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LARGE FREE GROUPS OF ISOMETRIES
AND THEIR GEOMETRICAL USES

by Jan MycieLskl and Stan WAGON

§ 1. INTRODUCTION

Various geometric constructions related to the Banach-Tarski paradoxical
decomposition of the sphere require the existence of free groups of isometries
acting without fixed points (i.e., no nonidentity element of the group has a
fixed point) or in a locally commutative way (i.e., if two group elements
have a common fixed point, then they commute). For some of these con-
structions a free group of rank 2 is sufficient; others require one of rank 2%°.
‘It is the purpose of this paper to fill a few gaps in this subject, where the
underlying spaces are the spheres S”, the Euclidean spaces R”, and the
hyperbolic spaces H".

For groups of rank 2, all cases of this problem have been solved,
and we shall review these results in §2. For the case of rank 2%°, we
present a unified approach (§ 4-6) to the known results which is sufficiently
general to settle the heretofore unresolved cases, H? S**! and S* The
main idea of our proofs is a general topological technique (introduced
in [25]) that uses the groups of rank 2 to obtain a perfect (i.e., closed
and without isolated points) set of free generators. In all cases except H?
the existence of a fixed-point free or locally commutative rank 2 free group
of isometries implies the existence of a group of rank 2%° with the same
properties.

In §7 and § 8 we discuss the geometric consequences of the existence
of large free groups of isometries. For example, each of S"(n>2), H"(n>2)
and R"(n>3) contains a set which is, simultaneously, a third, a quarter,
.., a 2%° th part of the space. In § 8 we show how paradoxical decompo-
sitions of H"(n>2) can be constructed using Borel sets (and not using the
Axiom of Choice). However, such paradoxical decompositions of R” either do
not exist, even allowing arbitrary sets (n=1 or 2), or exist (n>3), but
require nonmeasurable sets and the Axiom of Choice.
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Finally, in §9 we discuss what can be done in R? if we allow area-
preserving linear or affine transformations instead of just isometries.

Proofs of several of the results mentioned or used in this paper, such
as Theorems 3, 4 (b) and (c), 5, 6, and 7, may be found in [41].

We thank W. Barker, A. Borel, A. Durfee, R. Riley, and D. Sullivan for
informative discussions and correspondence on hyperbolic n-space.

§ 2. THE MAIN THEOREM

The action of a group, G, on a set, X, is called fixed-point free if
g(x) # x for all xe X and ge G\{I} (I is the identity of G). The action
is called locally commutative if, for each x € X, {c.€ G: o(x) = x} is a com-
mutative subgroup of G; equivalently, if two elements of G have a common
fixed point in X then they commute. For any group G and any abstract
(reduced) group word w in m variables, the function f,: G™ — G is defined
by f(C;, .., Tn) = WGy, ..., Op)

If X is a metric space and also an oriented manifold, then G(X)
denotes the group of orientation-preserving isometries of X, with its
‘natural topology. In particular, G(S") = SO,.,, G(H?) = PSL,(R) and
G(H?) = PSL,(C).

A set in a complete metric space is called perfect if it is nonempty,
closed and without isolated points; a perfect set has at least 2%¥° elements.

THEOREM 1.

( (a) Each of the groups G(S"), where n is odd and n = 2, G(R"),
where n =3, and G(H"), where n >3, has a free subgroup with a
perfect set of free generators whose action on the space is fixed-point free.

‘ (b) G(H?) has a discrete free subgroup of rank 2 (and hence also rank
No) which is fixed-point free, but no such free subgroup of G(H?) can
have uncountable rank.

(c) G(H?) and each of the groups G(S"), n = 2, have locally com-
imutative free subgroups with a perfect set of free generators.

~ The above theorem is false in all omitted dimensions. This is because
%the isometry groups in the low dimensions are all solvable, and hence
gcontain no free subgroup of rank 2. Also, each element of SO,,,; has a
fixed point on $?" and this is why part (a) fails for spheres of even
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dimension. Of course, an uncountable subgroup of G(H") (or any infinite
subgroup of the compact group SO,) cannot be discrete. Moreover, G(R")
has the Abelian (and therefore amenable) group of translations as a closed
normal subgroup, and the quotient is the compact (and therefore amenable
as a topological group) group SO,. It follows that G(R") is an amenable
topological group, whence it has no discrete free subgroup of rank two
(see [12, § 2]).

The results of Theorem 1 are known except for part (a) for H* and
S" if n = 1 (mod 4), and part (c) for S*. The history of the known cases
is the following. The earliest results on free isometry groups are due to Klein
and Fricke [16] and Hausdorff [14]. The former showed that PSL,(Z)
is isomorphic to the free product Z, * Z,, (see [17, Appendix]), whence
PSL,(R), which is isomorphic to G(H?), contains a free subgroup of rank 2.
Since the entire action of PSL,(R) on H? is locally commutative (see § 6),
this yields part (c) for H?> and rank 2. Hausdorff showed that Z, x Z,
also appears as a subgroup of SO;. Again, the action of the rotation group
SO, on S? is locally commutative, so this yields part (c) for S and rank 2.
This was the foundation of Hausdorff’s theorem that there is no finitely
additive, rotation-invariant measure defined for all subsets of S* and having
total measure one. It also forms the basis of the Banach-Tarski paradoxical
decomposition of a sphere. It was not until much later, however, that the
advantages of local commutativity for such constructions were recognized
[34, 13]. The simplest proof that Z, * Z; embeds in SO, may be found
in [33]. However, see [10] for a beautiful proof using tetrahedra that
Z,x17Z,x*1Z,+7Z, (and hence a free non-Abelian group) embeds in the group
of isometries of R>. For the general problem of the existence of free sub-
groups of topological groups see the literature quoted in [28, p. 681].

