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THE ARITHMETIC-GEOMETRIC MEAN OF GAUSS

by David A. Cox

INTRODUCTION

The arithmetic-geometric mean of two numbers a and b is defined to be
the common limit of the two sequences {a,} -, and {b,} >, determined
by the algorithm

a, = a, by = b,
(0.1)
Ap+y = (an+bn)/2a bn+1 = (anbn)1/29 h = 0, 1) 27 AT

Note that a, and b, are the respective arithmetic and geometric means of a
and b, a, and b, the corresponding means of a, and b,, etc. Thus the limit

(0.2) M(a,b) = lim a, = lim b

n— oo n— oo

n

really does deserve to be called the arithmetic-geometric mean of a and b.
This algorithm first appeared in a paper of Lagrange, but it was Gauss who
really discovered the amazing depth of this subject. Unfortunately, Gauss
published little on the agM (his abbreviation for the arithmetic-geometric
mean) during his lifetime. It was only with the publication of his collected
works [12] between 1868 and 1927 that the full extent of his work became
apparent. Immediately after the last volume appeared, several papers (see [15]
and [35]) were written to bring this material to a wider mathematical
audience. Since then, little has been done, and only the more elementary
properties of the agM are widely known today.

In § 1 we review these elementary properties, where a and b are positive
real numbers and the square root in (0.1) is also positive. The convergence
of the algorithm is easy to see, though less obvious is the connection
between the agM and certain elliptic integrals. As an application, we use

M(ﬁ, 1) to determine the arc length of the lemniscate. In § 2, we allow a
and b to be complex numbers, and the level of difficulty changes dramatically.
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The convergence of the algorithm is no longer obvious, and as might be
expected, the square root in (0.1) causes trouble. In fact, M(a, b) becomes a
multiple valued function, and in order to determine the relation between the
various values, we will need to “uniformize” the agM using quotients of the
classical Jacobian theta functions, which are modular functions for certain
congruence subgroups of level four in SL(2, Z). The amazing fact is that
Gauss knew all of this! Hence in §3 we explore some of the history of
these 1deas. The topics encountered will range from Bernoulli’s study of elastic
rods (the origin of the lemniscate) to Gauss’ famous mathematical diary
and his work on secular perturbations (the only article on the agM published
in his lifetime).

[ would like to thank my colleagues David Armacost and Robert Breusch
for providing translations of numerous passages originally in Latin or
German. Thanks also go to Don O’Shea for suggesting the wonderfully
quick proof of (2.2) given in § 2.

1. THE ARITHMETIC-GEOMETRIC MEAN OF REAL NUMBERS

When a and b are positive real numbers, the properties of the agM M(a, b)
are well known (see, for example, [5] and [26]). We will still give complete
proofs of these properties so that the reader can fully appreciate the difficulties
we encounter in § 2.

We will assume that a > b > 0, and we let {a,} >, and {b,} 2, be as
in (0.1), where b,,, is always the positive square root of a,b,. The usual
inequality between the arithmetic and geometric means,

(a+b)/2 > (ab)''*,

immediately implies that a, > b, for all n > 0. Actually, much more is true:
we have

(1) aza, >.2a,20., =.2b1=2b,>..2b =b

\%

- (1.2) 0<a,—b, <2 %a—-b).
To prove (1.1), note that a, > b, and a,4; = b, imply

a, = (ay+b,)/2 = @41 = byiy = (a,,)'* 2 by,
and (1.1) follows. From b,,,; > b, we obtain

—1
p+1 — bn+1 < ap+1 — bn = 2 (an_bn):
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and (1.2) follows by induction. From (1.1) we see immediately that lim a,

n— oo

and lim b, exist, and (1.2) implies that the limits are equal. Thus, we can

use (0.2) to define the arithmetic-geometric mean M(a, b) of a and b.
Let us work out two examples.

Example 1. M(a, a) = a.

This is obvious because a = b implies a, = b, = aforalln > 0.

Example 2. M(/2, 1) = 1.1981402347355922074..

The accuracy is to 19 decimal places. To compute this, we use the fact
that a, > M(a, b) > b, for all n > 0 and the following table (all entries are
rounded off to 21 decimal places).

n a, b,

0 1.414213562373905048802 1.000000000000000000000
1 1.207106781186547524401 1.189207115002721066717
2 1.198156948094634295559 1.198123521493120122607
3 1.198140234793877209083 1.198140234677307205798
4 1.198140234735592207441 1.198140234735592207439

Such computations are not too difficult these days, though some extra
programming was required since we went beyond the usual 16 digits of
double-precision. The surprising fact is that these calculations were done not
by computer but rather by Gauss himself. The above table is one of four
examples given in the manuscript “De origine proprietatibusque generalibus
numerorum mediorum arithmetico-geometricorum” which Gauss wrote in
1800 (see [12, III, pp. 361-371]). As we shall see later, this is an especially
important example.

Let us note two obvious properties of the agM :

M(a, b) = M(a,,b,) = M(a,,b,) = ..
(1.3)
M(ha, A\b) = AM(a, b) .

Both of these follow easily from the definition of M(a, b).

Our next result shows that the agM is not as simple as indicated by

what we have done so far. We now get our first glimpse of the depth
of this subject.
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THEOREM 1.1. If a > b > 0, then

n/2
M(a, b) J/ (a%cos?d + b%sin?dp) " 12dd = m/2.

0

Proof. Let I(a, b) denote the above integral, and set p = M(a, b). Thus
we need to prove I(a, b) = (n/2)u~'. The key step is to show that

(1.4) I(a,b) = I(ay, b,).

The shortest proof of (1.4) is due to Gauss. He introduces a new variable
¢’ such that '

2a sind’
a + b + (a—b)sin?¢p’

(1.5) sing =

Note that 0 < ¢’ < n/2 corresponds to 0 < ¢ < w/2. Gauss then asserts
“after the development has been made correctly, it will be seen” that
(1.6) (a*cos?d +b2sin?dp) " V2dd = (a?cos?¢’ +b2sin®d’)” V2dey

(see [12, III, p. 352]). Given this, (1.4) follows easily. In “Fundamenta nova
theoriae functionum ellipticorum,” Jacobi fills in some of the details Gauss
left out (see [20, I, p. 152]). Specifically, one first proves that

2 cosd’(a?cos?d’+bisin®d)/?
a + b + (a—b)sin*¢’

cosp =

a + b — (a—b)sin?¢’

2 2 2aiia 2 1/2 e
(a*cos?¢ + b2sin’¢) a+ b + (a—b)sin2¢’

(these are straightforward manipulations), and then (1.6) follows from these
formulas by taking the differential of (1.5). '
Iterating (1.4) gives us

I(a,b) = I(ay, by) = I(ay, b;) = ...,

so that I(a, b) = lim I(a,, b,) = m/2u since the functions

n— o
(a2cos’d+bZsin?d)~ 12

converge uniformly to the constant function p™'. QED

i
i
{

3 This theorem relates very nicely to the classical theory of complete

' elliptic integrals of the first kind, i.e., integrals of the form
:
i
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1

(1—k2sin?d)” Y2d¢ = J ((1—2%) (1 —k2z2) " 12dz .

0

n/2

Flk, n/2) = J

0

—b . :
? . Then one easily obtains

To see this, we set k =
a -+

I(a,b) = a~* F<;—\_{%, TE/2>, I(a,, b)) = a;' F(k,n/2),

so that (1.4) is equivalent to the well-known formula

N
F <1_IE n/2> — (1+k) F(k, 1/2)

(see [16, p. 250] or [17, p. 908]). Also, the substitution (1.5) can be written as

(1+ k)sind’
1 + ksin?¢’’

sing =

which is now called the Gauss transformation (see [32, p. 206]).

For someone well versed in these formulas, the derivation of (1.4) would
not be difficult. In fact, a problem on the 1895 Mathematical Tripos was
to prove (1.4), and the same problem appears as an exercise in Whittaker
and Watson’s Modern Analysis (see [36, p. 533]), though the agM i1s not
mentioned. Some books on complex analysis do define M(a, b) and state
Theorem 1.1 (see, for example, [7, p. 417]). o

There are several other ways to express Theorem 1.1. For example, if
0 < k < 1, then one can restate the theorem as

1 ' 2 =3 2
1.7 — k2 einZay— 124, _ ©
(1.7) MITE1_R - JO (1—k* sin®y) dy - F(k, t/2) .

Furthermore, using the well-known power series expansion for F(k, mt/2)
(see [16, p. 905]), we obtain

1 @ [1-3-..-2n—1)]2
18 — E 2n
(1.8) M(l1+k, 1—k) ,,:0[ 2"n! :I i

Finally, it is customary to set k' = /1 — k?. Then, using (1.3), we can
rewrite (1.7) as -

1 2 [
(1.9) = — J (1—k? siny)~2dy .
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This last equation shows that the average value of the function
(1—k? sin?y)~'/2 on the interval [0, m/2] is the reciprocal of the agM of the
reciprocals of the minimum and maximum values of the function, a lovely
interpretation due to Gauss — see [12, III, p. 371].

One application of Theorem 1.1, in the guise of (1.7), is that the algorithm
for the agM now provides a very efficient method for approximating the
elliptic integral F(k, 1/2). As we will see in § 3, it was just this problem
that led Lagrange to independently discover the algorithm for the agM.

Another application of Theorem- 1.1 concerns the arc length of the
lemniscate r* = cos 20:

Using the formula for arc length in polar coordinates, we see that the total
arc length is
n/4

n/4
4 J (r2+(dr/d6)?)! d = 4 J (cos 20)™1/2 40 .

0 0

The substitution cos 20 = cos®$ transforms this to the integral

/2

4 Jnlz (1+4cos?d)" Y2 dp = 4J (2 cos?d +sin?dp) "2 dd .

0 0

Using Theorem 1.1 to interpret this last integral in terms of M(\/i, 1),

we see that the arc length of the lemniscate r* = cos 20 is Zn/M(ﬁ, 1).
From Example 2 it follows that the arc length is approximately 5.244,
and much better approximations can be easily obtained. (For more on the
computation of the arc length of the lemniscate, the reader should consult [33].)
On the surface, this arc length computation seems rather harmless.
However, from an historical point of view, it is of fundamental importance.
If we set z = cosd, then we obtain

n/2 1
f (2 cos?d +sin2d) " V2 d = J (1—2z%"12 4z .
0

0

g T 5
=
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The integral on the right appeared in 1691 in a paper of Jacob Bernoulli
and was well known throughout the 18th century. Gauss even had a special
notation for this integral, writing

1
® = 2J (1—z% 12 gz
0

Then the relation between the arc length of the lemniscate and M(\/E, 1)

can be written
T

M(/2,1) = —.

(V2. 1) = =
To see the significance of this equation, we turn to Gauss’ mathematical

diary. The 98th entry, dated May 30, 1799, reads as follows:

We have established that the arithmetic-geometric mean between 1 and

\[2 is m/® to the eleventh decimal place; the demonstration of this
fact will surely open an entirely new field of analysis.

(See [12, X.1, p. 542]) The genesis of this entire subject lies in Gauss’
observation that these two numbers are the same. It was in trying to
understand the real meaning of this equality that several streams of Gauss’
thought came together and produced the exceptionally rich mathematics
which we will explore in § 2.

Let us first examine how Gauss actually showed that M(ﬁ, 1) = n/&.
The proof of Theorem 1.1 given above appeared in 1818 in a paper on
secular perturbations (see [12, III, pp. 331-355]), which is the only article
on the agM Gauss published in his lifetime (though as we’ve seen, Jacobi
knew this paper well). It is more difficult to tell precisely when he first
proved Theorem 1.1, although his notes do reveal that he had two proofs
by December 23, 1799.

Both proofs derive the power series version (1.8) of Theorem 1.1. Thus
the goal is to show that M(1+k, 1 —k)~! equals the function

(1.10) 3 o i (1.3-...-(271—1))2](2”.

n=0 2"1’1!

The first proof, very much in the spirit of Euler, proceeds as follows.
Using (1.3), Gauss derives the identity

2t 2t 1
(1.11 M{14+ —=,1- -~ 2 42
) ( T 1+t2> 1+t2M(1+t,1 t3).
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He then assumes that there is a power series expansion of the form

1
M1 +k 1—k)

=14+ Ak*>+ Bk* + Ck + ... .

