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This lemma implies that Rw is nowhere dense too, so we may apply
Theorem 2 to the collection {Rw}, yielding Theorem 1 (a) forH3. This
completes the proof of Theorem 1.

§ 7. Geometrical Consequences

In this section we summarize some striking geometrical consequences
of the existence of large free groups. The following theorem illustrates what
can be done with locally commutative actions. Unlike the preceding sections,
the results of this section all use the Axiom of Choice. We use DAE
to denote (D\E) u (E\D).

Theorem 4. Suppose a free group, G, of rank k(k^2) is locally
commutative in its action on X.

(a) If (and only if) kx k | X |, then there is a subset E of X
such that for any D c X with ] D | ^ X, there is some a e G such that
<j{E) — E À D. In short, E is invariant under the addition and deletion

of any X points of X.

(b) X may be partitioned into k sets, Aa, a < k, such that each

Aa is G-equidecomposable with X using 2 pieces, i.e. for each a there

are aa, xa e G and Ba, Ca Aa such that {Ba, Ca} partitions Aa

and {ofBJ, xa(Ca)} partitions X. In short, X may be taken apart into
pieces which may be rearranged to form k copies of X.

(c) There is a subset E of X such that for any cardinal X satisfying
3 ^ X ^ k, X may be partitioned into X G-congruent pieces, each of
which is G-congruent to E. In short, E is, simultaneously, a third, a

quarter, a kTh part of X. (If the action is fixed-point free, then
X 2 is also permitted — see Theorem 6.)

Parts (b) and (c) of this theorem are applications of a more general
fact about locally commutative actions of a free group, which is described

following Theorem 6.

Theorem 1 shows that all parts of the preceding theorem, with k 2**°,

apply to S", LP and Hn(n^2) and Rn(n^3), where G is either G(X) or,
in the case of Ln, the group of all isometries. Note that, since (2^°)Xo — 2Ko,

part (a) yields a set that is invariant under the addition or deletion of
countably many points. Because the existence of large free locally
commutative groups was already known in most of these cases, so were the

consequences by Theorem 4; only the cases of S4 and L4 are new.
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Part (a) is due to Mycielski [24]. It is known to be false in R1, R2

and S1 even if one only seeks invariance with respect to the deletion of

single points (Sierpinski [37], Straus [38]). Under appropriate (and necessary)

assumptions about cardinal arithmetic, part (a) can be used to get sets

invariant under the addition and deletion of certain uncountable sets of

points. For example, the (consistent) assumption that 2*° 2Nl X2 implies

that (2Xo)Xl «= 2Ko, so part (a) is valid with k 2Ko and X The

proof of Theorem 4 (a) uses the Axiom of Choice, but it is not known

whether the set E must necessarily be nonmeasurable.

Part (b) is a refinement of the classical Banach-Tarski Paradox on S2

along lines first investigated by Robinson [34] and Sierpinski [36]. As stated

above, the result is due to Dekker [7], who also proved the following
converse.

Theorem 5. Suppose k ^ 2 and the action of G on X satisfies

assertion (b) of Theorem 4. Then G contains a free subgroup of rank k
whose action on X is locally commutative ; indeed a"1 xa, a < k, freely
generate such a subgroup.

Work of Banach and von Neumann (see [27]) yields that a solvable

group is amenable and whenever an amenable group G acts on X then
there exists a finitely additive G-invariant measure p defined on all subsets

of X, with p(AT) 1. This implies that Theorem 4 (b) is not valid for
S1, R1 or R2, even for k 2.

Part (c) of Theorem 4 (Mycielski [22]) is a generalization of an earlier
result of Robinson [34], who showed that S2 may be divided into 3

(or n, if 3^n<X0) rotationally congruent pieces. It is not clear that
Robinson's result requires nonmeasurable pieces, and the following problem
(Mycielski [23]) is still unsolved.

