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LARGE FREE GROUPS OF ISOMETRIES
AND THEIR GEOMETRICAL USES

by Jan Mycielski and Stan Wagon

§ 1. Introduction

Various geometric constructions related to the Banach-Tarski paradoxical

decomposition of the sphere require the existence of free groups of isometries

acting without fixed points (i.e., no nonidentity element of the group has a

fixed point) or in a locally commutative way (i.e., if two group elements

have a common fixed point, then they commute). For some of these

constructions a free group of rank 2 is sufficient ; others require one of rank 2Ko.

It is the purpose of this paper to fill a few gaps in this subject, where the

underlying spaces are the spheres Sn, the Euclidean spaces R", and the

hyperbolic spaces Hn.

For groups of rank 2, all cases of this problem have been solved,
and we shall review these results in § 2. For the case of rank 2Xo, we

present a unified approach (§ 4-6) to the known results which is sufficiently
general to settle the heretofore unresolved cases, H3, SAn + 1 and S4. The
main idea of our proofs is a general topological technique (introduced
in [25]) that uses the groups of rank 2 to obtain a perfect (i.e., closed
and without isolated points) set of free generators. In all cases except H2,
the existence of a fixed-point free or locally commutative rank 2 free group
of isometries implies the existence of a group of rank 2Ko with the same
properties.

In § 7 and § 8 we discuss the geometric consequences of the existence
of large free groups of isometries. For example, each of S"(n^ 2), Hn(n^ 2)
and Rn(rc^3) contains a set which is, simultaneously, a third, a quarter,

a 2Ko th part of the space. In § 8 we show how paradoxical decompositions

of Hn(n^2) can be constructed using Borel sets (and not using the
Axiom of Choice). However, such paradoxical decompositions of R" either do
not exist, even allowing arbitrary sets (n= 1 or 2), or exist (n^3), but
require nonmeasurable sets and the Axiom of Choice.
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Finally, in § 9 we discuss what can be done in R2 if we allow area-

preserving linear or affine transformations instead of just isometries.

Proofs of several of the results mentioned or used in this paper, such

as Theorems 3, 4 (b) and (c), 5, 6, and 7, may be found in [41].
We thank W. Barker, A. Borel, A. Durfee, R. Riley, and D. Sullivan for

informative discussions and correspondence on hyperbolic «-space.

§ 2. The Main Theorem

The action of a group, G, on a set, A, is called fixed-point free if
g(x) 7^ x for all x g X and g e G\{/} (/ is the identity of G). The action
is called locally commutative if, for each xel, {o\e G: a(x) x} is a
commutative subgroup of G; equivalently, if two elements of G have a common
fixed point in X then they commute. For any group G and any abstract

(reduced) group word w in m variables, the function fw : Gm G is defined

by fw(ol,cjJ w{g1,.., aj.
If A is a metric space and also an oriented manifold, then G(A)

denotes the group of orientation-preserving isometries of A, with its

natural topology. In particular, G(Sn) SOn+1, G(H2) PSL2(R) and

G{H3) PSL2{C).

A set in a complete metric space is called perfect if it is nonempty,
closed and without isolated points; a perfect set has at least 2Ko elements.

Theorem 1.

(a) Each of the groups G(5"), where n is odd and n ^ 2, G(R"),

where n ^ 3, and G(Hn\ where n ^ 3, has a free subgroup with a

perfect set of free generators whose action on the space is fixed-point free.

(b) G(H2) has a discrete free subgroup of rank 2 (and hence also rank

which is fixed-point free, but no such free subgroup of G(H2) can

have uncountable rank.

(c) G(H2) and each of the groups G(Sn), n ^ 2, have locally
commutative free subgroups with a perfect set offree generators.

The above theorem is false in all omitted dimensions. This is because

the isometry groups in the low dimensions are all solvable, and hence

contain no free subgroup of rank 2. Also, each element of S02n+1 has a

fixed point on S2n, and this is why part (a) fails for spheres of even
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dimension. Of course, an uncountable subgroup of G(Hn) (or any infinite

subgroup of the compact group S0n) cannot be discrete. Moreover, G(Rn)

has the Abelian (and therefore amenable) group of translations as a closed

normal subgroup, and the quotient is the compact (and therefore amenable

as a topological group) group SOn. It follows that G(Rn) is an amenable

topological group, whence it has no discrete free subgroup of rank two

(see [12, § 2]).
The results of Theorem 1 are known except for part (a) for H3 and

Sn if n 1 (mod 4), and part (c) for S4. The history of the known cases

is the following. The earliest results on free isometry groups are due to Klein
and Fricke [16] and Hausdorff [14]. The former showed that PSL2(Z)
is isomorphic to the free product Z2*Z3, (see [17, Appendix]), whence

PSL2{R), which is isomorphic to G{H2), contains a free subgroup of rank 2.