By letting k = t* and 2t/(1+t?) in this series and using (1.11), Gauss obtains

1+ A4 o 2+B' 2t 4+C 2t 6+
1412 1+ ¢t2 1+1¢2

= (1+t}) (1 +At*+ BB+ Ct*2 +..).

Multiplying by 2t/(1 +t?), this becomes

2t + A 2 3+B 2 5+ = 2t(1+ At*+ Bt® +..)
1+ ¢ 1+ 1+ T : o

A comparison of the coefficients of powers of ¢t gives an infinite system of
equations in A, B, C, ... . Gauss showed that this system is equivalent to the
equations 0 = 1 — 44 = 94 — 16B = 25B — 36C = ..., and (1.8) follows
easily (see [12, III, pp. 367-369] for details). Gauss’ second proof also
uses the identity (1.11), but in a different way. Here, he first shows that
the series y of (1.10) is a solution of the hypergeometric differential equation

(1.12) (K3—k)y" + Gk*—1)y + ky = 0.

This enables him to show that y satisfies the identity

2t = (1+t3)y(t?
y e = (I+¢)u(t%),

so that by (1.11), F(k) = M(1+k, 1—k)y(k) has the property that

F 2t = F(t*
1+¢2) (&)

- Gauss then asserts that F(k) is clearly constant. Since F(0) = 1, we obtain a
- second proof of (1.8) (see [12, X.1, pp. 181-183]). It is interesting to note
that neither proof is rigorous from the modern point of view: the first
assumes without proof that M(1+k, 1—k)™! has a power series expansion,
and the second assumes without proof that M(1+k, 1 —k) is continuous (this
is needed in order to show that F(k) is constant).

;g;
i

We can be certain that Gauss knew both of these proofs by December 23,
1799. The evidence for this is the 102nd entry in Gauss’ mathematical
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diary. Dated as above, it states that “the arithmetic-geometric mean is itself
an integral quantity” (see [12, X.1, p. 544]). However, this statement is not
so easy to interpret. If we turn to Gauss’ unpublished manuscript of 1800
(where we got the example M(ﬁ, 1)), we find (1.7) and (1.8) as expected,
but also the observation that a complete solution of the differential equation
(1.12) is given by

A B

(1.13) M(1+k, 1—k) + M(l, k) ’

A, BeC

(see [12, II1, p. 370]). In eighteenth century terminology, this is the “complete
integral” of (1.12) and thus may be the “integral quantity” that Gauss was
referring to (see [12, X.1, pp. 544-545]). Even if this is so, the second proof
must predate December 23, 1799 since it uses the same differential equation.

In §3 we will study Gauss’ early work on the agM in more detail
But one thing should be already clear: none of the three proofs of Theorem 1.1
discussed so far live up to Gauss’ May 30, 1799 prediction of “an entirely
new field of analysis.” In order to see that his claim was justified, we will
need to study his work on the agM of complex numbers.

2. THE ARITHMETIC-GEOMETRIC MEAN OF COMPLEX NUMBERS

The arithmetic-geometric mean of two complex numbers a and b is not
easy to define. The immediate problem is that in our algorithm

ao = da s bo = b o
(2.1)
an+1 = (an+bn)/2 s bn+1 = (anbn)l/2 b n = O’ la 29 seey

there is no longer an obvious choice for b,.,. In fact, since we are
presented with two choices for b,,, for all n > 0, there are uncountably
many sequences {a,}, -, and {b,} >, for given a and b. Nor is it clear
that any of these converge!

We will see below (Proposition 2.1) that in fact all of these sequences
converge, but only countably many have a non-zero limit. The limits of
these particular sequences then allow us to define M(a, b) as a multiple
valued function of g and b. Our main result (Theorem 2.2) gives the relation-
ship between the various values of M(a, b). This theorem was discovered
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by Gauss in 1800, and we will follow his proof, which makes extensive use
of theta functions and modular functions of level four.

We first restrict ourselves to consider only those a’s and b’s such that
a#0,b#0and a # +b. (If a=0, b=0 or a= +b, one easily sees that the
sequences (2.1) converge to either 0 or a, and hence are not very interesting.)
An easy induction argument shows that if a and b satisfy these restrictions,
so do a, and b, for all n > 0 in (2.1).

We next give a way of distinguishing between the two possible choices
for each b, ;.

Definition. Let a, b e C* satisfy a # +b. Then a square root b, of ab is
called the right choice if |a; — b, | <|a, + b, | and, when |a, — b, |
=|a; + blA |, we also have Im(b,/a,) > 0.

To see that this definition makes sense, suppose that Im(b,/a;) = O.
Then b,/a, = reR, and thus

la;, — byl =la ||l —r|#]a ||l +7r|=]|a + by

since r # 0. Notice also that the right choice is unchanged if we switch a
and b, and that if a and b are as in § 1, then the right choice for (ab)'/? is the
positive one.

It thus seems natural that we should define the agM using (2.1) with
b,., always the right choice for (a,b,)'’>. However, this is not the only
possibility: one can make some wrong choices for b,,; and still get an
interesting answer. For instance, in Gauss’ notebooks, we find the following

example:

n : a, b,

0 3.0000000 1.0000000

1 2.0000000 —1.7320508

2 1339746 1.86120981

3 0669873 + .93060491 3530969 + .3530969i
4 2100421 + .64185091 2836903 + .620823%91
5 2468676 + 63133741 2470649 + .63240021
6 2469962 + 63186881 2469962 + .63186851

(see [12, III, p. 379]). Note that b, is the wrong choice but b, is the right
choice for n > 2. The algorithm appears to converge nicely.
Let us make this idea more precise with a definition.
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Definition. Let a,be C* satisfy a # +b. A pair of sequences {a,} =
and {b,} >, as in (2.1) is called good if b,,, is the right choice for
(a,b,)!'? for all but finitely many n > 0.

The following proposition shows the special role played by good sequences.

ProrosiTioN 2.1. If a,beC* satisfy a # +b, then any pair of
sequences {a,} .o and {b,}, asin (2.1) converge to a common limit,
and this common limit is non-zero if and only if {a,} =, and {b,}, are
good sequences.

Proof. We first study the properties of the right choice b, of (ab)!/?

in more detail. Let 0 < ang(a, b) < © denote the unoriented angle between a
and b.

Then we have:

(2.2) la;, — by | <(1/2)|a — b|
(2.3) ang(a,, b,) < (1/2) ang(a, b) .
To prove (2.2), note that
lay —by| |la; +by| = (1/4)]|a—b|>.

Since |a; — by | < |a, + by |, (22) follows immediately. To prove (2.3), let
0, = ang(a,, b;) and 6 = ang(a, b). From the law of cosines

la; + by |? =a;|? + b |? %+ 2]a,] | by | cosb,,
we see that 0; < m/2 because |a; — b, | < |a; + b, |. Thus
ang(a,, b;) = 6, < m — 0, = ang(a,, —b,).

To compare this to 0, note that one of +b,, say b, satisfies ang(a, b")
= ang(b', b) = 6/2. Then the following picture

b}

X

o 8/2
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shows that ang(a,, b}) < 6/2. Since b, = +b,, the above inequalities imply
that

ang(a, , by) < ang(a,, b') < (1/2) ang(a, ),

proving (2.3).
Now, suppose that {a,} >, and {b,} 2>, are not good sequences. We set
M, = max{| a,|,|b, |}, and it suffices to show that lim M, = 0. Note that

M,,, < M, for n > 0. Suppose that for some n, b, . ; is not the right choice
for (a,b,)!’?. Then —b,,, is the right choice, and thus (2.2), applied to a,
and b,, implies that

| @nsz | = (1/2) | Gpsy — bysy | < (1/4) [ ay — b, | < (1/2)M,,.
However, we also have | b,,, | < M,. It follows easily that
(2.4) M,.3 < (3/49M, .
Since {a,} L, and {b,} <, are not good sequences, (2.4) must occur infinitely

often, proving that lim M, = 0.

n—co

Next, suppose that {a,} >, and {b,} >, are good sequences. By neglecting
the first N terms for N sufficiently large, we may assume that b,,, is
the right choice for all n > 0 and that ang(a, b) < = (this is possible by (2.3)).
We also set 6, = ang(a,, b,). From (2.2) and (2.3) we obtain

(2.5) la, — b, | <27"|a—b|, 06,<27"0,.
Note that a, — a,.; = (1/2) (a,—b,), so that by (2.5),
lan —an+1| < 2—(n+l)la_b|

Hence, if m > n, we see that

m—1 m—1
'an—am|<2|ak—ak+1l<<z 2_(k+1))|a—b|<2_n|a—b|-
C k=n k=n

Thus {a,} >, converges because it is a Cauchy sequence, and then (2.5)
implies that lim a, = lim b, .

n— oo n—*o

It remains to show that this common limit is nonzero. Let

m, = min{| a,|,| b, |} .

~1

Clearly | b,., | = m,. To relate | a,,, | and m,, we use the law of cosines: J
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Qlays)? = 1a,1? + b, 12 + 2] a,| | by|cos,
> 2m2(1+cosb,) = 4m? cos*(6,/2).

It follows that m,., = cos(6,/2)m, since 0 < 8, < = (this uses (2.5) and the
fact that 6, = ang(a, b) < m). Using (2.5) again, we obtain

(ﬁ cos(8,/2%) )mo.

However, it is well known that

sinf,
6,

ﬁ cos(0,/2%) =

(See [16, p. 38]. When 6, = 0, the right hand side is interpreted to be 1.) We
thus have

foralln > 1.Since 0 < 0, < m, it follows that lim a, = lim b, # 0. QED

n— o n—o

We now define the agM of two complex numbers.

Definition. Let a, b e C* satisfy a # +b. A nonzero complex number
is a value of the arithmetic-geometric mean M(a, b) of a and b if there
are good sequences {a,} L, and {b,} > as in (2.1) such that

p = lim g, = lim b, .
Thus M(a, b) is a multiple valued function of a and b and there are a
countable number of values. Note, however, that there is a distinguished
value of M(a, b), namely the common limit of {a,}, and {b,} =, where
h... is the right choice for (a,b,)? for all n > 0. We will call this the

simplest value of M(a; b). When a and b are positive real numbers, this
simplest value is just the agM as defined in § 1.

We now come to the major result of this paper, which determines how
the various values of M(a, b) are related for fixed a and b.

THeOREM 2.2. Fix a,be C* which satisfy a # +b and |a|>=|b]|,
and let p and A denote the simplest values of M(a, b) and M(a+b, a—b)
respectively. Then all values [y of M(a,b) are given by the formula




288 D. A. COX

1 d N ic
Wopo A
where d and ¢ are arbitrary relatively prime integers satisfying
d=1mod4 and ¢ = 0mod 4.

Proof. Our treatment of the agM of complex numbers thus far has
been fairly elementary. The proof of this theorem, however, will be quite
different; we will finally discover the “entirely new field of analysis” predicted
by Gauss in the diary entry quoted in § 1. In the proof we will follow
Gauss’ ideas and even some of his notations, though sometimes translating
them to a modern setting and of course filling in the details he omitted
(Gauss’ notes are extremely sketchy and incomplete — see [12, I1I, pp. 467-
468 and 477-478]).

The proof will be broken up into four steps. In order to avoid writing a
treatise on modular functions,.we will quote certain classical facts without
proof.

Step 1. Theta Functions
Let 9 = {te C:Imt > 0} and set q = ™. The Jacobi theta functions
are defined as follows: |

aW = 1+2 3 (179" = 0,(3,0),

T =2 ), ¢ = @y, 0).

Since | q| < 1 for T € %, these are holomorphic functions of 1. The notation

p, q and r is due to Gauss, though he wrote them as power series in_

e~ ™ Ret > 0 (thus he used the right half plane rather than the upper half
plane $ — see [12, III, pp. 383-386]). The more common notation ®,, @,
and O, is from [36, p. 464] and [32, p. 27].