Problem. Can S2 be partitioned into 3 rotationally congruent, Lebesgue
measurable sets?

The assertion of 4 (c), however, does necessitate nonmeasurable pieces in
Sn and R" (for the latter, and for the case of Hn, see § 8). Hence, for the
same reasons as for 4(b), 4(c) is false in S\ R1 and R2. However, for any
X ^ 2*°, S1 may be partitioned into X pairwise congruent pieces (see [40]).
Note that X 2 is omitted from part (c); this is because every element
of S03, for example, has a fixed point in S2, therefore S2 cannot be split
into two S03-congruent pieces.
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Parts (b) and (c) of Theorem 4 are related to the solution of certain

systems of congruences. The following theorem (Dekker [7]) shows that a

fixed-point free action allows a wide variety of such systems to be solved.

Theorem 6. Suppose the action of G, a free group of rank k, on

X is fixed-point free and {u{Ta:aeLß} u {Ta:aeRß}: ß < k} is a

system of k congruences, where each Lß and Rß is a proper and

nonempty subset of X. Then X can be partitioned into sets Aa, a < X,

so that each congruence in the system is witnessed by some free generator
of G.

A similar result is true for locally commutative actions, but one has

to restrict the systems of congruences to those systems which do not,
explicitly or implicity, imply that a set is congruent to its complement.
Parts (b) and (c) of Theorem 4 are consequences of this general result.

For example, to obtain (b) consider the system.

{Ta u{Tß : ß < k ß^a+l}:a<K,a even}

and, for a < k, a even, let Ba Aa, Ca Aa+1.
Because of Theorem 1, Theorem 6, with k 2Ko, applies to Sn and

Ln if n ^ 3 and n is odd, and to Hn and R" if n ^ 3. Moreover, it
applies to H2 if k K0. Since, as just shown, the conclusion of Theorem 6

implies the assertion of Theorem 4 (b), it follows from Theorem 5 that a

partial converse to Theorem 6 is valid: if an action admits a solution to
all K-sized systems of congruences, then G contains a free locally
commutative subgroup of rank k. But the stronger converse to Theorem 6,

i.e., the existence of a fixed-point free subgroup, is false. This follows from
work of Adams [1], who showed that if the antipodal map from Sn to
Sn is available, as it is in SO2n or any On, then a locally commutative
free group is sufficient to obtain the conclusion of Theorem 6, provided no
element of the locally commutative group has — 1 as an eigenvalue. This

latter condition is clearly satisfied by a free subgroup of S03, so Adams'

theorem yields the conclusion of Theorem 6 for the action of 03 on S2,

with k 2Xo. But no free subgroup of 03 is fixed-point free in its action

on S2.

Because no elements of the locally commutative free subgroups of SOn

constructed by Dekker [7] and Borel [5] have —1 as an eigenvalue,

Adams' technique yields the conclusion of Theorem 6, with k 2Xo, for
the action of On + 1 on S", for all n > 2. In- fact, any non-Abelian locally
commutative free subgroup of S03, S04 or S05 must avoid —1 as an

eigenvalue. For S03 this is clear since a rotation that sends a point to its
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antipode must have order 2. Suppose er, t g S05 freely generate a locally
commutative group and some word w has —1 as an eigenvalue. Then this

eigenvalue must have multiplicity 2, whence w2 fixes a 3-dimensional sub-

space of R5. Assume w2 does not begin, on the left, with <j±1 and let

ii (jw2o~1. By freeness, u and w2 are not powers of a common word;
therefore u and w2 do not commute (see [21, p. 42]). But u also fixes

a 3-dimensional subspace, so u and w2 must share a fixed point on the unit
sphere, which contradicts local commutativity. A similar argument works in
R4: choose a basis consisting of two linearly independent fixed points of w2

and two linearly independent fixed points of u; it follows that u and w2

commute. These arguments lead to the following question.