Since the entire action of PSL2(R) on H2 is locally commutative (see § 6),

this yields part (c) for H2 and rank 2. Hausdorff showed that Z2 * Z3
also appears as a subgroup of S03. Again, the action of the rotation group
S03 on S2 is locally commutative, so this yields part (c) for S2 and rank 2.

This was the foundation of Hausdorffs theorem that there is no finitely
additive, rotation-invariant measure defined for all subsets of S2 and having
total measure one. It also forms the basis of the Banach-Tarski paradoxical
decomposition of a sphere. It was not until much later, however, that the

advantages of local commutativity for such constructions were recognized
[34, 13]. The simplest proof that Z2 * Z3 embeds in S03 may be found
in [33]. However, see [10] for a beautiful proof using tetrahedra that
Z2 * Z2 * Z2 * Z2 (and hence a free non-Abelian group) embeds in the group
of isometries of R3. For the general problem of the existence of free

subgroups of topological groups see the literature quoted in [28, p. 681].
Part (c) for S2 was first proved by Sierpinski [36]. Further results on the

embedding of free products into S03 and SL2(R) are due to Balcerzyk and
Mycielski [2]; see also Nisnewitsch [32]. Dekker [7, 8] made an extensive

investigation into higher dimensions and the non-Euclidean cases, proving
part (c) for H2 and S" (except for the case of S4) and part (a) for Sn

provided n — 1 (mod 4). Part (a) for R" was proved by Dekker [9] and,
independently, by Mycielski and Swierczkowski [29]. The remaining cases
of parts (a) and (c) for groups of rank 2 were proved recently by Deligne
and Sullivan [11] (part (a) for S", n 1 (mod 4)) and Borel [5] (part (c)
for S4). The positive result in part (b) is a consequence of well-known facts
about PSL2(R) (first pointed out in [5]), while the negative result is a
consequence of a theorem on PSL2(R) due to Siegel [35] (see § 6).
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The proof of Theorem 1 to be given below will assume all the
aforementioned results about the existence of free groups of rank 2. An important
fact is that a free group of rank 2 has a free subgroup of rank X0 : if a, t
freely generate the group, F, of rank 2 then {ulxa~l:i 0, 1, 2,...} is

a set of free generators of a subgroup of F, and the same is true of

{&xl:i 1,2,...}. More generally (see [21, p. 195]) a free product A * B

must have a free subgroup of rank K0 unless A or B is a one-element

group or A Z2 B.

We shall also consider elliptic spaces, L", which are represented by S",

with antipodal points identified. Hence the isometry group of Ln is SOn+1,

if n is even, or SOn + 1/{±I}, if n is odd. Note that any fixed-point free or
locally commutative free subgroup of G(S") induces such a subgroup of L"'s

isometry group. If a nontrivial (reduced) word w became the identity or
gained a fixed point when viewed as acting on Ln, then w2 would be the

identity or have a fixed point as a member of SOn + 1. Furthermore, if two
words, u and v, share a fixed point on Ln then u2 and v2 share a fixed

point on Sn. Since, in a free group, u and v commute if and only if u2

and v2 do ([21, p. 41]), this shows that a locally commutative free subgroup
of SOn + 1 induces one of the same rank in IT s isometry group.

§ 3. A Preliminary Theorem About Metric Spaces

The passage from a free group of rank 2 to one of rank 2*° with
the same fixed-point properties utilizes the following general theorem of

Mycielski [25].

Theorem 2. Let X be a complete, separable metric space with no

isolated points and suppose that, for each i < go, Rt is a nowhere dense

subset of some finite product Xn. Then there is a perfect subset F of X
which avoids each Rt in the sense that any rrtuple of distinct elements

of F does not lie in Rt.

The proof of this theorem is not difficult: one constructs a tree of open
sets such that no sequence from distinct nodes at level m lies in any Rt

with i ^ m. Then, provided the open sets are small enough (precisely, their
diameters converge to zero along branches, and the closure of any node is

contained in one of the open sets at the previous level), F may be obtained

as the collection of points lying in the intersections along infinite branches

of the tree.
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For various applications and generalizations of this result, see [25, 26].
The separability condition is not essential, but its presence allows the proof
to be carried out without using the Axiom of Choice.