Part (c) for S* was first proved by Sierpinski [36]. Further results on the
embedding of free products into SO; and SL,(R) are due to Balcerzyk and
Mycielski [2]; see also Nisnewitsch [32]. Dekker [7, 8] made an extensive
investigation into higher dimensions and the non-Euclidean cases, proving
part (c) for H?> and S" (except for the case of S*) and part (a) for S”
provided n = —1 (mod 4). Part (a) for R” was proved by Dekker [9] and,
independently, by Mycielski and Swierczkowski [29]. The remaining cases
of parts (a) and (c) for groups of rank 2 were proved recently by Deligne
and Sullivan [11] (part (a) for S", n = 1 (mod 4)) and Borel [5] (part (c)
for §*). The positive result in part (b) is a consequence of well-known facts
about PSL,(R) (first pointed out in [5]), while the negative result is a
consequence of a theorem on PSL,(R) due to Siegel [35] (see § 6).
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The proof of Theorem 1 to be given below will assume all the afore-
mentioned results about the existence of free groups of rank 2. An important
fact 1s that a free group of rank 2 has a free subgroup of rank N,: if 0,7
freely generate the group, F, of rank 2 then {c'tc™':i =0,1,2,..} is
a set of free generators of a subgroup of F, and the same is true of
{o't':i = 1,2,..}. More generally (see [21, p. 195]) a free product A4 * B
must have a free subgroup of rank ¥, unless 4 or B is a one-element
groupor A = Z, = B.

We shall also consider elliptic spaces, L", which are represented by S”,
with antipodal points identified. Hence the isometry group of L" is SO, ,
if n is even, or SO, ,/{+I}, if n is odd. Note that any fixed-point free or
locally commutative free subgroup of G(S") induces such a subgroup of L™s
isometry group. If a nontrivial (reduced) word w became the identity or
gained a fixed point when viewed as acting on L", then w? would be the
identity or have a fixed point as a member of SO,,,. Furthermore, if two
words, u and v, share a fixed point on L" then u? and »? share a fixed
point on S" Since, in a free group, u and v commute if and only if u?
and v? do ([21, p. 41]), this shows that a locally commutative free subgroup
of SO, ., induces one of the same rank in L™s isometry group.

§ 3. A PRELIMINARY THEOREM ABOUT METRIC SPACES

The passage from a free group of rank 2 to one of rank 2%° with
the same fixed-point properties utilizes the following general theorem of
Mycielski [25].

THEOREM 2. Let X be a complete, separable metric space with no
isolated points and suppose that, for each i < o0, R; is a nowhere dense
subset of some finite product X". Then there is a perfect subset F of X
which avoids each R; in the sense that any rituple of distinct elements
of F does not liein R;.

The proof of this theorem is not difficult: one constructs a tree of open
sets such that no sequence from distinct nodes at level m lies in any R;
with i £ m. Then, provided the open sets are small enough (precisely, their
diameters converge to zero along branches, and the closure of any node is
contained in one of the open sets at the previous level), F may be obtained
as the collection of points lying in the intersections along infinite branches
of the tree.

1
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For various applications and generalizations of this result, see [25, 26].
The separability condition is not essential, but its presence allows the proof
to be carried out without using the Axiom of Choice.

Our applications of this theorem will involve finding appropriate col-
lections of algebraic or analytic surfaces R;, such that the set F that avoids
them will be the desired set of free generators. The fact that the desired
free group of rank two (and hence ¥,) exists will be used to verify that
each R; is indeed nowhere dense.

§ 4. SPHERES

First we prove Theorem 1 (a) for S"(n odd, n>3). Let A = {c€S0,,,:c
has a fixed point in S"}; therefore c e A4 if and only if det(c—1I) = 0.
For each nonidentity reduced group word w in m variables, let R, = f . (A);
thus (o, .., 0, €R,, if and only if w(o,, .., c,) has a fixed point. It is
enough to show that each R, is nowhere dense, for then Theorem 2 may
be applied to the countable set of relations {R,} to get a perfect set
F < §0,.. Since F avoids each R,,, no word using elements of F has a
fixed point on §". This implies, in particular, that no such word equals the
identity, and so F is the desired set of rotations.

To see that each R, is nowhere dense, we view SO(n+1)" as a
. . " . .1 '
(connected) analytic submanifold of R™"*1* (of dimension 5 n(n+ 1)m). We

need an analytic f: SO}, | — R such that R, = £ 71({0}). Such a function
exists because membership in R,, is equivalent to the condition that + 1
is an eigenvalue of w. Hence we may simply let

floy, .., o) = det(w(o,, .., 5,)—1).

Since f is a polynomial in the m(n+ 1)? entries of the o; (this uses the fact
that det(c;) = 1 to obtain that each entry of o; ! is a polynomial in the
entries of o;), f is analytic on SO™, , .