Problem. Does S06 (or SOn, n^6) have a locally commutative free

subgroup of rank 2 which contains a transformation having — 1 as an
eigenvalue

As an application of Theorem 6, consider the result of Theorem 4 (c).

A solution of the following system of 2Xo congruences involving a < 2No,

yields a set E satisfying Theorem 4 (c) for any X such that 2 ^ X ^ 2Xo :

A0 EE Tß, ß < 2*°

Aß u{Aa:ß < a < 2*°} ß < 2*°.
Hence, using Adams' result (when necessary), we obtain the following
corollary to Theorems 1 and 5.

Corollary. Let X be any of Sn, n ^ 3, n odd, or R" or Hn,
with n ^ 3, and let G G{X). Or, let X be Sn, n > 2 or Ln,
n ^ 3, n odd, with G being the group of all isometries of X. Then
there is a subset E of X such that, for any X with 2 ^ X ^ 2Xo,
X may be split into X sets, each of which is G-congruent to E.

Because of the anomaly about H2 discussed in § 6, it is not known whether
the conclusion of Theorem 6 is valid in H2 for some uncountable k. In
particular, we have the following problem, where a set is called a ÎCth part of
H if H2 splits into X sets, each of which is congruent, via PSL2(R),
to the set.

Problem. Does H2 contain a set which is both a half of H2 and a
2No'th part of H2?

Note, however, that because Theorem 6 is valid in H2 with k N0
there is a subset of H2 (indeed, a Borel set; see §8) that is" both a half
of H and an N0 th part of H2 ; consider the set of congruences preceding
the corollary based on the set-variables {T„:n<N0}. Moreover, The-



260 J. MYCIELSKI AND S. WAGON

orems 1 (c) and 4 (c) yield a subset that is both a third of H2 and a

2*°'th part of H2.

§8. A Paradoxical Decomposition Using Borel Sets

Theorem 8. If n ^ 2, then any system of countably many congruences
involving countably many sets (as in Theorem 6) is satisfiable using a partition
of Hn into Borel sets and isometries.

Proof Consider H2 first, and let F be a free subgroup of PSL2(Z)
whose rank equals the number of congruences to be satisfied; F may be

pose. Theorem 6 is proved by first constructing, by induction, a partition
of F that satisfies the given system using left multiplication in F. Then it is

easy to transfer this decomposition to a set on which F9s action is fixed-

point free by using a choice set for the F-orbits. In general, this requires
the Axiom of Choice, and yields nonmeasurable sets. But, because F is a

discrete subgroup of PSL2(R), there is a fundamental region for F9s action

on H2. In fact (see [18]) there is a (hyperbolic) polygon such that no two

points of the polygon's interior lie in the same F-orbit, and all points in H2

are in the F-orbit of some point in the closure of the polygon. The boundary
of this polygon consists of a countable number of sides (open hyperbolic
segments) and vertices. Since F maps vertices to vertices and sides to sides,

there is a choice set M for the F-orbits that consists of the interior of the

polygon together with some of the vertices and some of the sides. Clearly,
M is a Borel set. Now, if Bn is one of the sets of the partition of F,

then let An — u{<j(M): o e Bn}. This yields a partition of H2 into Borel
sets A„ which satisfy the given congruences. The result for higher dimensions

follows by simple using the standard projection of Hn onto H2 to define

the pieces of a partition of Hn.

Corollary. If n ^ 2 then Hn is paradoxical using Borel sets. In

fact, there are pairwise disjoint Borel sets, Al9 A2, B1, B2 and isometries

ai, a2, t j, x2 e G(Hn) such that Hn u a2(A2) ii(Bi) u t2(B2).

Moreover, there is a Borel set E which is simultaneously a half, a third,

an N0 9th part of H2.

This corollary shows that the subsets of H" provided by parts (b) of (c)

of Theorem 4 can be taken to be Borel sets in the case k X0. This

obtained as a subgroup of the group generated trans-
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