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LARGE FREE GROUPS OF ISOMETRIES
AND THEIR GEOMETRICAL USES

by Jan MycieLskl and Stan WAGON

§ 1. INTRODUCTION

Various geometric constructions related to the Banach-Tarski paradoxical
decomposition of the sphere require the existence of free groups of isometries
acting without fixed points (i.e., no nonidentity element of the group has a
fixed point) or in a locally commutative way (i.e., if two group elements
have a common fixed point, then they commute). For some of these con-
structions a free group of rank 2 is sufficient; others require one of rank 2%°.
‘It is the purpose of this paper to fill a few gaps in this subject, where the
underlying spaces are the spheres S”, the Euclidean spaces R”, and the
hyperbolic spaces H".

For groups of rank 2, all cases of this problem have been solved,
and we shall review these results in §2. For the case of rank 2%°, we
present a unified approach (§ 4-6) to the known results which is sufficiently
general to settle the heretofore unresolved cases, H? S**! and S* The
main idea of our proofs is a general topological technique (introduced
in [25]) that uses the groups of rank 2 to obtain a perfect (i.e., closed
and without isolated points) set of free generators. In all cases except H?
the existence of a fixed-point free or locally commutative rank 2 free group
of isometries implies the existence of a group of rank 2%° with the same
properties.

In §7 and § 8 we discuss the geometric consequences of the existence
of large free groups of isometries. For example, each of S"(n>2), H"(n>2)
and R"(n>3) contains a set which is, simultaneously, a third, a quarter,
.., a 2%° th part of the space. In § 8 we show how paradoxical decompo-
sitions of H"(n>2) can be constructed using Borel sets (and not using the
Axiom of Choice). However, such paradoxical decompositions of R” either do
not exist, even allowing arbitrary sets (n=1 or 2), or exist (n>3), but
require nonmeasurable sets and the Axiom of Choice.




248 J. MYCIELSKI AND S. WAGON

Finally, in §9 we discuss what can be done in R? if we allow area-
preserving linear or affine transformations instead of just isometries.

Proofs of several of the results mentioned or used in this paper, such
as Theorems 3, 4 (b) and (c), 5, 6, and 7, may be found in [41].

We thank W. Barker, A. Borel, A. Durfee, R. Riley, and D. Sullivan for
informative discussions and correspondence on hyperbolic n-space.

§ 2. THE MAIN THEOREM

The action of a group, G, on a set, X, is called fixed-point free if
g(x) # x for all xe X and ge G\{I} (I is the identity of G). The action
is called locally commutative if, for each x € X, {c.€ G: o(x) = x} is a com-
mutative subgroup of G; equivalently, if two elements of G have a common
fixed point in X then they commute. For any group G and any abstract
(reduced) group word w in m variables, the function f,: G™ — G is defined
by f(C;, .., Tn) = WGy, ..., Op)

If X is a metric space and also an oriented manifold, then G(X)
denotes the group of orientation-preserving isometries of X, with its
‘natural topology. In particular, G(S") = SO,.,, G(H?) = PSL,(R) and
G(H?) = PSL,(C).

A set in a complete metric space is called perfect if it is nonempty,
closed and without isolated points; a perfect set has at least 2%¥° elements.

THEOREM 1.

( (a) Each of the groups G(S"), where n is odd and n = 2, G(R"),
where n =3, and G(H"), where n >3, has a free subgroup with a
perfect set of free generators whose action on the space is fixed-point free.

‘ (b) G(H?) has a discrete free subgroup of rank 2 (and hence also rank
No) which is fixed-point free, but no such free subgroup of G(H?) can
have uncountable rank.

(c) G(H?) and each of the groups G(S"), n = 2, have locally com-
imutative free subgroups with a perfect set of free generators.

~ The above theorem is false in all omitted dimensions. This is because
%the isometry groups in the low dimensions are all solvable, and hence
gcontain no free subgroup of rank 2. Also, each element of SO,,,; has a
fixed point on $?" and this is why part (a) fails for spheres of even
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