A wealth of formulas are associated with these functions, including the
product expansions:

0

p®) = [] 1—g*) (1+g* )2,

n=1
(2.6) q(t) = Dl_ (1-g*)(1—g*" 12,
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[e¢]

r(t) = 29" ] (1—9*) (1+9*)*,

n=1

(which show that p(1), g(t) and r(1) are nonvanishing on $), the trans-
formations: |

p(t+1) = ¢(1), p(—1/7) = (—iv)'*p(1),
(2.7) gt+1) = p(1), a(—1/7) = (—i)**r(7),
r(t+1) = e™*r(1), r(—1/t) = (—it)?q(1),

(where we assume that Re(—it)!/?* > 0), and finally the identities

p(v)? + ¢(1)* = 2p(27)*,
(2.8) p(r)* — q(r)* = 2r(21)?,

p(t)g(t) = q(27)*,

p(21)* + r(21)* = p(1)*,
(2.9) p(21)* — r(21)* = q(1)*,
g(v)* + r(0)* = p(r)*.

Proofs of (2.6) and (2.7) can be found in [36, p. 469 and p. 475], while
one must turn to more complete works like [32, pp. 118-119] for proofs of
(2.8). (For a modern proof of (2.8), consult [34].) Finally, (2.9) follows easily
from (2.8). Of course, Gauss knew all of these formulas (see [12, III,
pp. 386 and 466-467]). '

What do these formulas have to do with the agM ? The key lies in (2.8):
one sees that p(21)? and g(2t)* are the respective arithmetic and geometric
means of p(t)> and q(t)?! To make the best use of this observation, we
need to introduce the function k'(t) = ¢(t)%/p(1)>.

Then we have:

LEMMA 2.3. Let a,be C* satisfy a # +b, and suppose thereis te€ $
such that k'(t) = bja. Set w = a/p(t)* and, for n =0, a, = pp2™)?
and b, = pq(2™)%. Then
(i) {a,} ¢ and {b,} o are good sequences satisfying (2.1),

(i) lim aq, = lim b, = p.

Proof. We have a, = a by definition, and b, = b follows easily from

K(r) = b/a. As we observed above, the other conditions of (2.1) are clearly
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satisfied. Finally, note that exp(mi2"t) - 0 as n — oo, so that lim p(2"1)?

= lim g(2"1)®> = 1, and (ii) follows. Since p # 0, Proposition 2.1 shows that
{a,} -0 and {b,} >, are good sequences. QED

Thus every solution t of k'(t) = b/a gives us a value p = a/p(t)® of
M(a, b). As a first step toward understanding all solutions of k'(t) = b/a, we
introduce the region F; < $:

Fi ={teH:|Ret| <1, |Re(l/r)] < 1}

F, shaded

-1 o) l

The following result is well known.

LEMMA 2.4. k'*> assumes every value in C — {0,1} exactly once in
Fi = F, — (0F n{1€9: Ret<0}).

A proof can be found in [36, pp. 481-484]. Gauss was aware of similar
results which we will discuss below. He drew F, as follows (see [12, III,
p. 478]).

(o] Raum fiir t und —
N . i t

Note that our restrictions on a and b ensure that (b/a)* e C — {0, 1}.
Thus, by Lemma 2.4, we can always solve k'(t)* = (b/a)? i.e., k'(t) = +b/a.
We will prove below that

(2.10) k’( t ) - — K@),

2t+1
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which shows that we can always solve k'(t) = b/a. Thus, for every a and b
¢ as above, M(a, b) has at least one value of the form a/p(t)?, where k'(t) = b/a.
V Three tasks now remain. We need to find all solutions t of k'(t) = b/a,
we need to see how the values a/p(t)* are related for these t’s, and we need
to prove that all values of M(a, b) arise in this way. To accomplish these
goals, we must first recast the properties of k'(t) and p(t)* into more modern
terms.

Step 2. Modular Forms of Weight One.

The four lemmas proved here are well known to experts, but we include
their proofs in order to show how easily one can move from the classical
facts of Step 1 to their modern interpretations. We will also discuss what
Gauss had to say about these facts.

We will use the transformation properties (2.7) by way of the group

b
SL(2,Z) = {<a d): a.bcdeZ ad—bc = 1}
C

which acts on $ by linear fractional transformations as follows: if
b b
Y = <a d> e SL(2,Z) and T € §, then yt = ar T
c

et +d
For example, if

0 -1 1 1 —
Sz( 0) and T=< 1), then Sr-—-—l, Tt=1+1,

1 0 T

which are the transformations in (2.7). It can be shown that S and T
generate SI(2, Z) (see [29, Ch. VII, Thm. 2]), a fact we do not need here.

We will consider several subgroups of SL(2, Z). The first of these is I'(2),
the principal congruence subgroup of level 2:

I'2) = {yeSLR,Z):y = <(1) ?) mod 2} .-

Note that —1 € I'(2) and that I'(2)/{+ 1} acts on $.

LEmMMA 2.5.
() T'Q){x1} actsfreely on .

() I'(2) is generated by —1,U = (1 f) and V = (:12 0).

L (i) Given te€$, thereis yeI(2) suchthat yteF,.
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Proof. Lety = (a i
c

b
) be an element of I'(2).

(i) If te $ and y1 = 1, then we obtain ¢t*> + (d—a)t — b = 0. If ¢ = 0,
then vy = +1 follows immediately. If ¢ # 0, then (d—a)*> + 4 bc < 0 because
1€ 9. Using ad — bc = 1, this becomes (a+d)*> < 4, and thus a +d = 0
since a and d are odd. However, b and ¢ are even so that

=ad — bc = ad = — a* mod 4

This contradiction proves (i).

(1) We start with a variation of the Euclidean algorithm. Given vy as
above, let r; = a — 2a,c, where a, € Z is chosen so that | r, | is minimal.

Then |ry | < |c|, and hence | ry | < |c| since a and ¢ have different parity.
Thus

a=2a,c+ry, a,reld, |r|<]c]|.

Note that ¢ and r, also have different parity. Continuing this process, we
obtain

c =2a,r; +ry,, |rp|l<]|rl,
ry = 2asr, +ry, |r3| <|ryl,
Tom—1 = 202541720 + Tons1s Fonv1 = E1,

Fon = 203442 an+1 + 0,

since GCD(a, ¢) = 1. Then one easily computes that

. —an+2 —azn+1 —az —ay il *
V U LVTRUTy = 0 *)

Since the left-hand side is in I'(2), the right-hand side must be of the form
+ U™, and we thus obtain

Y = i U Y92 [U%2n+r Ja2n+2 [Jm

(iii) Fix 1€ 9. The quadratic form |xt + y|? is positive definite for
x, y € R, so that for any § € Z? | xt + y|? assumes a minimum value at
b

d
Imrt|ct 4+ d| ™2 we see

a
some (x, y) € S. In particular, | ct + d|? wherey = (c ) e I'(2), assumes a

minimum value at some v, € I'(2). Since Im yz
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that T = 7v,t has maximal imaginary part, i, Im7v > Im y7 for vy e I'(2).
Since Im v = Im Ut, we may assume that | Re 7' | < 1. Applying the above
inequality to V*! € I['(2), we obtain

Imt >Im Vit = Imt |27 +1] 2.

Thus |2t +1| > 1, or |t + (1/2)| = 1/2. This is equivalent to | Re 1/7'| < 1
and hence v € F;. ' QED

We next study how p(t) and g(1) transform under elements of I'(2).

b

LEMMA 2.6. Let vy = (a
c d

> e I'(2), and assumethat a = d = 1 mod 4.

Then
(i) p(y1)* = (ct+d) p(r)*,
(i) g(yt)* = i(ct+4d) q(r)*.

0 —1 1 0 1 :
Proof. From (2.7) and V = ) 0 U {0 we obtain

p(Ut)? = p(1)*," p(Vt)* = 2t+1) p(t)*,
(2.11) qUT? = q(v)?, qV1P = —Qt+1)q(1).

Thus (i) and (ii) hold for U and V. The proof of the previous lemma shows
that y is in the subgroup of I'(2) generated by U and V. We now proceed
by induction on the length of y as a word in U and V.

b
) Ify= <Z d) and p(yt)® = (ct+d) p(r)* then (2.11) implies that

p(Uy1)? = p(y1)® = (ct+d) p(r)?,

p(Vy9)? = Qyt+1) p(y1)* = 2yt +1) (ct+d) p(r)?
= ((2a+c)t+(2b+4d) p(r)*.
* * % .*
However Uy = (c d)’ Vy = <2a+c b4 d)’ so that (1) now holds for

Uy and V7.

(i) Using (2.11) and arguing as above, we see that if y = (a Z)
- c
= Us VP U Vb then

q(y1)* = (—1DPi(ct+d) q(r)* .
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However, U and V commute modulo 4, so that

(1 2Za;)\ 4
" =\amp, 1 )OO

~ Thus ¢ = 2%b; mod 4, and (ii) follows. QED

Note that (2.10) is an immediate consequence of Lemma 2.6.
In order to fully exploit this lemma, we introduce the following subgroups
of I'(2):
['(2 = {yel'(2):a =d=1mod4},

I',(4) = {yeTI'(2)y:c = 0mod 4}

Note that I'2) = {+1}-I'(2), and that I'y(4) has index 2 in I'(2),. From
Lemma 2.6 we obtain ‘

p(y1)? = (ct+d) p(v)*, veT(2)p,
(2.12)

q(v)* = (cr+d) q(v)*, veT,(4).

Since these functions are holomorphic on $, one says that p(t)> and g(t)?
are weak modular forms of weight one for I'(2), and I',(4) respectively.
- The term more commonly used is modular form, which requires that the
functions be holomorphic at the cusps (see [30, pp. 28-29] for a precise
definition). Because I'(2), and I',(4) are congruence subgroups of level
N = 4, this condition reduces to proving that

- (2.13) (ct+d)™ ! p(y0)*,  (ct+d)™" q(y1)*,

are holomorphic functions of q'/? = exp(2nit/4) for all y € SL(2, Z). This will
be shown later.

In general, it is well known that the square of a theta function is a
" modular form of weight one (see [27, Ch. 1, § 9]), although the general theory
~ only says that our functions are modular forms for the group

I4d) = {yeSL2,Z):y = ((1) (1)> mod 4}

 (see [27, Ch. I, Prop. 9.2]). We will need the more precise information
given by (2.12).

‘i We next study the quotients of $ by I'(2) and I',(4). From Step 1,
- recall the region F; < 9. We now define a larger region F:

F=1{te$:|Ret|< 1, |T+1/4]| > 1/4 |1 +3/4| > 1/4}.
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F shaded

F, above dashed lines

ad -1/2 o) /2 I

We also set
F, =F, —(0F, n {te$H:Ret < 0})
FF=F—0@F n{te$H:Ret < 0}).

LEMMA 2.7. F' and F' are fundamental domains for T'(2) and I ',(4)
respectively, and the functions k'* and k' induce biholomorphic maps

kK%:9/T2) > C — {0, 1)
K :$/T,4)>C — {0, £1}.
Proof. A simple modification of the proof of Lemma 2.6 shows that if

b
Y = (a d> e T'(2), then p(y1)* = (ct+4d)? p(v)*, q(y1)* = (ct+d)* q(v)*. Thus
c
k'? is invariant under I'(2).

Given 1€ 9, Lemma 2.5 shows that yte F, for some yeI'(2). Since

1 2
U= (0 1> maps the left vertical line in J0F, to the right one and

1 0
V = (2 1> maps the left semicircle in JF, to the right one, we may
assume that yte F,. If we also had octe F) for ceI'(2), then k'(c7)?
= k'(t)> = K'(y1)?, so that ot = yt by Lemma 2.4. This shows that F/ is a
fundamental domain for I'(2). '

Since I'(2)q ~ I['(2)/{+1}, F' is also a fundamental domain for I'(2),.

Since I',(4) has index 2 in I'(2), with 1 and V as coset representatives,
it follows that

F¥* = FiuV(Fin{te9:Re1 <0 UV I(F;n{teH:Ret > 0})




296 D. A. COX

F* shaded |

-1 -1/2 0] 1/2 I

-3 =2
i1s a fundamental domain for I',(4). Since ( 4 3) e I',(4) takes the far

left semicircle in 0F to the far right one, it follows that F’' i1s a fundamental
domain for I',(4).

It now follows easily from Lemma 2.4 that k’*> induces a bijection
kK?:$/T(2) - C — {0, 1}. Since I'(2)/{+1} acts freely on $ by Lemma 2.5,
$/T(2) is a complex manifold and K? s holomorphic. A straightforward
argument then shows that K? is biholomorphic.