Since f is continuous, R,, is closed, so it remains to show that R,’s
interior is empty. Suppose not. Since SO n+1 18 connected, an analytic function
that vanishes on a nonempty open set must vanish everywhere. Hence |
R, = SOy, ,, which contradicts the existence of a free subgréup of SO, .,
of rank m which is fixed-point free (which was proved in [7, 11]).
Alternatively, R,, = SO™, , contradicts Theorem 1 of [5] which asserts that
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f(SO. 1) 1s not contained in a proper algebraic subset (in this case, A)
of SO, .. This completes the proof of Theorem 1 (a) for S”.

Next, consider Theorem 1 (c) for S". First observe that this can be
proved for SO; by the technique above, if 4 is taken to consist simply of
the identity. This is because the action of SO; on S? is locally commutative,
so all that is needed is a perfect set of free generators, which in turn
requires only that each R, be nowhere dense. Theorem 1 of [5] again
applies, because A is an algebraic set: membership in A is equivalent to the
simultaneous vanishing of (n+1)* polynomials which, by using a sum of
squares, 1s equivalent to the vanishing of a single polynomial. For higher
dimensions, we appeal to the technique used by Borel to get locally com-
mutative free subgroups of SO, .,. In [5, p. 162] he showed that, if n > 2,
SO; may be represented as a subgroup H of SO,,, where H’s action on
S" is locally commutative. Hence the perfect free generating set in SO,
yields a perfect subset of H which is the desired free generating set in
N

§ 5. EUCLIDEAN SPACES

For the Euclidean case of Theorem 1, it suffices to consider R?, since
any isometry of R?® can be extended to one in higher dimensions by
simply fixing the additional coordinates; this introduces no new fixed points.
Now, R? can be handled in a way entirely similar to S". Any orientation-
preserving isometry of R? is a screw-motion, i.e. a rotation p € SO, followed
by a translation t. Such isometries may be represented as elements of
SL,(R) as follows: if ¢ = tp where p corresponds to (a;;)€ SO; and 1
is a translation by (v,, v,, v5), then identify ¢ with the matrix

Since composition of isometries corresponds to matrix multiplication, this
shows that G(R®) may be viewed as a connected (6-dimensional) analytic
submanifold of R!2. Now, the proof can proceed exactly as for spheres,
once it is shown that the existence of a fixed point is equivalent to the
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vanishing of a polynomial. But a screw-motion o has a fixed point if
and only if the translation vector is perpendicular to the axis of
the rotation. Since the axis of a rotation (a;;)€ SO, is parallel to
(a3,—dy3, dy3—ds1, 21 —A1,), © has a fixed point if and only if
0(dss—ays) + vy(ay3—as;) + v3(ay;—ay,) = 0. This completes the proof of
Theorem 1 (a) for R".

§ 6. HYPERBOLIC SPACES

Here we meet a case where the existence of a free, fixed-point free
group of isometries having rank 2 does not imply the existence of such
a group having uncountable rank. The hyperbolic plane is such a space.

If H? is identified with the upper half-plane of C, then G(H?) corresponds

az + b

cz +d
and ad — bc # 0. Since it may be assumed that ad — bc = 1, this group i1s
isomorphic to PSL,(R). A nonidentity element of PSL,(R) is called elliptic,
parabolic, or hyperbolic according as the absolute value of its trace is less
than, equal to, or greater than two; the nonidentity elements of G(H?) with
a fixed point in H? correspond to the elliptic elements of PSL,(R). See [18] for
more details about this interpretation of PSL,(R). The following theorem
clarifies the situation regarding fixed-point free subgroups of G(H?).

to linear fractional transformations z , where a, b, c,d are real

THEOREM 3. (Siegel) If F is a free subgroup of PSL,(R) then F
Is discrete if and only if F has no elliptic elements.

Theorem 3 is a rephrasing of the result of [34] (see also [15]). An
elementary proof appears in [41]. The forward direction is an immediate
consequence of the fact that the nondiscrete cyclic subgroups of PSL,(R)
are precisely the ones generated by an elliptic element of infinite order.
This fact also yields the reverse direction in the case when F is cyclic.
Siegel gave an algebraic proof of the reverse direction for noncyclic free
groups. This can also be obtained by first using techniques of Lie algebras
to show that a nondiscrete, nonsolvable subgroup of PSL,(R) is dense in
PSL,(R), and observing that the elliptics form an open set; this approach
is due, independently, to A. Borel and D. Sullivan.

The forward (easy) direction of Theorem 3 yields a proof of the positive
part of Theorem 1 (b) for H?2 (and hence for H", n > 2), since it implies
that a discrete free group of rank two has no elliptic elements. Therefore
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any rank-two free subgroup of SL,(Z) is fixed-point free when viewed as a
group of isometries of H2. The simplest example of such a free group is the
subgroup generated by ((1) i) and (; ?) (see [6]). (Recall also the result,
mentioned in § 2, that PSL,(Z) = Z, x Z.; )

Moreover, the reverse direction of Theorem 3 yields the negative part
of Theorem 1 (b). For an uncountable subgroup of PSL,(R) is necessarily
nondiscrete, and so an uncountable free subgroup must contain an elliptic
element.

