prove,

for all n ^ 0, that Re ^ 0, and if Re f^2±±\
0, then Im ^2±±1 > 0.

From (2.16) we see that

K+1 q(2"+1t)2
k'(2" + 1x),

an + 1 p(2n+1x)2

so that we are reduced to proving that if iefA, then for all n ^ 0,

Re(/c'(2" + 1x)) ^ 0, and if Re(k'(2n + 1z)) 0, then Im(k'(2n+1T)) > 0.

Let F1 denote the region obtained by translating Fx by ± 2, + 4, etc.

The drawing below pictures both F1 and F.

-2 -I 0 12Fl shaded
F indicated by dashed lines

Since k'(x) has period 2 and its real part is nonnegative on F1 by Lemma 2.8,

it follows that the real part of k\x) is nonnegative on all of F1. Furthermore,

it is clear that on Fx, Re(/c'(x)) 0 can occur only on dFx. The

product expansions (2.6) show that k'(x) is real when Rex ± 1, so that
on Fl5 Re(/c'(T)) — 0 can occur only on the boundary semicircles. From the

periodicity of fc'(x) we conclude that k'(x) has positive real part on the

interior F J of F1.
If x eFA, then the above drawing makes it clear that 2n + 1xeF1 for

n ^ 0 and that 2" + 1xgF? for n ^ 1. We thus see that Re(/c'(2n + 1x)) > 0

for n ^ 0 unless n 0 and 2x e dFx. Thus the lemma will be proved once

we show that Im(/c'(2x)) > 0 when x e FA and 2x e dFl.
These last two conditions imply that 2x lies on one of the semicircles A

and B pictured below.
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B
I

I

" VN\ I / v i71 indicated by dashed lines

/ vl

By periodicity, k' takes the same values on A and B. Thus it suffices to

show that Im(/c'(2x)) > 0 for 2x g A. Since S ^ ^ maps the line

Rea 1 to A, we can write 2x — I/a, where Rea 1. Then, using (2.7),

we obtain

vn\ vi m\ 4(-Vc02 r{a)2
k(2x) /c(-l/a) p(- 1/a)2 p(a)2

Since Rea 1, the product expansions (2.6) easily show that

Im(r(a)2/p(a)2) > 0

which completes the proof of Lemma 2.9. QED

Step 4. Conclusion of the Proof.
We can now prove Theorem 2.2. Recall that at the end of Step 1 we

were left with three tasks: to find all solutions x of k'(x) b/a, to relate
the values of a/p(x)2 thus obtained, and to show that all values of M(a, b)

arise in this way.
We are given a,beC* with a # ±b and | a \ ^ | b |. We will first find

i0 g F2 n FA such that k'{x0) b/a. Since \ b/a \ ^ 1, Lemma 2.8 gives us

x0 g F2 with /c'(xo) b/a. Could x0 fail to lie in FA From the definition
of FA, this only happens when x0 lies in the semicircle B pictured below.

-1/2 0 1/2
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However, y ^ ^ ^j e T2(4) takes B to the semicircle A. Since k' is

invariant under r2(4), we have k'(yx0) k'(x0) b/a. Thus, replacing x0 by

yx0, we may assume that i0eF2nFA.
It is now easy to solve the first two of our tasks. Since k' induces a

bijection §/T2(4) C — {0, ± 1}, it follows that all solutions of k'(z) b/a are

given by x yx0, y g T2(4). This gives us the following set of values of
M(a, b):

Wp(yto)2 : T e r2(4)}.

Recalling the statement of Theorem 2.2, it makes sense to look at the

reciprocals of these values :

R {p{yio)2/a : Y e r2(4)}

By (2.12), p(yt0)2 (cx0 + d)p(x0)2for y s T(2)0. Setting

p — a/p(x0)2, we have

R {(cx0 + d) p(x0)2/a: y ^ rf) e F2^

{(cx0 + d)/\n: y rf) S r2^ '

An easy exercise in number theory shows that the bottom rows (c, d) of
elements of T2(4) are precisely those pairs (c, d) satisfying GCD(c, d) 1,

c 0 mod 4 and d 1 mod 4. We can therefore write

R {(cx0 + d)/p : GCD(c, d) 1, c 0 mod 4, J 1 mod 4}

Then setting X ip/x0 gives us

(2.17) R j— H- ^ : GCD(c, d) 1, d 1 mod 4, c 0 mod 4j

Finally, we will show that p and X are the simplest values of M(a, b)

and M(a + b, a — b) respectively. This is easy to see for p: since x0eFA,
Lemma 2.9 implies that p a/p(x0)2 is the simplest value of M(a, b).

Turning to X, recall from Lemma 2.3 that a pp(x0)2 and b p#(x0)2.

