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276 D. A. COX

The convergence of the algorithm is no longer obvious, and as might be
expected, the square root in (0.1) causes trouble. In fact, M(a, b) becomes a
multiple valued function, and in order to determine the relation between the
various values, we will need to “uniformize” the agM using quotients of the
classical Jacobian theta functions, which are modular functions for certain
congruence subgroups of level four in SL(2, Z). The amazing fact is that
Gauss knew all of this! Hence in §3 we explore some of the history of
these 1deas. The topics encountered will range from Bernoulli’s study of elastic
rods (the origin of the lemniscate) to Gauss’ famous mathematical diary
and his work on secular perturbations (the only article on the agM published
in his lifetime).

[ would like to thank my colleagues David Armacost and Robert Breusch
for providing translations of numerous passages originally in Latin or
German. Thanks also go to Don O’Shea for suggesting the wonderfully
quick proof of (2.2) given in § 2.

1. THE ARITHMETIC-GEOMETRIC MEAN OF REAL NUMBERS

When a and b are positive real numbers, the properties of the agM M(a, b)
are well known (see, for example, [5] and [26]). We will still give complete
proofs of these properties so that the reader can fully appreciate the difficulties
we encounter in § 2.

We will assume that a > b > 0, and we let {a,} >, and {b,} 2, be as
in (0.1), where b,,, is always the positive square root of a,b,. The usual
inequality between the arithmetic and geometric means,

(a+b)/2 > (ab)''*,

immediately implies that a, > b, for all n > 0. Actually, much more is true:
we have

(1) aza, >.2a,20., =.2b1=2b,>..2b =b

\%

- (1.2) 0<a,—b, <2 %a—-b).
To prove (1.1), note that a, > b, and a,4; = b, imply

a, = (ay+b,)/2 = @41 = byiy = (a,,)'* 2 by,
and (1.1) follows. From b,,,; > b, we obtain

—1
p+1 — bn+1 < ap+1 — bn = 2 (an_bn):
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and (1.2) follows by induction. From (1.1) we see immediately that lim a,

n— oo

and lim b, exist, and (1.2) implies that the limits are equal. Thus, we can

use (0.2) to define the arithmetic-geometric mean M(a, b) of a and b.
Let us work out two examples.

Example 1. M(a, a) = a.

This is obvious because a = b implies a, = b, = aforalln > 0.

Example 2. M(/2, 1) = 1.1981402347355922074..

The accuracy is to 19 decimal places. To compute this, we use the fact
that a, > M(a, b) > b, for all n > 0 and the following table (all entries are
rounded off to 21 decimal places).

n a, b,

0 1.414213562373905048802 1.000000000000000000000
1 1.207106781186547524401 1.189207115002721066717
2 1.198156948094634295559 1.198123521493120122607
3 1.198140234793877209083 1.198140234677307205798
4 1.198140234735592207441 1.198140234735592207439

Such computations are not too difficult these days, though some extra
programming was required since we went beyond the usual 16 digits of
double-precision. The surprising fact is that these calculations were done not
by computer but rather by Gauss himself. The above table is one of four
examples given in the manuscript “De origine proprietatibusque generalibus
numerorum mediorum arithmetico-geometricorum” which Gauss wrote in
1800 (see [12, III, pp. 361-371]). As we shall see later, this is an especially
important example.

Let us note two obvious properties of the agM :

M(a, b) = M(a,,b,) = M(a,,b,) = ..
(1.3)
M(ha, A\b) = AM(a, b) .

Both of these follow easily from the definition of M(a, b).

Our next result shows that the agM is not as simple as indicated by

what we have done so far. We now get our first glimpse of the depth
of this subject.
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THEOREM 1.1. If a > b > 0, then

n/2
M(a, b) J/ (a%cos?d + b%sin?dp) " 12dd = m/2.

0

Proof. Let I(a, b) denote the above integral, and set p = M(a, b). Thus
we need to prove I(a, b) = (n/2)u~'. The key step is to show that

(1.4) I(a,b) = I(ay, b,).

The shortest proof of (1.4) is due to Gauss. He introduces a new variable
¢’ such that '

2a sind’
a + b + (a—b)sin?¢p’

(1.5) sing =

Note that 0 < ¢’ < n/2 corresponds to 0 < ¢ < w/2. Gauss then asserts
“after the development has been made correctly, it will be seen” that
(1.6) (a*cos?d +b2sin?dp) " V2dd = (a?cos?¢’ +b2sin®d’)” V2dey

(see [12, III, p. 352]). Given this, (1.4) follows easily. In “Fundamenta nova
theoriae functionum ellipticorum,” Jacobi fills in some of the details Gauss
left out (see [20, I, p. 152]). Specifically, one first proves that

2 cosd’(a?cos?d’+bisin®d)/?
a + b + (a—b)sin*¢’

cosp =

a + b — (a—b)sin?¢’

2 2 2aiia 2 1/2 e
(a*cos?¢ + b2sin’¢) a+ b + (a—b)sin2¢’

(these are straightforward manipulations), and then (1.6) follows from these
formulas by taking the differential of (1.5). '
Iterating (1.4) gives us

I(a,b) = I(ay, by) = I(ay, b;) = ...,

so that I(a, b) = lim I(a,, b,) = m/2u since the functions

n— o
(a2cos’d+bZsin?d)~ 12

converge uniformly to the constant function p™'. QED

i
i
{

3 This theorem relates very nicely to the classical theory of complete

' elliptic integrals of the first kind, i.e., integrals of the form
:
i
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1

(1—k2sin?d)” Y2d¢ = J ((1—2%) (1 —k2z2) " 12dz .