Let us point out why the perfect set technique of the previous sections
breaks down in H?. A matrix (j Z) in SL,(R) is elliptic if and only
if (a+d)* < 4, which is a polynomial inequality rather than an equality.
Therefore the elliptics do not form a closed set, and hence they cannot be the
zero set of an analytic function. _

But the method of §4 easily yields Theorem 1(c) for H?2 Simply
let R, = f5'({I})); R, is the zero set of an analytic function. Therefore
the method of § 4 yields a free subgroup of SL,(R) (and hence of PSL,(R))
with a perfect set of free generators. This proves Theorem 1 (c) for H?
since the entire action of PSL,(R) on H? is locally commutative: if two
elliptics share a fixed point, then they have the same set of fixed points
in C U {0}, so they commute.

A large, free locally commutative subgroup of G(H?) immediately yields
such a subgroup of G(H"), n > 3, but a stronger result, namely Theorem 1 (a),
is true in these higher dimensions. Consider first the case n > 4. By con-
sidering H* as the upper half-space in R, it is easy to see that there is a
monomorphism of G(R?) into G(H*); any isometry of R3? is extended to H*
by fixing the additional coordinate. Since a fixed-point free isometry remains
so, Theorem 1(a) for H* (and hence for H", n > 4) is a consequence of

the corresponding result for R®. This method fails in H® however, since -

G(R?) has no non-Abelian free subgroup.

To prove Theorem 1 (a) for H?, we shall use the facts (see [3]) that
G(H?) is isomorphic to PSL,(C) and that the elliptic transformations have
real trace. (The elliptics, 1.e., those nonidentity transformations in PSL,(C)
fixing a point in H?3, are precisely the transformations whose trace is real
and lies in the open interval (—2, 2).) It will be more convenient to work
in SL,(C) and there is no loss in so doing, since a free subgroup of
SL,(C) induces one in PSL,(C). As before, consider a word w in m variables,
and define R,, to be {(o;, ..., 0,) € SL(C)": w(c 4, ..., ,,) is elliptic}. We wish
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to show that R,, is nowhere dense, and to this end we consider the superset
R* of R,, defined by:

R* = {(0y, .., O) € SLy(C)": trace(w(Cy , - o) €R}.

LEMMA. R* is a nowhere dense subset of SLy(C)".

Proof. We shall view SL,(C)" as a connected real analytic submanifold
of R® If a,,..as, are the reals defining oy, .., Op, then there are
polynomials p,, ..., pg in the a; such that

p; +ip; P3 + ip4
W(Gl PRAAS) o-m) = s . >
ps +1ps D7t IDg
Therefore (G4, .., 5,) € R* if and only if p, + pg = 0. Since R} is closed,
if R* failed to be nowhere dense then it would contain a nonempty open
set. As in § 4, this implies that p, + pg is identically zero on SL,(C)" or,
equivalently, that the trace of w(oy, .., 0,,) is real for all oy, .., 0, € SL,(C).
This leads to a contradiction as follows.
A result of Magnus [19] and Neumann [30] (for a proof, see [20,
1 1 5 2
§II1.2]) states that the matrices p = < { 2) and 1t = (2 1> are free
generators of a subgroup of SL,(Z) that consists only of the identity and
hyperbolic elements. It follows that the same is true of the group generated

- 1 1 .
by 6,, G5, .., where 5; = p't’. Now, for z € C\{i (1+./5), 3 (1+./5)}, define
p(z) and t(z) in SL,(C) by

o) = ———— b and  1(z) = ! 1+2a 22
1 +z—2>\z 14z 1 4+ 2z — 422\ 2z 1)

Let o,(z) = p'(2)t'(z). Then choose a region Q in C so that 0,1 Q but Q
does not contain any of the 4 real singularities, and define a complex
analytic function f on Q by f(z) = trace(w(o(2), .., 0,,(2))). The assumption
on w of the previous paragraph, together with the Open Mapping Theorem
applied to f, yields that f is constant on Q. But f(0) = 2 and f(1) is
the trace of a nonidentity element of the Magnus-Neumann group, whence
f(1) # 2, a contradiction. Alternatively (as pointed out by a referee), one can
obtain a contradiction by using Theorem 1 and Remark 4 of [5] to obtain
that f,(SL,(C)™) has nonempty interior, whence the image of trace- f,, has
nonempty interior in C. Therefore the image of trace f,, is not contained in R.




256 J. MYCIELSKI AND S. WAGON

This lemma implies that R, is nowhere dense too, so we may apply
Theorem 2 to the collection {R,}, yielding Theorem 1 (a) forH> This
completes the proof of Theorem 1.

§ 7. GEOMETRICAL CONSEQUENCES

In this section we summarize some striking geometrical consequences
of the existence of large free groups. The following theorem illustrates what
can be done with locally commutative actions. Unlike the preceding sections,
the results of this section all use the Axiom of Choice. We use DAE
to denote (D\E) u (E\D).

THEOREM 4. Suppose a free group, G, of rank x(x=2) is locally
commutative in its action on X.

(@) If (and only if) x* = x = | X |, then there is a subset E of X
such that for any D < X with |D| < A, there is some oeG such that
o(E) = EAD. In short, E is invariant under the addition and deletion
of any A points of X.