Next note that k' is invariant under I',(4) by (2.12), and thus induces a
map k': $/T,(4) » C — {0, +1}. Since H/T'(2) = H/T'(2),, we obtain a com-
mutative diagram:

AN

H/T,(4)
f lyg

$/T(2)e 5> € — {0, 1}

C—{0,1)

' where f is induced by I';,(4) = I'(2), and g is just g(z) = z?. Note that g is a
- covering space of degree 2, and the same holds for f since [T(2),: I';(4)] = 2

and T'(2), acts freely on . We know that k' is a biholomorphism, and
it now follows easily that k' is also. QED

‘1 We should point out that r(t)> has properties similar to p(t)*> and q(t)>.
- Specifically, r(r)* is a modular form of weight one for the group

I,4) = {’YGF(Z)Z’YE(i ?>m0d4},

?ﬁwhich is a conjugate of I',(4). Furthermore, if we set k(t) = r(1)*/p(7)?,
| —

| then k is invariant under I',(4)' and induces a biholomorphism k: $/T",(4)
i
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 C — {0, +1}. We leave the proofs to the reader. Note also that k(t)?
+ k'(1)> = 1 by (2.9).

Our final lemma will be useful in studying the agM. Let F, be the
region (1/2)F ,, pictured below. Note that F, < F.

-1 -1/2 o) 1/2 l

F, shaded
F, F, indicated by dashed lines

LemMa 2.8.
K(F,) = {zeC —{0, +1}:Rez > 0},
K(Fy ={zeC—{0, +1}:]z| < 1}.
Proof. We will only treat k'(F,), the proof for k'(F,) being quite similar.
We first claim that {k'(t): Ret = +1/2} = S' — {£1}. To see this, note -
that Ret = +1/2 and the product expansions (2.6) easily imply that k'(1)
= k'(t)" %, ie, | K(t)| = 1. How much of the circle is covered? It is easy

to see that k'(+1/2+4it) > 1 as t » + oo. To study the limit as t — O,
note that by (2.10) we have

K(+1/2+it) = —k’<i1/2+;4%).

As t — 0, the right-hand side clearly approaches —1. Then connectivity
arguments easily show that all of S* — {41} is covered.

Since k' is injective on F’ by Lemma 2.7, it follows that k'(F,) — S?
1s connected. Since | k'(it)| < 1 for t > 0 by (2.6), we conclude that

K(F,) € {zeC— {0, £1}:]z| < 1}.
Similar arguménts show that

K(F-F,) c{zeC:|z| > 1}.
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Since kK'(F) = C — {0, +1} by Lemma 2.7, both inclusions must be equalities.
QED

Gauss’ collected works show that he was familiar with most of this
material, though it’s hard to tell precisely what he knew. For example, he
basically has two things to say about k'(1):

(i) k'(t) has positive real part for te F,

(i1) the equation k'(t) = A has one and only one solution t € F, .

(See [12, III, pp. 477-478].) Neither statement is correct as written. Modifica-
tions have to be made regarding boundary behavior, and Lemma 2.8 shows
that we must require | A | < 1 in (ii). Nevertheless, these statements show that
Gauss essentially knew Lemma 2.8, and it becomes clear that he would not
have been greatly surprised by Lemmas 2.4 and 2.7.

Let us see what Gauss had to say about other matters we’ve discussed. He
was quite aware of linear fractional transformations. Since he used the right
half plane, he wrote | |

at — bi

! = — , ad —bc=1 ab,c,deZ, Ret>0
cti + d

(see [12, IIL, p. 386]). To prevent confusion, we will always translate formulas
into ones involving T € 9.

Gauss decomposed an element y € SL(2, Z) into simpler ones by means of
continued fractions. For example, Gauss considers those transformations
1* = vyt which can be written as

T’ = — 4+ 2a1
t1
(2.14) o = #;, + 2a,
b g o 2
T =7 _'c‘"*“+ a,

1 2 1 0 , _
(see [12, X.1,p. 223]). If U = 0 1 and V = ) 1 ,then 1" = U*V %1,

so that for n even we see a similarity to the proof of Lemma 2.5 (ii).
The similarity becomes deeper once we realize that the algorithm used in

. . a b -
the proof gives a continued fraction expansion for a/c, where v = ( d)' '
' c
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However, since n can be odd in (2.14), we are dealing with more than just

elements of I'(2).
Gauss’ real concern becomes apparent when we see him using (2.14)
together with the transformation properties of p(t). From (2.7) he obtains

p(t*) = /(=it) (=it) -+ (=i1""P) p(t)
(see [12, X.1, p. 223]). The crucial thing to note is that if t* = yt,

c d
This tells us how p(t) transforms under those y’s described by (2.14). In
general, Gauss used similar methods to determine how p(t), g(t) and r(7)
transform under arbitrary elements y of SL(2, Z). The answer depends in part

b
¥ = <a ), then (—it)-+-(—it® V) is just ct + d up to a power of i

b
on how y = (j d> reduces modulo 2. Gauss labeled the possible reductions

as follows:

QL 0o o' Q
—_ 0 O
— O e
p— s (OO
b— s O
O = =
S = = O

(see [12, X.1, p. 224]). We recognize this as the isomorphism SL(2, Z)/T(2)
~ SI(2, F,), and note that (2.14) corresponds to cases 1 and 6. Then the

transformations of p(t), ¢(t) and r(t) under y = (Z Z) e SL(2, Z) are given by
1 2 3 4 5 | 6
hipyd) = | p | q@ | @ | qt) | ) | p()
215)  h7lqy) = | q(v) | p(Y) | p¥) | ¥) | p(¥) | r(v)
Ry = | @ | ) | g | pt) | q@) | q()

where h = (i"(ct+d))'/* and X is an integer depending on both y and which
one of p(t). g(t) or r(7) is being transformed (see [12, X.1, p. 2241). Note that
Lemma 2.6 can be regarded as giving a careful analysis of A in case I.
An analysis of the other cases may be found in [13, pp. 117-123]. One
consequence of this table is that the functions (2.13) are holomorphic functions
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of q'/2, which proves that p(t)?, q(1)*> and r(t)*> are modular forms, as
claimed earlier.

Gauss did not make explicit use of congruence subgroups, although they
appear implicitly in several places. For example, the table (2.15) shows Gauss
using I'(2). As for I'(2),, we find Gauss writing

K(rs) = k()

a —b
where vy = (—c J
a=d=1mod4, b, c even” (see [12, III, p. 478]). Also, if we ask which
of these y’s leave k' unchanged, then the above equation immediately gives
us I',(4), though we should be careful not to read too much into what
Gauss wrote.

More interesting is Gauss’ use of the reduction theory of positive definite
quadratic forms as developed in Disquisitiones Arithmeticae (see [11, § 171]).
This can be used to determine fundamental domains as follows. A positive
definite quadratic form ax® + 2bxy + cy? may be written a | x — 1y | 2> where
T€$H. An easy computation shows that this form is equivalent via an
element y of SL(2, Z) to another form a’' | x — 'y |? if and only if T = vy~ !r.
Then, given 1t € 9, Gauss applies the reduction theory mentioned above to
| x — 1y |2 and obtains a SL(2, Z)— equivalent form A|x — 1y |? = Ax?
+ 2Bxy + Cy? which is reduced, i.e.

> and, as he carefully stipulates, “ad — bc = 1,

2|B|<A<C

(see [11, § 1717 and [12, X.1, p. 225]). These inequalities easily imply that
| Ret" | < 1/2, | Re 1/7"| € 1/2, so that 1’ lies in the shaded region
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which is well known to be the fundamental domain of SL(2, Z) acting on 9
(see [29, Ch. VII, Thm. 1]).

This seems quite compelling, but Gauss never gave a direct connection
between reduction theory and fundamental domains. Instead, he used reduc-
tion as follows: given te€ $, the reduction algorithm gives t" = yt as
above and at the same time decomposes y into a continued fraction similar
to (2.14). Gauss then applies this to relate p(t’) and p(t), etc., bringing us
back to (2.15) (see [12, X.1, p. 225]). But in another place we find such
continued fraction decompositions in close conjunction with geometric
pictures similar to F, and the above (see [12, VIII, pp. 103-105]). Based
on this kind of evidence, Gauss’ editors decided that he did see the connection
(see [12, X.2, pp. 105-106]). Much of this is still a matter of conjecture,
but the fact remains that reduction theory is a powerful tool for finding
fundamental domains (see [6, Ch. 12]) and that Gauss was aware of some
of this power. '

Having led the reader on a rather long digression, it is time for us to
return to the arithmetic-geometric mean.

Step 3. The Simplest Value
Let F* = {teF:|t—1/4]|> 1/4, |t + 3/4| > 1/4}. We may picture
F* as follows.

F* shaded |

-1 -1/2 0 /2 |

Let a, b e C* be as usual, and let T € § satisfy k'(t) = b/a. From Lemma 2.3
we know that p = a/p(t)* is a value of M(a, b). The goal of Step 3 is to

prove the following lemma.
LEMMA 2.9. If teF*, then u is the simplest value of M(a, b).
Proof. From Lemma 2.3 we know that

(2.16) a, = up(2")*, b, =pqg2m?, n=01,2,..

gives us good sequences converging to p. We need to show that b, , is the
right choice for (a,b,)/? for all n > 0
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The following equivalences are very easy to prove:

b,
| Gnsy — by | < @y + bn+1|®Re< H) =0

an+1

b,
| i1 — buri | = 8544 +bn+1,¢>Re< +1> = 0.

an+1

Recalling the definition of the right choice, we see that we have to prove,

b, . b, b,
foralln)O,thatRe( +1)20,and1fRe< +1>:O,then1m( +1>>0.
Ayt a ay+1 Ay+1
From (2.16) we see that

bus 1 . q2"" ')
Gyiy P27
so that we are reduced to proving that if te F*, then for all n > 0,
Re(k '(2”“1)) 0, and if Re(k'(2"* 1)) = 0, then Im(k'(2"* 1)) > 0.
Let F, denote the region obtained by translating F, by + 2, + 4, etc.
The drawing below pictures both F, and F.

= K@),

F, shaded
F indicated by dashed lines

Since k'(t) has period 2 and its real part is nonnegative on F, by Lemma 2.8,
it follows that the real part of k'(t) is nonnegative on all of F,. Further-
more, it is clear that on F;, Re(k'(t)) = O can occur only on 0F,. The
product expansions (2.6) show that k'(tr) is real when Ret = + 1, so that
on F,, Re(k'(t)) = 0 can occur only on the boundary semicircles. From the
periodicity of k'(t) we conclude that k'(t) has positive real part on the
interior F9 of F, .

If te F*, then the above drawing makes it clear that 2"*ite F, for

> 0 and that 2"*11e FQ for n > 1. We thus see that Re(k'(2"*'1)) > 0

for n > 0 unless n = 0 and 2t € 0F,. Thus the lemma will be proved once
we show that Im(k'(2t)) > O when 1€ F* and 2t € 0F, .

These last two conditions imply that 2t lies on one of the semicircles A
and B pictured below.
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m /,’ -7 \\\ m F, indicated by dashed lines
| \l
/

-1 O I 2

By periodicity, k' takes the same values on 4 and B. Thus it suffices to
0
1
Rec = 1 to A, we can write 2t = —1/c, where Rec = 1. Then, using (2.7),
we obtain

1 _
show that Im(k'(2t)) > 0 for 2te A. Since § = ( 0) maps the line

o a=1oP  rop
K2 = ) = oy T hoP

Since Reo = 1, the product expansions (2.6) easily show that

Im(r()*/p(0)?) > 0,
which completes the proof of Lemma 2.9. QED

Step 4. Conclusion of the Proof.

We can now prove Theorem 2.2. Recall that at the end of Step 1 we
were left with three tasks: to find all solutions t of k'(t) = b/a, to relate
the values of a/p(t)? thus obtained, and to show that all values of M(q, b)
arise in this way.

We are given a,be C* with a # +b and |a| = | b|. We will first find
o€ Fy n F” such that k'(ty) = b/a. Since | b/a| < 1, Lemma 2.8 gives us
To € F, with k'(ty) = b/a. Could 1, fail to lie in F*? From the definition
of F*, this only happens when 1, lies in the semicircle B pictured below.

F, shaded

-1/2 0 1/2
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1 0
—4 1
invariant under I',(4), we have k'(yt,) = k'(to) = b/a. Thus, replacing t, by
YTo, We may assume that toe F, N F*.