0

n/2

Flk, n/2) = J

0

—b . :
? . Then one easily obtains

To see this, we set k =
a -+

I(a,b) = a~* F<;—\_{%, TE/2>, I(a,, b)) = a;' F(k,n/2),

so that (1.4) is equivalent to the well-known formula

N
F <1_IE n/2> — (1+k) F(k, 1/2)

(see [16, p. 250] or [17, p. 908]). Also, the substitution (1.5) can be written as

(1+ k)sind’
1 + ksin?¢’’

sing =

which is now called the Gauss transformation (see [32, p. 206]).

For someone well versed in these formulas, the derivation of (1.4) would
not be difficult. In fact, a problem on the 1895 Mathematical Tripos was
to prove (1.4), and the same problem appears as an exercise in Whittaker
and Watson’s Modern Analysis (see [36, p. 533]), though the agM i1s not
mentioned. Some books on complex analysis do define M(a, b) and state
Theorem 1.1 (see, for example, [7, p. 417]). o

There are several other ways to express Theorem 1.1. For example, if
0 < k < 1, then one can restate the theorem as

1 ' 2 =3 2
1.7 — k2 einZay— 124, _ ©
(1.7) MITE1_R - JO (1—k* sin®y) dy - F(k, t/2) .

Furthermore, using the well-known power series expansion for F(k, mt/2)
(see [16, p. 905]), we obtain

1 @ [1-3-..-2n—1)]2
18 — E 2n
(1.8) M(l1+k, 1—k) ,,:0[ 2"n! :I i

Finally, it is customary to set k' = /1 — k?. Then, using (1.3), we can
rewrite (1.7) as -

1 2 [
(1.9) = — J (1—k? siny)~2dy .
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This last equation shows that the average value of the function
(1—k? sin?y)~'/2 on the interval [0, m/2] is the reciprocal of the agM of the
reciprocals of the minimum and maximum values of the function, a lovely
interpretation due to Gauss — see [12, III, p. 371].

One application of Theorem 1.1, in the guise of (1.7), is that the algorithm
for the agM now provides a very efficient method for approximating the
elliptic integral F(k, 1/2). As we will see in § 3, it was just this problem
that led Lagrange to independently discover the algorithm for the agM.

Another application of Theorem- 1.1 concerns the arc length of the
lemniscate r* = cos 20:

Using the formula for arc length in polar coordinates, we see that the total
arc length is
n/4

n/4
4 J (r2+(dr/d6)?)! d = 4 J (cos 20)™1/2 40 .

0 0

The substitution cos 20 = cos®$ transforms this to the integral

/2

4 Jnlz (1+4cos?d)" Y2 dp = 4J (2 cos?d +sin?dp) "2 dd .

0 0

Using Theorem 1.1 to interpret this last integral in terms of M(\/i, 1),

we see that the arc length of the lemniscate r* = cos 20 is Zn/M(ﬁ, 1).
From Example 2 it follows that the arc length is approximately 5.244,
and much better approximations can be easily obtained. (For more on the
computation of the arc length of the lemniscate, the reader should consult [33].)
On the surface, this arc length computation seems rather harmless.
However, from an historical point of view, it is of fundamental importance.
If we set z = cosd, then we obtain

n/2 1
f (2 cos?d +sin2d) " V2 d = J (1—2z%"12 4z .
0

0

g T 5
=
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The integral on the right appeared in 1691 in a paper of Jacob Bernoulli
and was well known throughout the 18th century. Gauss even had a special
notation for this integral, writing

1
® = 2J (1—z% 12 gz
0

Then the relation between the arc length of the lemniscate and M(\/E, 1)

can be written
T

M(/2,1) = —.

(V2. 1) = =
To see the significance of this equation, we turn to Gauss’ mathematical

diary. The 98th entry, dated May 30, 1799, reads as follows:

We have established that the arithmetic-geometric mean between 1 and

\[2 is m/® to the eleventh decimal place; the demonstration of this
fact will surely open an entirely new field of analysis.

(See [12, X.1, p. 542]) The genesis of this entire subject lies in Gauss’
observation that these two numbers are the same. It was in trying to
understand the real meaning of this equality that several streams of Gauss’
thought came together and produced the exceptionally rich mathematics
which we will explore in § 2.