(b) X may be partitioned into « sets, A,, o < K, such that each
A, is G-equidecomposable with X using 2 pieces, i.e. for each o there
are o©,,7,€G and B, C,< A, such that {B,,C,} partitions A,
and {o(B,), 1(C,)} partitions X. In short, X may be taken apart into
pieces which may be rearranged to form « copies of X.

(c) There is a subset E of X such that for any cardinal N satisfying
3<A<x, X may be partitioned into A\ G-congruent pieces, each of
which is G-congruent to E. In short, E is, simultaneously, a third, a
quarter, .., a ¥th part of X. (If the action is fixed-point free, then
A = 2 is also permitted — see Theorem 6.) )

Parts (b) and (c) of this theorem are applications of a more general
fact about locally commutative actions of a free group, which is described
following Theorem 6.

Theorem 1 shows that all parts of the preceding theorem, with ¥ = 2%,
apply to §", L" and H"(n>2) and R"(n>3), where G is either G(X) or,
in the case of L", the group of all isometries. Note that, since (2%0)%0 = 2¥o,
part (a) yields a set that is invariant under the addition or deletion of
countably many points. Because the existence of large free locally com-
mutative groups was already known in most of these cases, so were the
consequences by Theorem 4; only the cases of S* and L* are new.
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Part (a) is due to Mycielski [24]. It is known to be false in R!, R?
and S! even if one only seeks invariance with respect to the deletion of
single points (Sierpinski [37], Straus [38]). Under appropriate (and necessary)
assumptions about cardinal arithmetic, part (a) can be used to get sets
invariant under the addition and deletion of certain uncountable sets of
points. For example, the (consistent) assumption that 2% = 2% = N, implies
that (2Y0)1 = 2% 5o part (a) is valid with x = 2% and A = N;. The
proof of Theorem 4 (a) uses the Axiom of Choice, but it is not known
whether the set E must necessarily be nonmeasurable.

Part (b) is a refinement of the classical Banach-Tarski Paradox on S?
along lines first investigated by Robinson [34] and Sierpinski [36]. As stated
above, the result is due to Dekker [7], who also proved the following
converse.

THEOREM 5. Suppose « = 2 and the action of G on X satisfies
assertion (b) of Theorem 4. Then G contains a free subgroup of rank «
whose action on X is locally commutative; indeed o '71,, o < x, freely
generate such a subgroup.

Work of Banach and von Neumann (see [27]) yields that a solvable
group i1s amenable and whenever an amenable group G acts on X then
there exists a finitely additive G-invariant measure p defined on all subsets
of X, with p(X) = 1. This implies that Theorem 4 (b) is not valid for
S R! or R?, even for k = 2.

Part (c) of Theorem 4 (Mycielski [22]) is a generalization of an earlier
result of Robinson [34], who showed that S? may be divided into 3
(or n, if 3<n<¥N,) rotationally congruent pieces. It is not clear that

Robinson’s result requires nonmeasurable pieces, and the following problem
(Mycielski [23]) is still unsolved.

Problem. Can S* be partitioned into 3 rotationally congruent, Lebesgue
measurable sets ?

The assertion of 4 (c), however, does necessitate nonmeasurable pieces in
5" and R" (for the latter, and for the case of H", see §8). Hence, for the
same reasons as for 4 (b), 4 (c) is false in S§', R' and R? However, for any
L < 2%, S' may be partitioned into A pairwise congruent pieces (see [40]).
Note that A = 2 is omitted from part (c); this is because every element

of SO;, for example, has a fixed point in S? therefore S? cannot be split
into two SO;-congruent pieces.
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Parts (b) and (c) of Theorem 4 are related to the solution of certain
systems of congruences. The following theorem (Dekker [7]) shows that a
fixed-point free action allows a wide variety of such systems to be solved.

THEOREM 6. Suppose the action of G, a free group of rank «, on
X is fixed-point free and {U{A,ia€Llg} = U {A,;aeRg}:P<x} isa
system of x congruences, where each L, and Ry is a proper and
nonempty subset of A. Then X can be partitioned into sets A,,o < A,
so that each congruence in the system is witnessed by some free generator
of G.

A similar result is true for locally commutative actions, but one has
to restrict the systems of congruences to those systems which do not,
explicitly or implicity, imply that a set is congruent to its complement.
Parts (b) and (c) of Theorem 4 are consequences of this general result.
For example, to obtain (b) consider the system.

{A, = V{4 B <k, B#a+ 1}:a <k, aeven]
and, for o < x, ax even,let B, = A,,C, = A,.,.

Because of Theorem 1, Theorem 6, with k¥ = 2%°, applies to S" and
L" if n>3 and n 1s odd, and to H" and R" if n > 3. Moreover, it
applies to H? if k = . Since, as just shown, the conclusion of Theorem 6
implies the assertion of Theorem 4 (b), it follows from Theorem 5 that a
partial converse to Theorem 6 is valid: if an action admits a solution to
all k-sized systems of congruences, then G contains a free locally com-
mutative subgroup of rank k. But the stronger converse to Theorem 6,
i.e., the existence of a fixed-point free subgroup, is false. This follows from
work of Adams [1], who showed that if the antipodal map from S” to
S™ is available, as it is in SO,, or any O,, then a locally commutative
free group is sufficient to obtain the conclusion of Theorem 6, provided no
element of the locally commutative group has —1 as an eigenvalue. This
latter condition is clearly satisfied by a free subgroup of SO;, so Adams’
theorem yields the conclusion of Theorem 6 for the action of O; on S
with ¥ = 2% But no free subgroup of O, is fixed-point free in its action
on S2.