Our applications of this theorem will involve finding appropriate
collections of algebraic or analytic surfaces Rt, such that the set F that avoids
them will be the desired set of free generators. The fact that the desired
free group of rank two (and hence X0) exists will be used to verify that
each Rt is indeed nowhere dense.

§ 4. Spheres

First we prove Theorem 1 (a) for Sn(n odd, 3). Let A {<j e SOn+i : a
has a fixed point in S"1} ; therefore a e A if and only if det(a — /) 0.

For each nonidentity reduced group word w in m variables, let Rw f ~\A) ;

thus (ctx crm) 6 Rw if and only if w(a!,..., am) has a fixed point. It is

enough to show that each Rw is nowhere dense, for then Theorem 2 may
be applied to the countable set of relations {Rw} to get a perfect set
F ç SOn + 1. Since F avoids each Rw, no word using elements of F has a
fixed point on Sn. This implies, in particular, that no such word equals the
identity, and so F is the desired set of rotations.

To see that each Rw is nowhere dense, we view SO(rc+l)m as a

(connected) analytic submanifold of Rm<" + 1)2 (0f dimension ^n(n+l)m). We

need an analytic f :SO+l -+ R such that Rw f~\{0}). Such a function
exists because membership in Rw is equivalent to the condition that +1
is an eigenvalue of w. Hence we may simply let

f(alt..., cjm) det(w(ai,aj-/).
Since fisa polynomial in the m(n+l)2 entries of the a; (this uses the fact
that det(a,) 1 to obtain that each entry of f1 is a polynomial in the
entries of a, / is analytic on SO"+1.

Since / is continuous, Rw is closed, so it remains to show that Rw's
interior is empty. Suppose not. Since SO„m+1 is connected, an analytic function
that vanishes on a nonempty open set must vanish everywhere. Hence
Rw SO+1, which contradicts the existence of a free subgroup of SO„ + 1
of rank m which is fixed-point free (which was proved in [7, 11]).
Alternatively, Rw SO

1 contradicts Theorem 1 of [5] which asserts that
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fw(SO„+1) is not contained in a proper algebraic subset (in this case, A)
of SOn + 1. This completes the proof of Theorem 1 (a) for Sn.

Next, consider Theorem 1 (c) for Sn. First observe that this can be

proved for S03 by the technique above, if A is taken to consist simply of
the identity. This is because the action of S03 on S2 is locally commutative,
so all that is needed is a perfect set of free generators, which in turn
requires only that each Rw be nowhere dense. Theorem 1 of [5] again
applies, because A is an algebraic set: membership in A is equivalent to the
simultaneous vanishing of (n+1)2 polynomials which, by using a sum of
squares, is equivalent to the vanishing of a single polynomial. For higher
dimensions, we appeal to the technique used by Borel to get locally
commutative free subgroups of SOn + 1. In [5, p. 162] he showed that, if n ^ 2,

S03 may be represented as a subgroup H of SOn+l where f/'s action on
Sn is locally commutative. Hence the perfect free generating set in SO 3

yields a perfect subset of H which is the desired free generating set in
SOn +1.

§ 5. Euclidean Spaces

For the Euclidean case of Theorem 1, it suffices to consider R3, since

any isometry of R3 can be extended to one in higher dimensions by
simply fixing the additional coordinates ; this introduces no new fixed points.
Now, R3 can be handled in a way entirely similar to Sn. Any orientation-
preserving isometry of R3 is a screw-motion, i.e. a rotation p e S03 followed

by a translation x. Such isometries may be represented as elements of
SL4(R) as follows: if a xp where p corresponds to (aij)eS03 and x

is a translation by (v1, v2, v3), then identify a with the matrix

Since composition of isometries corresponds to matrix multiplication, this

shows that G(R3) may be viewed as a connected (6-dimensional) analytic
submanifold of R12. Now, the proof can proceed exactly as for spheres,

once it is shown that the existence of a fixed point is equivalent to the
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vanishing of a polynomial. But a screw-motion a has a fixed point if
and only if the translation vector is perpendicular to the axis of

the rotation. Since the axis of a rotation (a^ e S03 is parallel to

(^32-^23, ß13-ö31> fl21-ß12), haS a fixed P°int if aild °nl^ if
1^1(^32 —«23) + ^2(^13-^31) + v3(a21-a12) 0. This completes the proof of

Theorem 1 (a) for R".