It is now easy to solve the first two of our tasks. Since k' induces a
bijection H/T,(4) = C — {0, £ 1}, it follows that all solutions of k'(t) = b/a are

given by t = y1,,7€I',(4). This gives us the following set of values of
M(a, b):

However, vy = ( )el“ ,(4) takes B to the semicircle A. Since k' is

{a/p(yto)* : vy e T,(4)} .

Recalling the statement of Theorem 2.2, it makes sense to look at the
reciprocals of these values:

R = {p(yvo)*’/a: v e TH(4)}

By (2.12), p(yte)* = (cto+d) p(to)* for y = (j

1w = a/p(ty)?, we have

b
d) el,4) = I'(2),. Setting

b
R = {(cto+d) p(ro)*/a:y = <Z d> € I')(4)}

b
= {(cto+d)/p:y = (j d) e Iy(4); -

An easy exercise in number theory shows that the bottom rows (c, d) of
elements of I',(4) are precisely those pairs (c, d) satisfying GCD(c, d) = 1,
¢ = 0mod 4 and d = 1 mod 4. We can therefore write

R = {(cto+d)/u: GCD(c,d) =1, ¢ =0mod4, d=1mod4}.

Then setting A = ip/t, gives us
d ic

(2.17) R = {— + x:GCD(c,d) =1, d=1mod4, c= 0m0d4}.
1]

Finally, we will show that p and A are the simplest values of M(a, b)
and M(a+b, a—b) respectively. This is easy to see for p: since t,€ F*,
Lemma 2.9 implies that p = a/p(te)* is the simplest value of M(a, b).
Turning to A, recall from Lemma 2.3 that a = pp(ty)> and b = pg(ty)>
Thus by (2.8) and (2.7),

. : —1 2
a + b = up(ro)* +4(10)°) = 21 p215)* = 2 <—l—) p (——) ,

27, 27,
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i —1)\?
a — b = p(p(to)* —q(to)?) = 21 r(210)* = 2p (—2—1—0) q (-) )

27,

which implies that
a+b=Ap(—1/21)%, a—b = rqg(—1/210)*.

Hence A is a value of M(a+b, a—b). To see that it is the simplest value,
we must show that —1/2t,€ F* (by Lemma 2.9). Since 1,€ F,, we have

0
1

The inclusion F, € F" is obvious, and —1/2t, € F" follows. This completes
our first two tasks.

Our third and final task is to show that (2.17) gives the reciprocals of
all values of M(a, b). This will finish the proof of Theorem 2.2. So let pu’ be a
value of M(a, b), and let {a,} -, and {b,} >, be the good sequences such that
pw = lim a, = lim b,. Then there is some m such that b,,, is the right

choice for (a,b,)'/* for all n > m, and thus ' is the simplest value of
M(a,,, b,). Since k' : F' - C — {0, + 1} is surjective by Lemma 2.7, we can find
te F' such that k'(t) = b,/a,. Arguing as above, we may assume that
te F”*. Then Lemma 2.9 shows that @' = a,,/p(t)* and also that for n > m

—1
2t,€ F,. But F,; is stable under S =< 0), so that —1/2t,€ F,.

(2.18) a, = W p""")*, b, = W q2" ")*.

Let us study a,_; and b,_,. Their sum and product are 2 a, and b2
respectively. From the quadratic formula we see that

{n-1,bm-1} = {an £ (an—b7)"%}.
Using (2.9), we obtain

am — by = 2(p)*—q(v)*) = p 2r(1)*,

so that, again using (2.9), we have

W'p(t/2)?
Oy £ (an—b7)'"? = W(p(t) £r(r)?) = -
’ Hq(t/2)% .
Thus, either

-y = W P2, by = W q(T/2) OF Gy = W q(1/2), b, = W' p(t/2)? .
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In the former case, set T, = t/2. Then from (2.18) we easily see that for
n=zm-—1, |

(2.19) a, = W p2"" ), by = W2 )2

If the latter case holds, let t; = 1/2 + 1. From (2.7) we see that a,_;
= w p(ty)% bn._; = W q(t;)% and it also follows easily that p(2" ™*1lt))
= p(2"" ™) and q(2"""*"!1,) = ¢g(2""™) for all n > m. Thus (2.19) holds for
this choice of t; and n > m — 1. _

By induction, this argument shows that there is 7,, € § such that for all
n =0,

a, = W p2"t,)*, b, = u q(2"1,)°.

In particular, W = a/p(z,)? and k'(t,) = b/a. Thus ()" = p(1,)*/a is in the
set R of (2.17). This shows that R consists of the reciprocals of all values
of M(a, b), and the proof of Theorem 2.2 is now complete. : QED

We should point out that the proof just given, though arrived at
independently, is by no means original. The first proofs of Theorem 2.2
appeared in 1928 in [15] and [35]. Geppert’s proof [15] is similar to ours
in the way it uses the theory of theta functions and modular functions.
The other proof [35], due to von David, is much shorter; it is a model of
elegance and conciseness.

Let us discuss some consequences of the proof of Theorem 2.2. First, the
formula A = ip/t, obtained above is quite interesting. We say that 1,
“uniformizes” the simplest value p of M(a, b), where

a=ppty)?, b= pqo).

Writing the above formula as 1, = iE we see how to explicitly compute

7\‘ b
T, in terms of the simplest values of M(a, b) and M(a+b,a—b). This is

especially useful when a > b > 0. Here, if we set ¢ = ./a? — b2, then,
using the notation of § 1, the simplest values are M(a, b) and M(a, c), so that

 M(a,b)
Tg = lM(a, o

(2.20)

A nice example is when a = \/5 and b = 1. Then ¢ = 1, which implies

1, = i! Thus M(\/Z—, 1) = ﬁ/p(i)z = 1/¢())%. From § 1 we know M(\/Z 1)
= /6, which gives us the formulas
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®/n = 27 V2p(i)? = 27 V(14 2e "+ 2e "4 207" +.)°,
(2.21) ‘
o/m = q(i)> = (1—2e "+2e *"—2e7"+..)2.

We will discuss the importance of this in § 3.

Turning to another topic, note that M(a, b) is clearly homogeneous of
degree 1, ie., if p is a value of M(a, b), then cp is a value of M(ca, cb)
for ¢ € C*. Thus, it suffices to study M(1, b) for be C — {0, £1}. Its values
are given by pu = 1/p(t)> where k'(t) = b. Since k': H > C — {0, +1} is a
local biholomorphism, it follows that M(1, b) is a multiple valued holomorphic
function. To make it single valued, we pull back to the universal cover
via k', giving us M(1, k'(t)). We thus obtain

M(1, k(1)) = 1/p(x)?*.

This shows that the agM may be regarded as a meromorphic modular form
of weight — 1.
Another interesting multiple valued holomorphic function is the elliptic

0
we pull back to the umiversal cover via k:$ — C — {0, +1} (recall from

Step 2 that k(t) = r(t)*/p(t)?), then it is well known that

/2
integral J (1—k?sin®$)~'/2d¢. This is a function of ke C — {0, +1}. If

2 n/2 .
;J (1—k(t)?sin¢) ™ Y2dd = p(1)?

0

(see [36, p. 500]). Combining the above two equations, we obtain

1 2 /2
MR p(1)? = EJO (I—k(t)zsinzd))_“?dd) :

which may be viewed as a rather amazing generalization of (1.9).

Finally, let us make some remarks about the set .# of values of M(a, b),
where a and b are fixed. If p denotes the simplest value of M(a, b), then
it can be shown that || > | | for W e 4, and | p| is a strict maximum
if ang(a, b) # m. This may be proved directly from the definitions (see [35]).

Another proof proceeds as follows. We know that any We A can be
written

(2.22) W o= pleto+4d),
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b
where 1, € F, and (j d) € I',(4). Thus it suffices to prove that | ¢ty + d| > 1

| b
whenever 1,€ F, and <a d>6F2(4). This is left as an exercise for the
c

reader.

We can also study the accumulation points of .#. Since |cty + d|
is a positive definite quadratic form in ¢ and d, it follows from (2.22) that
0 € C is the only accumulation point of .#. This is very satisfying once we
recall from Proposition 2.1 that 0 € C is the common limit of all non-good
sequences {a,} >, and {b,} -, coming from (2.1).

The proof of Theorem 2.2 makes one thing very clear: we have now seen
“an entirely new field of analysis.” However, before we can say that Gauss’
prediction of May 30, 1799 has been fulfilled, we need to show that the
proof given above reflects what Gauss actually did. Since we know from
Step 2 about his work with the theta functions p(t), g(t) and r(t) and the
modular function k'(t), it remains to see how he applied all of this to the
arithmetic-geometric mean.

The connections we seek are found in several places in Gauss’ notes.
For example, he states very clearly that if

(2.23) a=pp)?, b=pq?,

then the sequences a, = p p(2"1)%, b, = p g(2"t)? satisfy the agM algorithm
(2.1) with p as their common limit (see [12, III, p. 385 and pp. 467-468]).
This is precisely our Lemma 2.3. In another passage, Gauss defines the
“einfachste Mittel” (simplest mean) to be the limit of those sequences where
Re(b, . /a,) > 0 for all n > 0 (see [12, 1II, p. 477]). This is easily seen to
be equivalent to our definition of simplest value when ang(a, b) # m. On the
same page, Gauss then asserts that for t€ F,, p is the simplest value of
M(a, b) for a, b as in (2.23). This is a weak form of Lemma 2.9. Finally,
consider the following quote from [12, VIII, p. 101]: “In order to solve the
equation g% = A, one sets A2 = n/m and takes the agM of m and n;
let this be p. One further takes the agM of m and ./m? — n®, or, what
is the same, of m + n and m — n; let this be A. One then has t = p/A.
This gives only one value of t; all others are contained in the formula

. ot — 2Pi
8 — 2yt
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where o, B, v, & signify all integers which satisfy the equation ad — 4fy = L.”
Recall that Ret > 0, so that our 7 is just ti. Note also that the last
assertion is not quite correct.

Unfortunately, in spite of these compelling fragments, Gauss never actually
stated Theorem 2.2. The closest he ever came is the following quote from
[12, X.1, p. 219]: “The agM changes, when one chooses the negative value for
one of n, n’, n'” etc.: however all resulting values are of the following
form:

1 1 4ik

2

W n A

Here, Gauss is clearly dealing with M(m, n) where m > n > 0. The fraction
1/u in (2.24) is correct: in fact, it can be shown that if the negative value
of n® is chosen, and all other choices are the right choice, then the cor-
responding value p’' of M(m, n) satisfies

(2.24)

1 1+2’“i
pooop A

(see [13, p. 140]). So (2.24) is only a very special case of Theorem 2.2.
There is one final piece of evidence to consider: the 109th entry in
Gauss’ mathematical diary. It reads as follows:

Between two given numbers there are always infinitely many means
both arithmetic-geometric and harmonic-geometric, the observation of
whose mutual connection has been a source of happiness for us.

(See [12, X.1, p. 550]. The harmonic-geometric mean of a and b is
M(a~!, b=~ 1) What is amazing is the date of this entry: June 3, 1800,
a little more than a year after May 30, 1799. We know from §1 that
Gauss’ first proofs of Theorem 1.1 date from December 1799. So less than
six months later Gauss was aware of the multiple valued nature of M(a, b)
and of the relations among these values! One tantalizing question remains:
does the phrase “mutual connection” refer only to (2.24), or did Gauss have
something more like Theorem 2.2 in mind? Just how much did he know
about modular functions as of June 3, 1800? In order to answer these

questions, we need to examine the history of the whole situation more
closely.
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3. HISTORICAL REMARKS

The main difficulty in writing about the history of mathematics is that
so much has to be left out. The mathematics we are studying has a richness
which can never be conveyed in one article. For instance, our discussion
of Gauss’ proofs of Theorem 1.1 in no way does justice to the complexity
of his mathematical thought; several important ideas were simplified or
omitted altogether. This is not entirely satisfactory, yet to rectify such gaps
is beyond the scope of this paper. As a compromise, we will explore the
three following topics in more detail:

A. The history of the lemniscate,
B. Gauss’ work on inverting lemniscatic integrals, and

C. The chronology of Gauss’ work on the agM and theta functions.

A. The lemniscate was discovered by Jacob BernouHi in 1694. He gives
the equation in the form

XX + Yy = a/ XX — yy

(in § 1 we assumed that a = 1), and he explains that the curve has “the
form of a figure 8 on its side, as of a band folded into a knot, or of a
lemniscus, or of a knot of a French ribbon” (see [2, p. 609]). “Lemniscus”
is a Latin word (taken from the Greek) meaning a pendant ribbon fastened
to a victor’s garland.