Because no elements of the locally commutative free subgroups of SO,
constructed by Dekker [7] and Borel [5] have —1 as an eigenvalue,
Adams’ technique yields the conclusion of Theorem 6, with x = 2%° for
the action of O,,; on §" for all n > 2. In fact, any non-Abelian locally
commutative free subgroup of SO;, SO, or SOs; must avoild —1 as an
eigenvalue. For SO; this is clear since a rotation that sends a point to its
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antipode must have order 2. Suppose o, 1€ SO freely generate a locally
commutative group and some word w has —1 as an eigenvalue. Then this
eigenvalue must have multiplicity 2, whence w? fixes a 3-dimensional sub-
space of R>. Assume w? does not begin, on the left, with o*! and let
u = ow?’c !, By freeness, u and w? are not powers of a common word;
therefore u and w? do not commute (see [21, p. 42]). But u also fixes
a 3-dimensional subspace, so u and w? must share a fixed point on the unit
sphere, which contradicts local commutativity. A similar argument works in
R*: choose a basis consisting of two linearly independent fixed points of w?
and two linearly independent fixed points of u; it follows that u and w?
commute. These arguments lead to the following question.

Problem. Does SO (or SO,, n=6) have a locally commutative free
subgroup of rank 2 which contains a transformation having —1 as an
eigenvalue?

As an application of Theorem 6, consider the result of Theorem 4 (c).
A solution of the following system of 2™° congruences involving A4,, o < 2%°,
yields a set E satisfying Theorem 4 (¢) for any A such that 2 < A < 2%°:

Ao = A, P < 2%
Ag = U{d, B <a< 2%, B <2,

Hence, using Adams’ result (when necessary), we obtain the following
corollary to Theorems 1 and 5.

COROLLARY. Let X beany of S, n>3, nodd, or R" or H",
with - n 23, and let G = G(X). Or,let X be S, n=2 or L
n2=3, n odd, with G being the group of all isometries of X. Then
there is a subset E of X such that, for any A with 2 < A < 2%,
X may be split into ) sets, each of which is G-congruent to E.

Because of the anomaly about H? discussed in § 6, it is not known whether
the conclusion of Theorem 6 is valid in H? for some uncountable x. In
particular, we have the following problem, where a set is called a X’th part of

H? if H? splits into A sets, each of which is congruent, via PSL,(R),
to the set.

Problem. Does H* contain a set which is both a half of H? and a
2%’th part of H2?

Note, however, that because Theorem 6 is valid in H? with ¥ = NXo
there is a subset of H? (indeed, a Borel set; see § 8) that is both a half
of H? and an N,’th part of H?; consider the set of congruences preceding
the corollary based on the set-variables {4,:n < NXo}. Moreover, The-
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orems 1(c) and 4(c) yield a subset that is both a third of H® and a
2%o’th part of H>.

§ 8. A ParADOXxicAL DecompOSITION USING BOREL SETS

THEOREM 8. If n = 2, then any system of countably many congruences
involving countably many sets (as in Theorem 6 ) is satisfiable using a partition
of H" into Borel sets and isometries.

Proof. Consider H? first, and let F be a free subgroup of PSL,(Z)
whose rank equals the number of congruences to be satisfied; F may be

1 2
obtained as a subgroup of the group generated by (O 1) and its trans-

pose. Theorem 6 is proved by first constructing, by induction, a partition
of F that satisfies the given system using left multiplication in F. Then it is
easy to transfer this decomposition to a set on which F’s action is fixed-
point free by using a choice set for the F-orbits. In general, this requires
the Axiom of Choice, and yields nonmeasurable sets. But, because F is a
discrete subgroup of PSL,(R), there is a fundamental region for F’s action
on H?. In fact (see [18]) there is a (hyperbolic) polygon such that no two
points of the polygon’s interior lie in the same F-orbit, and all points in H?
are in the F-orbit of some point in the closure of the polygon. The boundary
of this polygon consists of a countable number of sides (open hyperbolic
segments) and vertices. Since F maps vertices to vertices and sides to sides,
there is a choice set M for the F-orbits that consists of the interior of the
polygon together with some of the vertices and some of the sides. Clearly,
M is a Borel set. Now, if B, is one of the sets of the partition of F,
then let A, = u{c(M): o e B,}. This yields a partition of H? into Borel
sets A, which satisfy the given congruences. The result for higher dimensions
follows by simple using the standard projection of H" onto H? to define
the pieces of ‘a partition of H".

COROLLARY. If n > 2 then H" is paradoxical using Borel sets. In
fact, there are pairwise disjoint Borel sets, A, A,,B;, B, and isometries
Gi,0,5,Ty,T, € GH") such that H" = o(A;) U 0,(4,) = 1,(B;) U 1(B,).
Moreover, there is a Borel set E which is simultaneously a half, a third, ...,
an W,’th part of H>.