Let us first examine how Gauss actually showed that M(ﬁ, 1) = n/&.
The proof of Theorem 1.1 given above appeared in 1818 in a paper on
secular perturbations (see [12, III, pp. 331-355]), which is the only article
on the agM Gauss published in his lifetime (though as we’ve seen, Jacobi
knew this paper well). It is more difficult to tell precisely when he first
proved Theorem 1.1, although his notes do reveal that he had two proofs
by December 23, 1799.

Both proofs derive the power series version (1.8) of Theorem 1.1. Thus
the goal is to show that M(1+k, 1 —k)~! equals the function

(1.10) 3 o i (1.3-...-(271—1))2](2”.

n=0 2"1’1!

The first proof, very much in the spirit of Euler, proceeds as follows.
Using (1.3), Gauss derives the identity

2t 2t 1
(1.11 M{14+ —=,1- -~ 2 42
) ( T 1+t2> 1+t2M(1+t,1 t3).




282 D. A. COX

He then assumes that there is a power series expansion of the form

1
M1 +k 1—k)

=14+ Ak*>+ Bk* + Ck + ... .

By letting k = t* and 2t/(1+t?) in this series and using (1.11), Gauss obtains

1+ A4 o 2+B' 2t 4+C 2t 6+
1412 1+ ¢t2 1+1¢2

= (1+t}) (1 +At*+ BB+ Ct*2 +..).

Multiplying by 2t/(1 +t?), this becomes

2t + A 2 3+B 2 5+ = 2t(1+ At*+ Bt® +..)
1+ ¢ 1+ 1+ T : o

A comparison of the coefficients of powers of ¢t gives an infinite system of
equations in A, B, C, ... . Gauss showed that this system is equivalent to the
equations 0 = 1 — 44 = 94 — 16B = 25B — 36C = ..., and (1.8) follows
easily (see [12, III, pp. 367-369] for details). Gauss’ second proof also
uses the identity (1.11), but in a different way. Here, he first shows that
the series y of (1.10) is a solution of the hypergeometric differential equation

(1.12) (K3—k)y" + Gk*—1)y + ky = 0.

This enables him to show that y satisfies the identity

2t = (1+t3)y(t?
y e = (I+¢)u(t%),

so that by (1.11), F(k) = M(1+k, 1—k)y(k) has the property that

F 2t = F(t*
1+¢2) (&)

- Gauss then asserts that F(k) is clearly constant. Since F(0) = 1, we obtain a
- second proof of (1.8) (see [12, X.1, pp. 181-183]). It is interesting to note
that neither proof is rigorous from the modern point of view: the first
assumes without proof that M(1+k, 1—k)™! has a power series expansion,
and the second assumes without proof that M(1+k, 1 —k) is continuous (this
is needed in order to show that F(k) is constant).

;g;
i

We can be certain that Gauss knew both of these proofs by December 23,
1799. The evidence for this is the 102nd entry in Gauss’ mathematical




THE ARITHMETIC-GEOMETRIC MEAN ' 283

diary. Dated as above, it states that “the arithmetic-geometric mean is itself
an integral quantity” (see [12, X.1, p. 544]). However, this statement is not
so easy to interpret. If we turn to Gauss’ unpublished manuscript of 1800
(where we got the example M(ﬁ, 1)), we find (1.7) and (1.8) as expected,
but also the observation that a complete solution of the differential equation
(1.12) is given by

A B

(1.13) M(1+k, 1—k) + M(l, k) ’

A, BeC

(see [12, II1, p. 370]). In eighteenth century terminology, this is the “complete
integral” of (1.12) and thus may be the “integral quantity” that Gauss was
referring to (see [12, X.1, pp. 544-545]). Even if this is so, the second proof
must predate December 23, 1799 since it uses the same differential equation.

In §3 we will study Gauss’ early work on the agM in more detail
But one thing should be already clear: none of the three proofs of Theorem 1.1
discussed so far live up to Gauss’ May 30, 1799 prediction of “an entirely
new field of analysis.” In order to see that his claim was justified, we will
need to study his work on the agM of complex numbers.

2. THE ARITHMETIC-GEOMETRIC MEAN OF COMPLEX NUMBERS

The arithmetic-geometric mean of two complex numbers a and b is not
easy to define. The immediate problem is that in our algorithm

ao = da s bo = b o
(2.1)
an+1 = (an+bn)/2 s bn+1 = (anbn)l/2 b n = O’ la 29 seey

there is no longer an obvious choice for b,.,. In fact, since we are
presented with two choices for b,,, for all n > 0, there are uncountably
many sequences {a,}, -, and {b,} >, for given a and b. Nor is it clear
that any of these converge!

We will see below (Proposition 2.1) that in fact all of these sequences
converge, but only countably many have a non-zero limit. The limits of
these particular sequences then allow us to define M(a, b) as a multiple
valued function of g and b. Our main result (Theorem 2.2) gives the relation-
ship between the various values of M(a, b). This theorem was discovered
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