1
More interesting is that the integral J (1—2z*%"12dz, which gives one-
0

quarter of the arc length of the lemniscate, had been discovered three years
earlier in 1691! This was when Bernoulli worked out the equation of the
so-called elastic curve. The situation is as follows: a thin elastic rod is bent
until the two ends are perpendicular to a given line L.
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After introducing cartesian coordinates as indicated and letting a denote OA,
Bernoulli was able to show that the upper half of the curve is given by the
equation

x z%dz
(3.1) y = e

o Ja* — z*

where 0 < x < a (see [2, pp. 567-600)).
It is convenient to assume that a = 1. But as soon as this is done,
we no longer know how long the rod is. In fact, (3.1) implies that the

arc length from the origin to a point (x, y) on the rescaled elastic curve is
1

J (1—2z*%"12dz. Thus the length of the whole rod is 2j (1—z%"1%dz,

0 0
which is precisely Gauss’ @&!

How did Bernoulli get from here to the lemniscate? He was well aware
of the transcendental nature of the elastic curve, and so he used a standard
seventeenth century trick to make things more manageable: he sought
“an algebraic curve... whose rectification should agree with the rectification
of the elastic curve” (this quote is from Euler [9, XXI, p. 276]).

Jacob actually had a very concrete reason to be interested in arc length:
in 1694, just after his long paper on the elastic curve was published, he
solved a problem of Leibniz concerning the “isochrona paracentrica” (see
[2, pp. 601-607]). This called for a curve along which a falling weight recedes
from or approaches a given point equally in equal times. Since Bernoulli’s
solution involved the arc length of the elastic curve, it was natural for him
to seek an algebraic curve with the same arc length. Very shortly thereafter,
he found the equation of the lemniscate (see [2, pp. 608-612]). So we really
can say that the arc length of the lemniscate was known well before the
curve itself.

But this is not the full story. In 1694 Jacob’s younger brother Johann
independently discovered the lemniscate! Jacob’s paper on the isochrona
paracentrica starts with the differential equation

(xdx+ydyl/y = (xdy—ydx)\/a,

which had been derived earlier by Johann, who, as Jacob rather bluntly
points out, hadn’t been able to solve it. Johann saw this comment for the
first time when it appeared in June 1694 in Acta Eruditorum. He took up
the challenge and quickly produced a paper on the isochrona paracentrica
which gave the equation of the lemniscate and its relation to the elastic
curve. This appeared in Acta Eruditorum in October 1694 (see [3, pp. 119-
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122]), but unfortunately for Johann, Jacob’s article on the lemniscate appeared
in the September issue of the same journal. There followed a bitter priority
dispute. Up to now relations between the brothers had been variable,
sometimes good, sometimes bad, with always a strong undercurrent of com-
petition between them. After this incident, amicable relations were never
restored. (For details of this controversy, as well as a fuller discussion of
Jacob’s mathematical work, see [18].)

We need to mention one more thing before going on. Near the
end of Jacob’s paper on the lemniscate, he points out that the y-value

X
J z%(a*—z*)"Y2dz of the elastic curve can be expressed as the difference
0

of an arc of the ellipse with semiaxes aﬁ and a, and an arc of the
lemniscate (see [2, pp. 611-612]). This observation is an easy consequence
of the equation

X 2d X Zd X 2 2\ 1/2
(32 et | e = | () de
o (a*—z*)Y o (a*—z*)Y o\a" —z

What is especially intriguing is that the ratio \/5: 1, so important in Gauss’
observation of May 30, 1799, was 'present at the very birth of the lemniscate.

Throughout the eighteenth century the elastic curve and the lemniscate
appeared in many papers. A lot of work was done on the integrals

1 1
j (1—-z%"Y2dz and J z2(1—z%"1Y24dz. For example, Stirling, in a work
0 0
written in 1730, gives the approximations

1 dz

= 1.31102877714605987

(1 724z

.)O 1—24

= .59907011736779611

:

(see [31, pp. 57-58]). Note that the second number doubled is

1.19814023473559222, which agrees with M(ﬁ, 1) to sixteen decimal places.
Stirling also comments that these two numbers add up to one half the

circumference of an ellipse with \/5 and 1 as axes, a special case of
Bernoulli’s observation (3.2).
Another notable work on the elastic curve was Euler’s paper “De miris
xxdx

J1—x*

proprietatibus curvae elasticae sub equatione y = contentae”
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which appeared posthumously in 1786. In this paper Euler gives approxima-
tions to the above integrals (not as good as Stirling’s) and, more importantly,
proves the amazing result that

] Jl dz J‘1 z%dz T
3- e —ws—Eaeg S =
(3-) o\/l—z2 o J1—z¢+ 4

(see [9, XXI, pp. 91-118]). Combining this with Theorem 1.1 we see that

M(/2,1) = 2J

so that the coincidence noted above has a sound basis in fact.
We have quoted these two papers on the elastic curve because, as we
will see shortly, Gauss is known to have read them. Note that each paper

has something to contribute to the equality M(ﬁ, 1) = n/&: from Stirling,

we get the ratio \/5 : 1, and from Euler we get the idea of using an
equation like (3.3).

Unlike the elastic curve, the story of the lemniscate in the eighteenth
century is well known, primarily because of the key role it played in the
development of the theory of elliptic integrals. Since this material is thoroughly
covered elsewhere (see, for example, [1, Ch. 1-3], [8, pp. 470-496], [19, § 1-§ 4]
and [21, § 19.4]), we will mention only a few highlights. One early worker
was C. G. Fagnano who, following some ideas of Johann Bernoulli, studied
the ways in which arcs of ellipses and hyperbolas can be related. One result,
known as Fagnano’s Theorem, states that the sum of two appropriately
chosen arcs of an ellipse can be computed algebraically in terms of the
coordinates of the points involved. He also worked on the lemniscate,
starting with the problem of halving that portion of the arc length of the
lemniscate which lies in one quadrant. Subsequently he found methods for
dividing this arc length into n equal pieces, where n = 2™, 3.2™ or 5-:2™
These researches of Fagnano’s were published in the period 1714-1720 in an
obscure Venetian journal and were not widely known. In 1750 he had his
work republished, and he sent a copy to the Berlin Academy. It was given
to Euler for review on December 23, 1751. Less than five weeks later, on
January 27, 1752, Euler read a paper giving new derivations for Fagnano’s
results on elliptic and hyperbolic arcs as well as significantly new results on
lemniscatic arcs. By 1753 he had a general addition theorem for lemniscatic
integrals, and by 1758 he had the addition theorem for elliptic integrals
(see [9, XX, pp. VII-VIII]). This material was finally published in 1761,

z%dz

1
0./1—z

4




]
|
i
|
3
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and for the first time there was a genuine theory of elliptic integrals. For
the next twenty years Euler and Lagrange made significant contributions,
paving the way for Legendre to cast the field in its classical form which
we glimpsed at the end of § 1. Legendre published his definitive treatise on
elliptic integrals in two volumes in 1825 and 1826. The irony is that in
1828 he had to publish a third. volume describing the groundbreaking papers
of Abel and Jacobi which rendered obsolete much of his own work
(see [23]). ,

An important problem not mentioned so far is that of computing tables
of elliptic integrals. Such tables were needed primarily because of the many
applications of elliptic integrals to mechanics. Legendre devoted the entire
second volume of his treatise to this problem. Earlier Euler had computed
these integrals using power series similar to (1.8) (see also [9, XX, pp. 21-55]),
but these series often converged very slowly. The real breakthrough came
in Lagrange’s 1785 paper “Sur une nouvelle méthode de calcul intégral”
(see [22, pp. 253-312]). Among other things, Lagrange is concerned with
integrals of the form

(3.4) f M dy
' JA+p) (1+4%7)

where M is a rational function of y? and p > q > 0. He defines sequences
o0, 4q4q5q", .. as follows:

| P =p+@—-¢)"?4q =p— @p*—-9)"?,
(3.5)
pr=p +@=q)"?q =p — @0*—qgH"?,

and then, using the substitution

, (L +p?y?) (1+g%y?)'?
y = 1+ q2y2

(3.6)

he shows that
37 A+ (L+g%y?) 1 Pdy = (1+p%y?) (1+47%y?) "y

Two methods of approximation are now given. The first starts by
observing that the sequence p,p’, p”,.. approaches +oo while g, 4, q", ..
approaches 0. Thus by iterating the substitution (3.6) in the integral of (3.4),

1
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one can eventuélly assume that ¢ = 0, which gives an easily computable
integral. The second method consists of doing the first backwards: from (3.5)
one easily obtains

p=0@+q9)2, q=@q9".
Lagrange then observes that continuing this process leads to sequences
,p.,'’p,"p, 454, 'q,"q, .. Which converge to a common limit (see [22,
p. 271]). Hence iterating (3.6) allows one to eventually assume p = g,
again giving an easily computable integral.

So here we are in 1785, staring at the definition of the arithmetic-
geometric mean, six years before Gauss’ earliest work on the subject. By
setting py = tan¢, one obtains

(1+p2y?®) (1+q%y?) Y2y = (p*cos’d+q’sin*¢) ™ '2dd,

so that (3.6) and (3.7) are precisely (1.5) and (1.6) from the proof of The-
orem 1.1. Thus Lagrange not only could have defined the agM, he could
have also proved Theorem 1.1 effortlessly. Unfortunately, none of this
happened; Lagrange never realized the power of what he had discovered.

One question emerges from all of this: did Gauss ever see Lagrange’s
article? The library of the Collegium Carolinum in Brunswick had some of
Lagrange’s works (see [4, p. 9]) and the library at Gottingen had an
extensive collection (see [12, X.2, p. 22]). On the other hand, Gauss, in
the research announcement of his 1818 article containing the proof of
Theorem 1.1, claims that his work is independent of that of Lagrange and
Legendre (see [12, III, p. 360]). A fuller discussion of these matters is in
[12, X.2, pp. 12-22]. Assuming that Gauss did discover the agM independently,
we have the amusing situation of Gauss, who anticipated so much in Abel,
Jacobi and others, himself anticipated by Lagrange.

The elastic curve and the lemniscate were equally well known in the
eighteenth century. As we will soon see, Gauss at first associated the integral

J(l—z"')“” 2dz with the elastic curve, only later to drop it in favor of the

lemniscate. Subsequent mathematicians have followed his example. Today, the
elastic curve has been largely forgotten, and the lemniscate has suffered the
worse fate of being relegated to the polar coordinates section of calculus
books. There it sits next to the formula for arc length in polar coordinates,

which can never be applied to the lemniscate since such texts know nothing
of elliptic integrals.
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B. Our goal in describing Gauss’ work on the lemniscate is to learn
more of the background to his observation of May 30, 1799. We will see
that the lemniscatic functions played a key role in Gauss’ development of
the arithmetic-geometric mean.

Gauss began innocently enough in September 1796, using methods of
Euler to find the formal power series expansion of the inverse function of

first J(l—x3)"1/2dx, and then more generally J(l—x")_”zdx (see [12, X.1,

p. 502]). Things became more serious on January 8, 1797. The Slst entry
in his mathematical diary, bearing this date, states that “I have begun to

investigate the elastic curve depending on f(l—x“)"”%lx.” Notes written

at the same time show that Gauss was reading the works of Euler and
Stirling on the elastic curve, as discussed earlier. Significantly, Gauss later
struck out the word “elastic” and replaced it with “lemniscatic” (see [12, X.1,

pp. 147 and 510]).
Gauss was strongly motivated by the analogy to the circular functions.