This corollary shows that the subsets of H" provided by parts (b) of (c)
of Theorem 4 can be taken to be Borel sets in the case x = N,. This
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result is completely constructive. For instance, if one labels the quadrilaterals
of the tesselation corresponding to the discrete free group generated by o and

T (where o(z) =

TR and ©(z) = z + 2) and then transfers the paradoxical
z A

decomposition of a free group of rank two to H? via the labelled quadri-
laterals, one obtains the partition of H? into four sets A4,, A,, B; and
B, illustrated in the figure below. Since H?> = A, U o(4,) = B, U 1(B,),
this yields an explicit paradoxical decomposition of the hyperbolic plane using

very simple sets. For another pictorially simple paradox in H? see [41,
Fig. 5.2].

-1 -1/2. -1/3 0 1

These results are completely opposite to the situation in S? and R”
Because of surface Lebesgue measure on S”, it is obvious that parts (b)
and (c) of Theorem 4 cannot be witnessed by measurable sets. For example,
if m denotes surface Lebesgue measure and E, a measurable set, is a

1
A’th part of S", then m(E) = 7 if A is finite, and m(E) = 0O if A is infinite.

The case of R" is subtler because R"” has infinite measure; the following
result of Mycielski [27] is relevant.

THEOREM 9. There is a finitely additive measure | on the collection
of Lebesgue measurable subsets of R" which is invariant under all similarities
and satisfies WR") = 1. |

Because the similarity groups in R! and R? are solvable, the theorem
of Banach mentioned in § 7 shows that, in these two cases, the measure
can be taken to be defined on all sets.

Note that for ¥ uncountable parts (b) and (c) of Theorem 4 cannot be
witnessed by Borel subsets of H". Suppose, for example, that x is uncountable
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and the sets of Theorem 4 (b) are all Borel. Since Borel sets have the
Property of Baire, each A, may be written as R, A M, where R, is open
and M, is meager. But each A,, being Borel equidecomposable to all of H?,
is nonmeager, whence each R, is nonempty. It follows that the R, are
pairwise disjoint, which contradicts the separability of H*. A similar argument
shows that the sets cannot all be Lebesgue measurable either.

Let us point out how the proof of Theorem 9 breaks down in hyperbolic
space. Theorem 9 is based on the fact that R" is a union of countably
many sets B, of finite Lebesgue measure satisfying: for any isometry
o, m(B,Ac(B,))/m(B,) - 0 as r — oo. Simply let B, be the ball of radius r
centered at the origin. Because Theorem 9 is false for H" if n > 2, there
can be no such sequence of almost invariant sets of finite (hyperbolic)
measure in H”.

§9. LINEAR TRANSFORMATIONS OF THE EUCLIDEAN PLANE

Paradoxical decompositions in the plane are possible if one allows the
use of area-preserving affine transformations. This was first realized by von
Neumann [31], who showed that a square is paradoxical using this expansion
of the isometry group. In fact, it 1s sufficient to consider the group
generated by SL,(Z) and all translations; see [39]. In this section we discuss
how the results of this paper are affected by considering linear, or affine,
transformations instead of just isometries.

Let us consider the action of SL,(R) on R*\{0}. The two matrices,

1 2 2
element of which has a fixed point in R?\{0}; this follows from the result
of Magnus and Neumann mentioned in §6, since an element of SL,(Z)

1 1 5 2
( ) and ( 1) freely generate a subgroup of SL,(Z), no nonidentity

has a nonzero fixed point in R? if and only if it has trace 2. It follows:

by the technique of §4 that SL,(R) has a free subgroup with a perfect
set of free generators whose action on R?*\{0} is fixed-point free. Therefore
the action of SL,(R) on R*\{0} satisfies all the conclusions of Theorems 4
and 6.

Using techniques of functional analysis, J. Rosenblatt and R. Kallman
(unpublished) have recently shown that the Lebesgue measurable subsets of
R™\{0} (n>2) do not bear a finitely additive, SL,(Z)-invariant measure of total
measure one. (For n > 3 this uses the fact that SL,(Z) has Kazhdan’s
Property T, while the R? case uses specific facts about representations of
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SL,(Z); see [41; Theorem 11.17].) Thus Theorem 9 does not extend to
area-preserving affine transformations. It would be interesting if a paradoxical
decomposition of R?\{0} using measurable sets, similar to the one illustrated
in § 8, could be explicitly constructed. Some sort of paradoxical decomposition
using measurable pieces must exist, by a general theorem of Tarski (see [41]),
but it is not known if one using just four pieces exists. On the other hand,
Belley and Prasad [4] have shown that there is a finitely additive measure
on a certain (not too small) Boolean algebra of Borel subsets of R" that
has total measure one and is invariant under all nonsingular affine trans-
formations of R" (not just the measure-preserving ones).

