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vanishing of a polynomial. But a screw-motion o has a fixed point if
and only if the translation vector is perpendicular to the axis of
the rotation. Since the axis of a rotation (a;;)€ SO, is parallel to
(a3,—dy3, dy3—ds1, 21 —A1,), © has a fixed point if and only if
0(dss—ays) + vy(ay3—as;) + v3(ay;—ay,) = 0. This completes the proof of
Theorem 1 (a) for R".

§ 6. HYPERBOLIC SPACES

Here we meet a case where the existence of a free, fixed-point free
group of isometries having rank 2 does not imply the existence of such
a group having uncountable rank. The hyperbolic plane is such a space.

If H? is identified with the upper half-plane of C, then G(H?) corresponds

az + b

cz +d
and ad — bc # 0. Since it may be assumed that ad — bc = 1, this group i1s
isomorphic to PSL,(R). A nonidentity element of PSL,(R) is called elliptic,
parabolic, or hyperbolic according as the absolute value of its trace is less
than, equal to, or greater than two; the nonidentity elements of G(H?) with
a fixed point in H? correspond to the elliptic elements of PSL,(R). See [18] for
more details about this interpretation of PSL,(R). The following theorem
clarifies the situation regarding fixed-point free subgroups of G(H?).

to linear fractional transformations z , where a, b, c,d are real

THEOREM 3. (Siegel) If F is a free subgroup of PSL,(R) then F
Is discrete if and only if F has no elliptic elements.

Theorem 3 is a rephrasing of the result of [34] (see also [15]). An
elementary proof appears in [41]. The forward direction is an immediate
consequence of the fact that the nondiscrete cyclic subgroups of PSL,(R)
are precisely the ones generated by an elliptic element of infinite order.
This fact also yields the reverse direction in the case when F is cyclic.
Siegel gave an algebraic proof of the reverse direction for noncyclic free
groups. This can also be obtained by first using techniques of Lie algebras
to show that a nondiscrete, nonsolvable subgroup of PSL,(R) is dense in
PSL,(R), and observing that the elliptics form an open set; this approach
is due, independently, to A. Borel and D. Sullivan.

The forward (easy) direction of Theorem 3 yields a proof of the positive
part of Theorem 1 (b) for H?2 (and hence for H", n > 2), since it implies
that a discrete free group of rank two has no elliptic elements. Therefore
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any rank-two free subgroup of SL,(Z) is fixed-point free when viewed as a
group of isometries of H2. The simplest example of such a free group is the
subgroup generated by ((1) i) and (; ?) (see [6]). (Recall also the result,
mentioned in § 2, that PSL,(Z) = Z, x Z.; )

Moreover, the reverse direction of Theorem 3 yields the negative part
of Theorem 1 (b). For an uncountable subgroup of PSL,(R) is necessarily
nondiscrete, and so an uncountable free subgroup must contain an elliptic
element.

Let us point out why the perfect set technique of the previous sections
breaks down in H?. A matrix (j Z) in SL,(R) is elliptic if and only
if (a+d)* < 4, which is a polynomial inequality rather than an equality.
Therefore the elliptics do not form a closed set, and hence they cannot be the
zero set of an analytic function. _

But the method of §4 easily yields Theorem 1(c) for H?2 Simply
let R, = f5'({I})); R, is the zero set of an analytic function. Therefore
the method of § 4 yields a free subgroup of SL,(R) (and hence of PSL,(R))
with a perfect set of free generators. This proves Theorem 1 (c) for H?
since the entire action of PSL,(R) on H? is locally commutative: if two
elliptics share a fixed point, then they have the same set of fixed points
in C U {0}, so they commute.

A large, free locally commutative subgroup of G(H?) immediately yields
such a subgroup of G(H"), n > 3, but a stronger result, namely Theorem 1 (a),
is true in these higher dimensions. Consider first the case n > 4. By con-
sidering H* as the upper half-space in R, it is easy to see that there is a
monomorphism of G(R?) into G(H*); any isometry of R3? is extended to H*
by fixing the additional coordinate. Since a fixed-point free isometry remains
so, Theorem 1(a) for H* (and hence for H", n > 4) is a consequence of

the corresponding result for R®. This method fails in H® however, since -

G(R?) has no non-Abelian free subgroup.

To prove Theorem 1 (a) for H?, we shall use the facts (see [3]) that
G(H?) is isomorphic to PSL,(C) and that the elliptic transformations have
real trace. (The elliptics, 1.e., those nonidentity transformations in PSL,(C)
fixing a point in H?3, are precisely the transformations whose trace is real
and lies in the open interval (—2, 2).) It will be more convenient to work
in SL,(C) and there is no loss in so doing, since a free subgroup of
SL,(C) induces one in PSL,(C). As before, consider a word w in m variables,
and define R,, to be {(o;, ..., 0,) € SL(C)": w(c 4, ..., ,,) is elliptic}. We wish
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to show that R,, is nowhere dense, and to this end we consider the superset
R* of R,, defined by:

R* = {(0y, .., O) € SLy(C)": trace(w(Cy , - o) €R}.