Thus by (2.8) and (2.7),

a + b[i(p(x0)2 + q(x0)2) 2np(2x0)2
>
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a - b h(p(t0)2-<7(t0)2) 2pr(2t0)2 2p (^) 4 >

which implies that

a + b X p(-l/2z0)2 a - b X q(-l/2x0)2

Hence X is a value of M(a + b, a — b). To see that it is the simplest value,

we must show that — l/2z0 e FA (by Lemma 2.9). Since z0eF2, we have

2z0eF1. But F1 is stable under S ^ so that — l/2z0eF1.

The inclusion Ft ç FA is obvious, and — 1/2t0 e Fa follows. This completes

our first two tasks.

Our third and final task is to show that (2.17) gives the reciprocals of
all values of M(u, b). This will finish the proof of Theorem 2.2. So let p' be a

value of M(a, b\ and let {an}=0 and {bn}=0 be the good sequences such that
p' lim an lim bn. Then there is some m such that bn + 1 is the right

n->-oo n-* on

choice for (anbn)1/2 for all n ^ m, and thus p' is the simplest value of
M(am, bm). Since k! : F -> C — {0, ± 1} is surjective by Lemma 2.7, we can find
tgF such that k'(z) bjam. Arguing as above, we may assume that
zeFa. Then Lemma 2.9 shows that p' ajp(z)2 and also that for n ^ m,

(2-18) p' p(2n-mz)2 bn p' ^(2"-mx)2

Let us study am_x and bm^l. Their sum and product are 2 am and b2

respectively. From the quadratic formula we see that

(am ± (a2-h2)1/2}.

Using (2.9), we obtain

ai - bi p,2(p(t)4-ç(t)4) p'2r(t)4

so that, again using (2.9), we have

P'P(V2)2
ûm ± h'(P(T)2 ± rW2) ]

p'q(x/2)2.

Thus, either

am.1 p' p(x/2)2 p' q(x/2)2 or am_! p' ^(x/2)2 hm p' p(x/2)2
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In the former case, set x1 x/2. Then from (2.18) we easily see that for
n ^ m — 1,

(2.19) an n'p(2""m+1x1)2, bn 2"~m+1x1)2.

If the latter case holds, let x1 x/2 + 1. From (2.7) we see that am_1

— V-' P(Ti)2> _i JT g(xx)2, and it also follows easily that p(2n~m + 1x1)

p(2"~mx) and q(2n~m + 1x1) q(2n~mx) for all n ^ m. Thus (2.19) holds for
this choice of x1 and n ^ m — 1.

By induction, this argument shows that there is xme§ such that for all
n ^ 0,

H' P(2"xra)2 p' <j(2"xm)2

In particular, |i' a/p(zm)2 and k'(xm)b/a. Thus (|T)~1 p(zm)2/a is in the

set R of (2.17). This shows that R consists of the reciprocals of all values

of M(a, b), and the proof of Theorem 2.2 is now complete. QED

We should poinf out that the proof just given, though arrived at

independently, is by no means original. The first proofs of Theorem 2.2

appeared in 1928 in [15] and [35]. Geppert's proof [15] is similar to ours
in the way it uses the theory of theta functions and modular functions.
The other proof [35], due to von David, is much shorter; it is a model of
elegance and conciseness.

Let us discuss some consequences of the proof of Theorem 2.2. First, the

formula X i\x/x0 obtained above is quite interesting. We say that x0

"uniformizes" the simplest value p of M(a, b), where

a p. p(x0)2 b p q{x0)2

Writing the above formula as x0 we see how to explicitly compute
X

x0 in terms of the simplest values of M(a, b) and M(a + b, a — b). This is

especially useful when a > b > 0. Here, if we set c Ja2 — b2, then,

using the notation of § 1, the simplest values are M(a, b) and M(a, c), so that

M(a, b)
(120) ^

A nice example is when a ^J2 and b 1. Then c 1, which implies

x0 i\ Thus M(>y2, 1) <j2/p{ï)2 1M02- From § 1 we know M(Ay/2, 1)

which gives us the formulas
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a/It 2 ~1/2p(i)22-1/2(l + 2e-" + 2e-4" + 2e-9" + ...)2,

(2.21)

a/jt q(i)2 (1 — 2e~* + 2e~4't —2e~9,t-l-...)2

We will discuss the importance of this in § 3.

Turning to another topic, note that M(a, b) is clearly homogeneous of

degree 1, i.e., if p is a value of M(a, b\ then cp is a value of M(ca, cb)

for c e C*. Thus, it suffices to study M( 1, b) for b e C — {0, ±1}. Its values

are given by p l/p(x)2 where k'(x) b. Since k' : § -» C — {0, +1} is a

local biholomorphism, it follows that M( 1, h) is a multiple valued holomorphic
function. To make it single valued, we pull back to the universal cover
via k\ giving us M(1, k'(x)). We thus obtain

M(1,k'(x))l/p(t)2

This shows that the agM may be regarded as a meromorphic modular form
of weight — 1.