1
For example, notice the similarity between /2 =J (1—2z%~2dz and
0

1
/2 = J (1—2z%)"Y2dz. (This similarity is reinforced by the fact that many
0

eighteenth century texts used ® to denote m — see [12, X.2, p. 33])
Gauss then defined the lemniscatic functions as follows:

sinlemn <J (1 ——z“)_”zdz> = X
0

coslemn ((D/2 — j (1——24)‘1/2dz> = X

0

(see [12, III, p. 404]). Gauss often used the abbreviations sl ¢ and cl ¢
for sinlemn ¢ and coslemn ¢ respectively, a practice we will adopt. From
Euler’s addition theorem one easily obtains

(3.8) sI2p + cl2p + si2¢ o2 = 1

sldcld’ +sld'clo
1 —slosl¢'cl el

(3.9) slio+¢') =

(see [12, X.1, p. 147]).
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Other formulas can now be derived in analogy with the trigonometric
functions (see [25, pp. 155-156] for a nice treatment), but Gauss went much,
much farther. A series of four diary entries made in March 1797 reveal the
amazing discoveries that he made in the first three months of 1797. We will
need to describe these results in some detail.

Gauss started with Fagnano’s problem of dividing the lemniscate into n
equal parts. Since this involved an equation of degree n?, Gauss realized that
most of the roots were complex (see [12, X.1, p. 515]). This led him to
define sl ¢ and cl ¢ for complex numbers ¢. The first step is to show that

si(iy) = isly, cliiy) = 1/cl(y),

(the first follows from the change of variable z = iz in j(l—z‘*)_l"‘zdz,
and the second follows from (3.8)). Then (3.9) implies that

slx +islycxdy
sl(x+i}:):sx+ls'1c X cl)

cly —islxslyclx

(see [12, X.1, p. 154]).

It follows easily that sl ¢ is doubly periodic, with periods 2® and 2i.
The zeros and poles of sl ¢ are also easy to determine; they are given by
¢ = (m+in)® and ¢ = (2m—1)+i2n—1)) (®/2), m, n € Z, respectively. Then
Gauss shows that sl ¢ can be written as

sl = M(®)

N(9)
where M($) and N(¢) are entire functions which are doubly indexed
infinite products whose factors correspond to the zeros and poles respect-
ively (see [12, X.1, pp. 153-155]). In expanding these products, Gauss
writes down the first examples of Eisenstein series (see [12, X.1, pp. 515-516]).

He also obtains many identities involving M($) and N(¢), such as
(3.10) NQ2¢) = M(9)* + N(¢)*

(see [12, X.1, p. 157]). Finally, Gauss notices that the numbers N(®)
and ¢"? agree to four decimal places (see [12, X.1, p. 158]). He comments
that a proof of their equality would be “a most important advancement
of analysis” (see 12, X.1, p. 517]).

Besides being powerful mathematics, what we have here is almost a
rehearsal for what Gauss did with the arithmetic-geometric mean: the
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observation that two numbers are equal, the importance to analysis of
proving this, and the passage from real to complex numbers in order to
get at the real depth of the subject. Notice also that identities such as
(3.10) are an important warm-up to the theta function identities needed
in § 2.

- Two other discoveries made_ at this time require comment. First, only
a year after constructing the regular 17-gon by ruler and compass, Gauss
found a ruler and compass construction for dividing the lemniscate into
five equal pieces (see [12, X.1, p. 517]). This is the basis for the remarks

concerning J(l—x‘*)"mdx made in Disquisitiones Arithmeticae (see [11,

§ 335]). Second, Gauss discovered the complex multiplication of elliptic
functions when he gave formulas for sl(1+i)¢, N(1+i)o, etc. (see [12, III,
pp. 407 and 411]). These discoveries are linked: complex multiplication on
the elliptic curve associated to the lemniscate enabled Abel to determine
all n for which the lemniscate can be divided into n pieces by ruler and
compass. (The answer is the same as for the circle! See [28] for an
excellent modern account of Abel’s theorem.)

After this burst of progress, Gauss left the lemniscatic functions to work
on other things. He returned to the subject over a year later, in July 1798,
and soon discovered that there was a better way to write sl ¢ as a quotient

) . . . . T
of entire functions. The key was to introduce the new variable s = sin (8 d)) :

Since sl ¢ has period 2@, it can certainly be written as a function of s.
By expressing the zeros and poles of sl ¢ in terms of s, Gauss was able
to prove that

sl¢=P—(@

%)’

. ® 45> 4s*
P(d)) = ES(I + m) (1 1 (ezn_e_zﬂ)2>...

452 45?
Q(¢) = (1 - (en/2+e—n/2)2> (1 - (e3n/2+e—3n/2)2)

(see [12, III, pp. 415-416]). Relating these to the earlier functions M(d)
and N(¢), Gauss obtains (letting ¢ =)

MW®) = e P(y®),

where
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N®) = ™72 Q(®),

(see [12, III, p. 416]). Notice that N(®) = ¢"? is an immediate consequence
of the second formula.

Many other things were going on at this time. The appearance of m/®
sparked Gauss’ interest in this ratio. He found several ways of expressing
&/m, for example

® /2 121 /3?1 [5)21

and he computed ®/n to fifteen decimal places (see [12, X.1, p. 169]).
He also returned to some of his earlier notes and, where the approximation

1
2 J z2(1—2z%"12dz ~ 1.198 appears, he added that this is n/® (see [12, X.1,

0

pp. 146 and 150]). Thus in July 1798 Gauss was intimately familiar with

the right-hand side of the equation M(ﬁ, 1) = n/®. Another problem he
studied was the Fourier expansion of sl ¢. Here, he first found the numerical
value of the coefficients, i.e.

sl y® = 95500599 sin Yyt — .04304950 sin 3 Yy + ...,
and then he found a formula for the coefficients, obtaining

4n in 4n
S ym —
B(e™? +e7™?) ®(e>™? 7 32)

sl y® = sin 3y + ...
see [12, X.1, p. 168 and III, p. 417)).

The next breakthrough came in October 1798 when Gauss computed the
Fourier expansions of P($) and Q(¢). As above, he first computed the
coefficients numerically and then tried to find a general formula for them.
Since he suspected that numbers like e™", e~ "2 etc, would be involved,

he computed several of these numbers (see [12, III, pp. 426-432]). The final
formulas he found were

Py®) =

23/%(m/e5) /2 (e‘""‘ sin Y — e”*"* sin 3 yn + e~ 25" sin SYn — ) |

(312)  Q(ym) =

27 V4 (r /@) /2 (1 + 2e7" cos 2ym + 2e”*" cos 4y + 2e”°F cos 6y + )
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(see [12, X.1, pp. 536-537]). A very brief sketch of how Gauss proved
these formulas may be found in [12, X.2, pp. 38-39].

These formulas are remarkable for several reasons. First, recall the theta
functions ®; and ®;:

9/4 25/4

®,(z,q) = 2q'*sin z — 2q°* sin 3z + 2q*** sin 5z — ..

(3.13)
O5(z,q) = 1 + 2q cos 2z + 2q* cos 4z + 2q° cos 6z + ...

(see [36, p. 464]). Up to the constant factor 2~ '*(r/@)'/?, we see that
P(y®) and Q(y®) are precisely ®,(Ym,e™ ™) and O;(Ym, e ™ respectively.
Even though this is just a special case, one can easily discern the general
form of the theta functions from (3.12). (For more on the relation between
theta functions and sl ¢, see [36, pp. 524-525]).

Several interesting formulas can be derived from (3.12) by making specific
choice for . For example, if we set v = 1, we obtain

JO/m = 27114274207 227" 4 ).

Also, if we set ¢ = 1/2 and use the nontrivial fact that P(®/2) = Q(&/2)
= 27 1% (this is a consequence of the formula Q(2¢) = P(d)* + Q(d)* — see
(3.10)), we obtain

O/ = 2e e e ML )
(3.14)

JO/m =1 —2e ™ 4 274 — 227" 4 .

Gauss wrote down these last two formulas in October 1798 (see [12, III,
p. 418]). We, on the other hand, derived the first and third formulas as
(2.21) in §2, only after a very long development. Thus Gauss had some
strong signposts to guide his development of modular functions.

These results, all dating from 1798, were recorded in Gauss’ mathematical
diary as the 91st and 92nd entries (in July) and the 95th entry (in
October). The statement of the 92nd entry is especially relevant: “I have
obtained most elegant results concerning the lemniscate, which surpasses
all expectation—indeed, by methods which open an entirely new field to us”
(see [12, X.1, p. 535]). There is a real sense of excitement here; instead
of the earlier “advancement of analysis” of the 63rd entry, we have the much
stronger phrase “entirely new field.” Gauss knew that he had found
something of importance. This feeling of excitement is confirmed by the
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95th entry: “A new field of analysis is open before us, that is, the investigation
of functions, etc.” (see [12, X.1, p. 536]). It’s as if Gauss were so enraptured
he didn’t even bother to finish the sentence. X

More importantly, this “new field of analysis” is clearly the same
“entirely new field of analysis” which we first saw in § 1 in the 98th entry.
Rather than being an isolated phenomenon, it was the culmination of years
of work. Imagine Gauss’ excitement on May 30, 1799: this new field which
he had seen grow up around the lemniscate and reveal such riches, all of a
sudden expands yet again to encompass the arithmetic-geometric mean, a
subject he had known since age 14. All of the powerful analytic tools he had
developed for the lemniscatic functions were now ready to be applied to
the agM.

C. In studying Gauss’ work on the agM, it makes sense to start by

asking where the observation M(\/E, 1) = n/® came from. Using what we
have learned so far, part of this question can now be answered: Gauss was
very familiar with n/®, and from reading Stirling he had probably seen the

ratio \/5 : 1 associated with the lemniscate. (In fact, this ratio appears in most
known methods for constructing the lemniscate—see [24, pp. 111-117].) We
have also seen, in the equation N(®) = €2, that Gauss often used numerical
calculations to help him discover theorems. But while these facts are
enlightening, they still leave out one key ingredient, the idea of taking the

agM of ﬁ and 1. Where did this come from? The answer is that every
great mathematical discovery is kindled by some intuitive spark, and in our
case, the spark came on May 30, 1799 when Gauss decided to compute
M(/2, 1).

We are still missing one piece of our picture of Gauss at this time:
how much did he know about the agM? Unfortunately, this is a very
difficult question to answer. Only a few scattered fragments dealing with the
agM can be dated before May 30, 1799 (see [12, X.1, pp. 172-173 and 2607]).
As for the date 1791 of his discovery of the agM, it comes from a letter
he wrote in 1816 (see [12, X.1, p. 247]), and Gauss is known to have
been sometimes wrong in his recollections of dates. The only other knowledge
we have about the agM in this period is an oral tradition which holds
that Gauss knew the relation between theta functions and the agM in 1794
(see [12, III, 493]). We will soon see that this claim is not as outrageous
as one might suspect.

It is not our intention to give a complete account of Gauss’ work on
the agM. This material is well covered in other places (see [10], [12, X.2,
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pp. 62-114], [13], [14] and [25]—the middle three references are especially
complete), and furthermore it is impossible to give the full story of what
happened. To explain this last statement, consider the following formulas:

B + (1/4)B> + (9/64)B° + .. = 22242224 )% = ¢,
(3.15)
a

T 1 + (1/4)B% + (9/64)B* + ... ,

where B = (1—(b/a)*)!/%. These come from the first surviving notes on the
agM that Gauss wrote after May 30, 1799 (see [12, X.1, pp. 177-178]).

Ifweseta = land b = k' = ./1—k?, then B = k, and we obtain

= 1 + (1/4)k* + (9/64)k* + ...

M, k)
(3.16)

MR = (221242292 + )% = r?.
The first formula is (1.8), and the second, with z = "2, follows easily
from what we learned in §2 about theta functions and the agM. Yet the
~formulas (3.15) appear with neither proofs nor any hint of where they came
from. The discussion at the end of § 1 sheds some light on the bottom
formula of (3.15), but there is nothing to prepare us for the top one.

It is true that Gauss had a long-standing interest in theta functions,
going back to when he first encountered Euler’s wonderful formula

0

__ii (——1)" x(3n2+n)/2 — H (I—X").

n e 0} n=1

The right-hand side appears in a fragment dating from 1796 (see [12, X.1,
p. 142]), and the 7th entry of his mathematical diary, also dated 1796, gives a
continued fraction expansion for

1—-248—-64+ ...