Finally, we mention some unsolved problems about the existence of nice
free groups of affine, area-preserving transformations, positive solutions to
which would yield (via Theorems 4-6) paradoxical decompositions of R”. Let
A,(R) denote the group of affine transformations of R”, 1.e., transformations
of the form TL, where T is a translation and L e GL(R). Let SA,(R) be
the subgroup obtained by restricting L to SL,(R), and let SA,(Z) consist
of those TL where L € SL,(Z) and T is a translation by a vector in Z". Note
that SA,(Z) acts on Z" Since G(R3) = SA5(R), Theorem 1 yields that
SAs(R) has a free non-Abelian subgroup whose action on R? is fixed-point
free. Consideration of Z? instead of R> leads to problem 1 below. Problem 2
is an attempt to get a version of these results for R? (rather than R*\{0},
which is treated at the beginning of this section). Only local commutativity

: 1 2
1s sought because of part (b) of the proposition below. Since (O 1) and

its transpose freely generate a group of rank two, so do the two trans-
formations:

(=6 D00 = ()G 6)-6)

Hence perhaps the subgroup of SA4,(Z) which these two transformations
generate solves' Problem 2 affirmatively. But we are unable to show that
this subgroup is locally commutative.

Problems.

1. Does SA3(Z) have a free subgroup of rank two which is fixed-point
free on Z3? -

2. Does SA,(R) (or SA,(Z)) have a subgroup of rank two which is
locally commutative in its action on R? (or on Z%)?
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ProrositiON 10.

(@ If TLe A(R) and TL has no fixed points in R", then L has
+1 as an eigenvalue, i.e., L has a fixed point in R™\{0}.

(b) If G is a subgroup of SA,(R) which is fixed-point free on R?
then G is solvable.

Proof.
(a) Suppose T is a translation by the vector v. Since L(x) + v = x has
no solution, the same is true of (L—1)(x) = —uw, and therefore det(L—1) = 0,

1.e., 1 is an eigenvalue of L.

(b) Let c = TL and t = T'L’ be in G. Then ot = T"LL’ so part (a)
yields that each of L, L, LL' has 1 as an eigenvalue. Since these are
2 x 2 matrices with determinant 1, this implies that all have trace 2. Hence,

: : : 1 b
choosing an appropriate basis, we have L = and L' = x P .
0 1 Yy 2—a

a+by
* 2—a
by = 0. But if either b or y equal zero, then L and L' commute, which

implies that the commutators octo 't~ ! and ¢~ !t~ ‘ot are pure translations.
Hence [[G, G], [G, G]] is the identity subgroup, i.e., G is solvable.

Part (b) of the Proposition shows why there is no fixed-point free, non-
Abelian free subgroup of SA,(R). But the following problem is unsolved.

Then LL' = ( ) and the trace of the latter being 2 yields that

Problem 3. Does there exist a free non-Abelian semigroup in SA,(R)
(or SA,(Z)) whose action on R? is fixed-point free?

Part (a) of Proposition 10 brings to light a distinction between the
groups G(R") according as n is even or odd. The proof of Theorem 1 for
R (§ 5) is essentially the same as the proof for S*"*! given in § 4. Precisely,
it is shown that 4 = {c e G(R%): o has a fixed point in R?} is nowhere
dense and, in fact, each R, = f _'(A) is nowhere dense in the appropriate
product, where w is any group word in finitely many variables. While this
is sufficient to get the existence of perfect free generating sets of fixed-point
free subgroups in R® and beyond, the set A can fail to be nowhere dense
in the higher dimensions. Indeed, consider R*", n > 1. Letting n: G(R*")
— S0O,, be the canonical homomorphism, it follows from part (a) of Prop-
osition 10 that G(R")\A < n~ }(B), where B = {L e SO,,: L has 1 as an
eigenvalue}. It is easy to see that B is nowhere dense and it follows that
the same is true of n~*(B); i.e., A has a nowhere dense complement. In odd
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dimensions, however, the situation in R? is typical, as the following prop-
osition shows.

ProrosiTioN 11. If n>1 isoddthen A = {ce GR"):c has a fixed
point in R"} is a nowhere dense subset of G(R").

Proof. It is an easy linear algebra exercise (generalizing Proposition 10 (a)
above) to see that o = TL has a fixed point in R" if and only if the
translation vector of T is orthogonal to all vectors fixed by L. Since there
is a basis for the fixed space of L that consists of vectors whose entries are
polynomials in the entries of L (Gaussian elimination and scaling), this
latter condition on TL is equivalent to the vanishing of a polynomial in the
entries of ¢. But the condition is not universally true in G(R") since any
pure translation has no fixed points; therefore the technique introduced in
§ 4 implies that 4 is nowhere dense, as desired.

This proposition, in exactly the same cases, is valid for SO, .;’s action
on S" (see §4). The following extension of these results is a refinement
of the theorems on the existence of free, fixed-point free groups of isometries
of rank m: it shows that in these cases almost all (from the category
point of view) m-tuples of isometries are free generators of fixed-point free
groups of isometries.

ProproSITION 12. Suppose n is odd and n >3, and X is one of
R" or §". Then any m elements of G(X), with the exception of a meager
set in  G(X)™, are free generators of a fixed-point free subgroup of G(X).

Proof. For the spherical case this follows from § 4, where it was shown
that U{R,: w is a group word in m variables} is comeager. The Euclidean
case 1s proved by observing (see Proposition 11’s proof and § 5) that there
is a function p that is a polynomial in the entries of o, .., o, such that
p=0 if and only if f(o,,..,0,)e A. Since, by the rank two case of
Theorem 1 (a), f is not identically zero, f . !(A4) is nowhere dense. Therefore
the union over all words in m variables is meager, as desired.
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