LEMMA. R* is a nowhere dense subset of SLy(C)".

Proof. We shall view SL,(C)" as a connected real analytic submanifold
of R® If a,,..as, are the reals defining oy, .., Op, then there are
polynomials p,, ..., pg in the a; such that

p; +ip; P3 + ip4
W(Gl PRAAS) o-m) = s . >
ps +1ps D7t IDg
Therefore (G4, .., 5,) € R* if and only if p, + pg = 0. Since R} is closed,
if R* failed to be nowhere dense then it would contain a nonempty open
set. As in § 4, this implies that p, + pg is identically zero on SL,(C)" or,
equivalently, that the trace of w(oy, .., 0,,) is real for all oy, .., 0, € SL,(C).
This leads to a contradiction as follows.
A result of Magnus [19] and Neumann [30] (for a proof, see [20,
1 1 5 2
§II1.2]) states that the matrices p = < { 2) and 1t = (2 1> are free
generators of a subgroup of SL,(Z) that consists only of the identity and
hyperbolic elements. It follows that the same is true of the group generated

- 1 1 .
by 6,, G5, .., where 5; = p't’. Now, for z € C\{i (1+./5), 3 (1+./5)}, define
p(z) and t(z) in SL,(C) by

o) = ———— b and  1(z) = ! 1+2a 22
1 +z—2>\z 14z 1 4+ 2z — 422\ 2z 1)

Let o,(z) = p'(2)t'(z). Then choose a region Q in C so that 0,1 Q but Q
does not contain any of the 4 real singularities, and define a complex
analytic function f on Q by f(z) = trace(w(o(2), .., 0,,(2))). The assumption
on w of the previous paragraph, together with the Open Mapping Theorem
applied to f, yields that f is constant on Q. But f(0) = 2 and f(1) is
the trace of a nonidentity element of the Magnus-Neumann group, whence
f(1) # 2, a contradiction. Alternatively (as pointed out by a referee), one can
obtain a contradiction by using Theorem 1 and Remark 4 of [5] to obtain
that f,(SL,(C)™) has nonempty interior, whence the image of trace- f,, has
nonempty interior in C. Therefore the image of trace f,, is not contained in R.
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This lemma implies that R, is nowhere dense too, so we may apply
Theorem 2 to the collection {R,}, yielding Theorem 1 (a) forH> This
completes the proof of Theorem 1.

§ 7. GEOMETRICAL CONSEQUENCES

In this section we summarize some striking geometrical consequences
of the existence of large free groups. The following theorem illustrates what
can be done with locally commutative actions. Unlike the preceding sections,
the results of this section all use the Axiom of Choice. We use DAE
to denote (D\E) u (E\D).

THEOREM 4. Suppose a free group, G, of rank x(x=2) is locally
commutative in its action on X.

(@) If (and only if) x* = x = | X |, then there is a subset E of X
such that for any D < X with |D| < A, there is some oeG such that
o(E) = EAD. In short, E is invariant under the addition and deletion
of any A points of X.

(b) X may be partitioned into « sets, A,, o < K, such that each
A, is G-equidecomposable with X using 2 pieces, i.e. for each o there
are o©,,7,€G and B, C,< A, such that {B,,C,} partitions A,
and {o(B,), 1(C,)} partitions X. In short, X may be taken apart into
pieces which may be rearranged to form « copies of X.

(c) There is a subset E of X such that for any cardinal N satisfying
3<A<x, X may be partitioned into A\ G-congruent pieces, each of
which is G-congruent to E. In short, E is, simultaneously, a third, a
quarter, .., a ¥th part of X. (If the action is fixed-point free, then
A = 2 is also permitted — see Theorem 6.) )

Parts (b) and (c) of this theorem are applications of a more general
fact about locally commutative actions of a free group, which is described
following Theorem 6.

Theorem 1 shows that all parts of the preceding theorem, with ¥ = 2%,
apply to §", L" and H"(n>2) and R"(n>3), where G is either G(X) or,
in the case of L", the group of all isometries. Note that, since (2%0)%0 = 2¥o,
part (a) yields a set that is invariant under the addition or deletion of
countably many points. Because the existence of large free locally com-
mutative groups was already known in most of these cases, so were the
consequences by Theorem 4; only the cases of S* and L* are new.
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