Then the 58th entry, dated February 1797, generalizes this to give a con-
tinued fraction expansion for

l =g+ 4 — g%+ g® —

(see [12, X.1, pp. 490 and 513]). The connection between these series and
lemniscatic functions came in October 1798 with formulas such as (3.14).
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This seems to have piqued his interest in the subject, for at this time he
also set himself the problem of expressing

(3.17) | T+ x+ x>+ x% 4+ x1% + .

as an infinite product (see [12, X.1, p. 538]). Note also that the first
formula of (3.14) gives r with z = e~ ™2,

Given these examples, we can conjecture where (3.15) came from. Gauss
could easily have defined p, ¢ and r in general and then derived identities
(2.8)-(2.9) (recall the many identities obtained in 1798 for P(¢) and Q(¢p)—see
(3.10) and [12, III, p. 410]). Then (3.15) would result from noticing that
these identities formally satisfy the agM algorithm, which is the basic content
of Lemma 2.3. This conjecture is consistent with the way Gauss initially
treated z as a purely formal variable (the interpretation z = e~ ™Y was only
to come later—see [12, X.1, pp. 262-263 and X.2, pp. 65-66]).

The lack of evidence makes it impossible to verify this or any other
reasonable conjecture. But one thing is now clear: in Gauss’ observation
of May 30, 1799, we have not two but three distinct streams of his thought

coming together. Soon after (or simultaneous with) observing that M(ﬁ, 1)
= 7/6, Gauss knew that there were inimate connections between lemniscatic
functions, the agM, and theta functions. The richness of the mathematics we
have seen is in large part due to the many-sided nature of this confluence.

There remain two items of unfinished business. From § 1, we want to deter-
mine more precisely when Gauss first proved Theorem 1.1. And recall from § 2
that on June 3, 1800, Gauss discovered the “mutual connection” among
the infinitely many values of M(a, b). We want to see if he really knew the
bulk of §2 by this date. To answer these questions, we will briefly
examine the main notebook Gauss kept between November 1799 and
July 1800 (the notebook is “Scheda Ac” and appears as pp. 184-206 in
[12, X.1]).

The starting date of this notebook coincides with the 100th entry of
Gauss’ mathematical diary, which reads “We have uncovered many new
things about arithmetic-geometric means” (see [12, X.1, p. 5441]). After several
pages dealing with geometry, one all of a sudden finds the formula (3.11)
for @/n. Since Gauss knew (3.15) at this time, we get an immediate proof

of M(\/i, 1) = n/®. Gauss must have had this in mind, for otherwise why
would he so carefully recopy a formula proved in July 1798? Yet one could
also ask why such a step is necessary: isn’t Theorem 1.1 an immediate
consequence of (3.15)? Amazingly enough, it appears that Gauss wasn’t yet
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aware of this connection (see [12, X.1, p. 262]). Part of the problem is
that he had been distracted by the power series, closely related to (3.15),
which gives the arc length of the ellipse (see [12, X.1, p. 177]). This
distraction was actually a bonus, for an asymptotic formula of Euler’s for
the arc length of the ellipse led Gauss to write

(W2 (x—oxT =PxT—)
(3.18) M(x, 1) = a7

where x = k™!, and z and k are as in (3.16) (see [12, X.1, pp. 186 and
268-270]). He was then able to show that the power series on top was
(k M(1, k'))~ ', which implies that

2 = exp| — & MULK)
= P\ T MLk

(see [12, X.1, pp. 187 and 190]). Letting z = e™”? we obtain formulas
similar to (2.20). More importantly, we see that Gauss is now in a position
to uniformize the agM; z is no longer a purely formal variable.

In the process of studying (3.18), Gauss also saw the relation between
the agM and complete elliptic integrals of the first kind. The formula

1
follows easily from [12, X.1, p. 187], and this is trivially equivalent to (1.7).
Furthermore, we know that this page was written on December 14, 1799
since on this date Gauss wrote in his mathematical diary that the agM
was the quotient of two transcendental functions (see (3.18)), one of which
was itself an integral quantity (see the 101st entry, [12, X.1, 544]). Thus
Theorem 1.1 was proved on December 14, 1799, nine days earlier than our
previous estimate.

Having proved this theorem, Gauss immediately notes one of its
corollaries, that the “constant term” of the expression (1+p cos?dp)™ /2 is

M(/1+p, 1)~ (see [12, X.1, p. 188]). By “constant term” Gauss means
the coefficient A in the Fourier expansion

(1+pcos?p) 2 = A+ A cosd + A" cos 2 + ... .

n/2

Z
Since A is the integral — J (1+p cos®d) ™ H2d¢d, the desired result follows
mJo

from Theorem 1.1. This interpretation is important because these coefficients
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are useful in studying secular perturbations in astronomy (see [12, X1,
pp. 237-242]). It was in this connection that Gauss published his 1818 paper
[12, III, pp. 331-355] from which we got our proof of Theorem 1.1.

What Gauss did next is unexpected: he used the agM to generalize the
lemniscate functions to arbitrary elliptic functions, which for him meant inverse
functions of elliptic integrals of the form

J(l—%—pzsinzd))““zdd) = J((l—xz) (1+p2x?)~V%dx .

Note that p = 1 corresponds to the lemniscate. To start, he first set
L= tanv,

T COS V , T COS V

_— m = —
M(1, cosv) M(1, sinv)

and finally

11 T o\ n M(1, cosv)

3.19) E=P T ) TP 2 M(1,sinv) )
- . T(¢)

Then he defined the elliptic function S(d) by S(¢) = m where

TO6) = 2u~ Y2 /M1, cosv) (z'/%sinym — z%/?sin3ym + ...)
(3.20)

W®) = /M(1, cosv) (1 +2z%cos2ym + 2z8cosdym +...)

(see [12, X.1, pp- 194-195 and 198]). In the pages that follow, we find
‘the periods 2@ and 2i®’, the addition formula, and the differential equation
connecting S(¢) to the above elliptic integral. Thus Gauss had a complete
theory of elliptic functions.

In general, there are two basic approaches to this subject. One involves
direct inversion of the elliptic integral and requires a detailed knowledge of
the associated Riemann surface (see [17, Ch. VII]). The other more common
spproach defines elliptic functions as certain series (B-functions) or quotients
of series (theta functions). The difficulty is proving that such functions invert
- all elliptic integrals. Classically, this uniformization problem is solved by
studying a function such as k(t)* (see [36, § 20.6 and § 21.73]) or j(1) (as in
most modern texts—see [30, §4.2]). Gauss uses the agM to solve this
problem: (3.19) gives the desired uniformizing parameter! (In this connection,
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the reader should reconsider the from [12, VIII, p. 101] given near

the end of § 2.) _

For us, the most interesting aspect of what Gauss did concerns the
functions T and W. Notice that (3.20) is a direct generalization of (3.12);
in fact, in terms of (3.13), we have

T(po) = u™ 2 (/M(1, cosv) ©,(Ym, z),

W) = /M(1, cosv) ®,(Ym, z2).

Gauss also introduces T(®/2—¢) and W(®/2— ¢), which are related to the
theta functions ®, and ®, by similar formulas (see [12, X.1, pp. 196 and
275]). He then studies the squares of these functions and he obtains
identities such as

204(0, z%) ©;32¢, %) = O4(d, 2°)* + Oy, 2%)°

(this, of course, is the modern formulation—see [12, X.1, pp. 196 (Eq. 14)
and 275]). When ¢ ='0, this reduces to the first formula

p(7)* + g(1)* = 2p(27)*

of (2.8). The other formulas of (2.8) appear similarly. Gauss also obtained
product expansions for the theta functions (see [12, X.1, pp. 201-205]).
In particular, one finds all the formulas of (2.6). These manipulations yielded
the further result that

1+z+4+2°+202'° + 1’] 1—2)"Y1-2%),

solving the problem he had posed a year earlier in (3.17).

From Gauss’ mathematical diary, we see that the bulk of this work was
done in May 1800 (see entries 105, 106 and 108 in [12, X.1, pp. 546-549]).
The last two weeks were especially intense as Gauss realized the special
role played by the agM. The 108th entry, dated June 3, 1800, announces
completion of a general theory of elliptic functions (“sinus lemniscatici univer-
salissime accepti”). On the same day he recorded his discovery of the “mutual
connection” among the values of the agM !

This is rather surprising. We've seen that Gauss knew the basic identities
(2.6), (2.8) and (2.9), but the formulas (2.7), which tell us how theta functions
behave under linear fractional transformations, are nowhere to be seen, nor
do we find any hint of the fundamental domains used in § 2. Reading this
notebook makes it clear that Gauss now knew the basic observation of
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Lemma 2.3 that theta functions satisfy the agM algorithm, but there is no
way to get from here to Theorem 2.2 without knowing (2.7). It 1S not
until 1805 that this material appears in Gauss’ notes (see [12, X.2, pp. 101-
103]). Thus some authors, notably Markushevitch [25], have concluded that
on June 3, 1800, Gauss had nothing approaching a proof of Theorem 2.2.

Schlesinger, the last editor of Gauss’ collected works, feels otherwise.
He thinks that Gauss knew (2.7) at this time, though knowledge of the
fundamental domains may have not come until 1805 (see [12, X.2, p. 106]).
Schlesinger often overestimates what Gauss knew about modular functions,
but in this case I agree with him. As evidence, consider pp. 287-307 in
[12, X.1]. These reproduce twelve consecutive pages from a notebook written
in 1808 (see [12, X.1, p. 322]), and they contain the formulas (2.7), a clear
statement of the basic observation of Lemma 2.3, the infinite product
manipulations described above, and the equations giving the division of the
agM into 3, 5 and 7 parts (in analogy with the division of the lemniscate).
The last item is especially interesting because it relates to the second half
of the 108th entry: “Moreover, in these same days, we have discovered the
principles according to which the agM series should be interpolated, so as
to enable us to exhibit by algebraic equations the terms in a given pro-
gression pertaining to any rational index” (see [12, X.1, p. 548]). There is no
other record of this in 1800, yet here it is in 1808 resurfacing with other
material (the infinite products) dating from 1800. Thus it is reasonable to
assume that the rest of this material, including (2.7), also dates from 1800.
Of course, to really check this conjecture, one would have to study the
original documents in detail.

Given all of (2.6)-(2.9), it is still not clear where Gauss got the basic
insight that M(a, b) is a multiple valued function. One possible source of
inspiration is the differential equation (1.12) whose solution (1.13) suggests
linear combinations similar to those of Theorem 2.2. We get even closer
to this theorem when we consiser the periods of S(¢):

m@® + in®' = mcosv i + m'
M(1, cosv)  M(l, sinv)

where m, n are even integers. Gauss’ struggles during May 1800 to understand
the imaginary nature of these periods (see [12, X.2, pp. 70-71]) may have
influenced his work on the agM. (We should point out that the above
comments are related: Theorem 2.2 can be proved by analyzing the mono-
dromy group—I ,(4) in this case—of the differential equation (1.12).) On the
other hand, Geppert suggests that Gauss may have taken a completely different
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route, involving the asymptotic formula (3.18), of arriving at Theorem 2.2
(see [14, pp. 173-175]). We will of course never really know how Gauss
arrived at this theorem.

For many years, Gauss hoped to write up these results for publication.
He mentions this in Disquisitiones Arithmeticae (see [11, § 335]) and in the
research announcement to his 1818 article (see [12, III, p. 358]). Two
manuscripts written in 1800 (one on the agM, the other on lemniscatic
functions) show that Gauss made a good start on this project (see [12, III,
pp. 360-371 and 413-415]). He also periodically returned to earlier work and
rewrote it in more complete form (the 1808 notebook is an example of
this). Aside from the many other projects Gauss had to distract him, it is
clear why he never finished this one: it was simply too big. Given his
predilection for completeness, the resulting work would have been enormous.
Gauss finally gave up trying in 1827 when the first works of Abel and
Jacobi appeared. As he wrote in 1828, “I shall most likely not soon prepare
my investigations on transcendental functions which I have had for many
years—since 1798—because I have many other matters which must be cleared
up. Herr Abel has now, I see, anticipated me and relieved me of the burden
in regard to one third of these matters, particularly since he carried out all
developments with great concision and elegance” (see [12, X.1, p. 248]).

The other two thirds “of these matters” encompass Gauss’ work on the
agM and modular functions. The latter were studied vigorously in the
nineteenth century and are still an active area of research today. The agM,
on the other hand, has been relegated to the history books. This is not
entirely wrong, for the history of this subject is wonderful. But at the same
time the agM is also wonderful as mathematics, and this mathematics
deserves to be better known.
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