§ 6. Hyperbolic Spaces

Here we meet a case where the existence of a free, fixed-point free

group of isometries having rank 2 does not imply the existence of such

a group having uncountable rank. The hyperbolic plane is such a space.

If if2 is identified with the upper half-plane of C, then G(H2) corresponds

az + b
to linear fractional transformations z 1— where a, b, c, a are real

cz -(- d

and ad — be / 0. Since it may be assumed that ad — be 1, this group is

isomorphic to PSL2(R). A nonidentity element of PSL2(R) is called elliptic,
parabolic, or hyperbolic according as the absolute value of its trace is less

than, equal to, or greater than two; the nonidentity elements of G{H2) with
a fixed point in H2 correspond to the elliptic elements of PSL2(R). See [18] for
more details about this interpretation of PSL2(R). The following theorem
clarifies the situation regarding fixed-point free subgroups of G(H2).

Theorem 3. (Siegel) If F is a free subgroup of PSL2(R) then F
is discrete if and only if F has no elliptic elements.

Theorem 3 is a rephrasing of the result of [34] (see also [15]). An
elementary proof appears in [41]. The forward direction is an immediate

consequence of the fact that the nondiscrete cyclic subgroups of PSL2(R)
are precisely the ones generated by an elliptic element of infinite order.
This fact also yields the reverse direction in the case when F is cyclic.
Siegel gave an algebraic proof of the reverse direction for noncyclic free

groups. This can also be obtained by first using techniques of Lie algebras
to show that a nondiscrete, nonsolvable subgroup of PSL2(R) is dense in
PSL2(R), and observing that the elliptics form an open set; this approach
is due, independently, to A. Borel and D. Sullivan.

The forward (easy) direction of Theorem 3 yields a proof of the positive
part of Theorem 1 (b) for H2 (and hence for Hn, n ^ 2), since it implies
that a discrete free group of rank two has no elliptic elements. Therefore
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any rank-two free subgroup of SL2(Z) is fixed-point free when viewed as a

group of isometries of ff2. The simplest example of such a free group is the

mentioned in § 2, that PSL2(Z) Z2 * Z3.)
Moreover, the reverse direction of Theorem 3 yields the negative part

of Theorem 1 (b). For an uncountable subgroup of PSL2{R) is necessarily
nondiscrete, and so an uncountable free subgroup must contain an elliptic
element.

Let us point out why the perfect set technique of the previous sections

if (a + d)2 < 4, which is a polynomial inequality rather than an equality.
Therefore the elliptics do not form a closed set, and hence they cannot be the

zero set of an analytic function.
_

But the method of § 4 easily yields Theorem 1 (c) for ff2. Simply
let Rw f'1 ({/}); Rw is the zero set of an analytic function. Therefore
the method of § 4 yields a free subgroup of SL2(R) (and hence of PSL2(R))
with a perfect set of free generators. This proves Theorem 1 (c) for ff2,

since the entire action of PSL2(R) on if2 is locally commutative: if two
elliptics share a fixed point, then they have the same set of fixed points
in C u {oo}, so they commute.

A large, free locally commutative subgroup of G(ff2) immediately yields
such a subgroup of G(ff"), n ^ 3, but a stronger result, namely Theorem 1 (a),

is true in these higher dimensions. Consider first the case n ^ 4. By
considering H4 as the upper half-space in R4, it is easy to see that there is a

monomorphism of G(R3) into G(ff4); any isometry of R3 is extended to ff4
by fixing the additional coordinate. Since a fixed-point free isometry remains

so, Theorem 1 (a) for H4 (and hence for H", n ^ 4) is a consequence of
the corresponding result for R3. This method fails in ff3 however, since

G(R2) has no non-Abelian free subgroup.
To prove Theorem 1 (a) for ff3, we shall use the facts (see [3]) that

G(ff3) is isomorphic to PSL2(C) and that the elliptic transformations have

real trace. (The elliptics, i.e., those nonidentity transformations in PSL2(C)

fixing a point in ff3, are precisely the transformations whose trace is real

and lies in the open interval — 2, 2).) It will be more convenient to work
in SL2(C) and there is no loss in so doing, since a free subgroup of
SL2(C) induces one in PSL2(C). As before, consider a word w in m variables,
and define Rw to be {(a^aj g SL2(C)m: w(ax,aJ is elliptic}. We wish

breaks down
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to show that Rw is nowhere dense, and to this end we consider the superset

K* of Rw defined by:

R * {(°i » •»» CTm) e SL2{C)m : trace(w(ax,aj) e R}.