Another interesting multiple valued holomorphic function is the elliptic
fn/2

(1—/c2sin2cj))~1/2d(j). This is a function of k e C — {0, ±1}. If
o

we pull back to the universal cover via k: § -> C — {0, ± 1} (recall from
Step 2 that k(x) r(x)2/p(x)2), then it is well known that

integral

fit/2
(1 — /c(x)2sin2(J>)~ 1/2df(}> p(x)2

(see [36, p. 500]). Combining the above two equations, we obtain

1

M( 1, k\x))
p(x)2 -

2 fn/2
- (1 — k(x)2sin2c|)) 1/2daj),
K J o

which may be viewed as a rather amazing generalization of (1.9).

Finally, let us make some remarks about the set Ji of values of M(a, b),
where a and b are fixed. If p denotes the simplest value of M(a, b\ then
it can be shown that | p | ^ | p' | for p' e Ji, and | p | is a strict maximum
if ang(a, b) =£ n. This may be proved directly from the definitions (see [35]).
Another proof proceeds as follows. We know that any pi e Ji can be
written

(2.22) p' p/{cx0 + d),
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where x0 g F2 and ^ ^ g T2(4). Thus it suffices to prove that | cx0 + à | ^ 1

whenever x0 g F2 and
7 g T2(4). This is left as an exercise for the

Ve à)
reader.

We can also study the accumulation points of M. Since | cx0 + d |

is a positive definite quadratic form in c and à, it follows from (2.22) that
0 g C is the only accumulation point of Ji. This is very satisfying once we
recall from Proposition 2.1 that 0 g C is the common limit of all non-good
sequences {an}=0 and {bn}= 0 coming from (2.1).

The proof of Theorem 2.2 makes one thing very clear : we have now seen

"an entirely new field of analysis." However, before we can say that Gauss'

prediction of May 30, 1799 has been fulfilled, we need to show that the

proof given above reflects what Gauss actually did. Since we know from
Step 2 about his work with the theta functions p(x), q(x) and r(x) and the

modular function k'(x), it remains to see how he applied all of this to the

arithmetic-geometric mean.
The connections we seek are found in several places in Gauss' notes.

For example, he states very clearly that if

(2.23) a p p(x)2 b [i q(x)2

then the sequences an p p(2nx)2, bn p q(2nx)2 satisfy the agM algorithm
(2.1) with p as their common limit (see [12, III, p. 385 and pp. 467-468]).
This is precisely our Lemma 2.3. In another passage, Gauss defines the

"einfachste Mittel" (simplest mean) to be the limit of those sequences where

Re(bn + 1/an) > 0 for all n ^ 0 (see [12, III, p. 477]). This is easily seen to
be equivalent to our definition of simplest value when ang(a, b) # tc. On the

same page, Gauss then asserts that for xgF2, P is the simplest value of
M(a, b) for u, b as in (2.23). This is a weak form of Lemma 2.9. Finally,
consider the following quote from [12, VIII, p. 101] : "In order to solve the

equation A, one sets ^42 n/m and takes the agM of m and n;
P(t)

let this be p. One further takes the agM of m and N/m2 — n2, or, what
is the same, of m + n and m — n; let this be X. One then has t \i/X.

This gives only one value of t\ all others are contained in the formula

at — 2ßi

ô — 2yti9
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where a, ß, y, 5 signify all integers which satisfy the equation aô — 4ßy 1.'

Recall that Ret > 0, so that our x is just ti. Note also that the last

assertion is not quite correct.

Unfortunately, in spite of these compelling fragments, Gauss never actually

stated Theorem 2.2. The closest he ever came is the following quote from

[12, X.l, p. 219] : "The agM changes, when one chooses the negative value for

one of n\ n", ri" etc.: however all resulting values are of the following

form:

1 1 4ik „(2.24) — - + -r- "
(p) p %

Here, Gauss is clearly dealing with M(m, n) where m > n > 0. The fraction

1/jli in (2.24) is correct: in fact, it can be shown that if the negative value

of n(r) is chosen, and all other choices are the right choice, then the

corresponding value p' of M(m, n) satisfies

1 1 2r + 1i

- +
p' p X

(see [13, p. 140]). So (2.24) is only a very special case of Theorem 2.2.

There is one final piece of evidence to consider: the 109th entry in
Gauss' mathematical diary. It reads as follows :

Between two given numbers there are always infinitely many means

both arithmetic-geometric and harmonic-geometric, the observation of
whose mutual connection has been a source of happiness for us.

(See [12, X.l, p. 550]. The harmonic-geometric mean of a and b is

M(a_1, h-1)-1.) What is amazing is the date of this entry: June 3, 1800,

a little more than a year after May 30, 1799. We know from § 1 that
Gauss' first proofs of Theorem 1.1 date from December 1799. So less than
six months later Gauss was aware of the multiple valued nature of M(a, b)
and of the relations among these values One tantalizing question remains :

does the phrase "mutual connection" refer only to (2.24), or did Gauss have

something more like Theorem 2.2 in mind? Just how much did he know
about modular functions as of June 3, 1800? In order to answer these

questions, we need to examine the history of the whole situation more
closely.
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