Lemma. R* is anowhere dense subset of

Proof. We shall view SL2(C)m as a connected real analytic submanifold

of R8m. If al,...,aSm are the reals defining crm, then there are

polynomials pt,p8 in the at such that

May,crj Pi + iPi 3 + Wa

Ps + iPe Pi + iPs

Therefore (cr1,om)eR*if and only if + p8 — 0- Since R* is closed,

if R* failed to be nowhere dense then it would contain a nonempty open

set. As in § 4, this implies that p2 + p8 is identically zero on SL2(C)m or,

equivalently, that the trace of w(ax,..., am) is real for all ay,..., am e SL2(C).

This leads to a contradiction as follows.

A result of Magnus [19] and Neumann [30] (for a proof, see [20,

§ III.2]) states that the matrices p ^ anci T ^ ij are ^ree

generators of a subgroup of SL2(Z) that consists only of the identity and

hyperbolic elements. It follows that the same is true of the group generated

by a1, <32, - where p1 xl. Now, for z g C\{- (1 ±-J5), — (1 ± 5)}, define

p(z) and t(z) in SL2(C) by

1 /I z \ J
1 /1 + 2z 2z

M -1 + z - (z 1+zj and 1(21 °
1 + 2z - 4? 2z 1

Let af(z) p' (z)t1 (z). Then choose a region Q in C so that 0, 1 g Q but Q,

does not contain any of the 4 real singularities, and define a complex

analytic function / on Q by f(z) trace(w(a1(z),..., am(z))). The assumption
on w of the previous paragraph, together with the Open Mapping Theorem

applied to /, yields that / is constant on Q. But /(0) 2 and /(1) is

the trace of a nonidentity element of the Magnus-Neumann group, whence

/( 1) 71— 2, a contradiction. Alternatively (as pointed out by a referee), one can
obtain a contradiction by using Theorem 1 and Remark 4 of [5] to obtain
that fw(SL2(C)m) has nonempty interior, whence the image of trace • fw has

nonempty interior in C. Therefore the image of trace fw is not contained in R.
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This lemma implies that Rw is nowhere dense too, so we may apply
Theorem 2 to the collection {Rw}, yielding Theorem 1 (a) forH3. This
completes the proof of Theorem 1.

§ 7. Geometrical Consequences

In this section we summarize some striking geometrical consequences
of the existence of large free groups. The following theorem illustrates what
can be done with locally commutative actions. Unlike the preceding sections,
the results of this section all use the Axiom of Choice. We use DAE
to denote (D\E) u (E\D).

Theorem 4. Suppose a free group, G, of rank k(k^2) is locally
commutative in its action on X.

(a) If (and only if) kx k | X |, then there is a subset E of X
such that for any D c X with ] D | ^ X, there is some a e G such that
<j{E) — E À D. In short, E is invariant under the addition and deletion

of any X points of X.

(b) X may be partitioned into k sets, Aa, a < k, such that each

Aa is G-equidecomposable with X using 2 pieces, i.e. for each a there

are aa, xa e G and Ba, Ca Aa such that {Ba, Ca} partitions Aa

and {ofBJ, xa(Ca)} partitions X. In short, X may be taken apart into
pieces which may be rearranged to form k copies of X.

(c) There is a subset E of X such that for any cardinal X satisfying
3 ^ X ^ k, X may be partitioned into X G-congruent pieces, each of
which is G-congruent to E. In short, E is, simultaneously, a third, a

quarter, a kTh part of X. (If the action is fixed-point free, then
X 2 is also permitted — see Theorem 6.)

Parts (b) and (c) of this theorem are applications of a more general
fact about locally commutative actions of a free group, which is described

following Theorem 6.

Theorem 1 shows that all parts of the preceding theorem, with k 2**°,

apply to S", LP and Hn(n^2) and Rn(n^3), where G is either G(X) or,
in the case of Ln, the group of all isometries. Note that, since (2^°)Xo — 2Ko,

part (a) yields a set that is invariant under the addition or deletion of
countably many points. Because the existence of large free locally
commutative groups was already known in most of these cases, so were the

consequences by Theorem 4; only the cases of S4 and L4 are new.
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Part (a) is due to Mycielski [24]. It is known to be false in R1, R2

and S1 even if one only seeks invariance with respect to the deletion of

single points (Sierpinski [37], Straus [38]). Under appropriate (and necessary)

assumptions about cardinal arithmetic, part (a) can be used to get sets

invariant under the addition and deletion of certain uncountable sets of

points. For example, the (consistent) assumption that 2*° 2Nl X2 implies

that (2Xo)Xl «= 2Ko, so part (a) is valid with k 2Ko and X The

proof of Theorem 4 (a) uses the Axiom of Choice, but it is not known

whether the set E must necessarily be nonmeasurable.

Part (b) is a refinement of the classical Banach-Tarski Paradox on S2

along lines first investigated by Robinson [34] and Sierpinski [36]. As stated

above, the result is due to Dekker [7], who also proved the following
converse.

Theorem 5. Suppose k ^ 2 and the action of G on X satisfies

assertion (b) of Theorem 4. Then G contains a free subgroup of rank k
whose action on X is locally commutative ; indeed a"1 xa, a < k, freely
generate such a subgroup.

Work of Banach and von Neumann (see [27]) yields that a solvable

group is amenable and whenever an amenable group G acts on X then
there exists a finitely additive G-invariant measure p defined on all subsets

of X, with p(AT) 1. This implies that Theorem 4 (b) is not valid for
S1, R1 or R2, even for k 2.

Part (c) of Theorem 4 (Mycielski [22]) is a generalization of an earlier
result of Robinson [34], who showed that S2 may be divided into 3

(or n, if 3^n<X0) rotationally congruent pieces. It is not clear that
Robinson's result requires nonmeasurable pieces, and the following problem
(Mycielski [23]) is still unsolved.

Problem. Can S2 be partitioned into 3 rotationally congruent, Lebesgue
measurable sets?

The assertion of 4 (c), however, does necessitate nonmeasurable pieces in
Sn and R" (for the latter, and for the case of Hn, see § 8). Hence, for the
same reasons as for 4(b), 4(c) is false in S\ R1 and R2. However, for any
X ^ 2*°, S1 may be partitioned into X pairwise congruent pieces (see [40]).
Note that X 2 is omitted from part (c); this is because every element
of S03, for example, has a fixed point in S2, therefore S2 cannot be split
into two S03-congruent pieces.
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Parts (b) and (c) of Theorem 4 are related to the solution of certain

systems of congruences. The following theorem (Dekker [7]) shows that a

fixed-point free action allows a wide variety of such systems to be solved.

Theorem 6. Suppose the action of G, a free group of rank k, on

X is fixed-point free and {u{Ta:aeLß} u {Ta:aeRß}: ß < k} is a

system of k congruences, where each Lß and Rß is a proper and

nonempty subset of X. Then X can be partitioned into sets Aa, a < X,

so that each congruence in the system is witnessed by some free generator
of G.

A similar result is true for locally commutative actions, but one has

to restrict the systems of congruences to those systems which do not,
explicitly or implicity, imply that a set is congruent to its complement.
Parts (b) and (c) of Theorem 4 are consequences of this general result.

For example, to obtain (b) consider the system.

{Ta u{Tß : ß < k ß^a+l}:a<K,a even}

and, for a < k, a even, let Ba Aa, Ca Aa+1.
Because of Theorem 1, Theorem 6, with k 2Ko, applies to Sn and

Ln if n ^ 3 and n is odd, and to Hn and R" if n ^ 3. Moreover, it
applies to H2 if k K0. Since, as just shown, the conclusion of Theorem 6

implies the assertion of Theorem 4 (b), it follows from Theorem 5 that a

partial converse to Theorem 6 is valid: if an action admits a solution to
all K-sized systems of congruences, then G contains a free locally
commutative subgroup of rank k. But the stronger converse to Theorem 6,

i.e., the existence of a fixed-point free subgroup, is false. This follows from
work of Adams [1], who showed that if the antipodal map from Sn to
Sn is available, as it is in SO2n or any On, then a locally commutative
free group is sufficient to obtain the conclusion of Theorem 6, provided no
element of the locally commutative group has — 1 as an eigenvalue. This

latter condition is clearly satisfied by a free subgroup of S03, so Adams'

theorem yields the conclusion of Theorem 6 for the action of 03 on S2,

with k 2Xo. But no free subgroup of 03 is fixed-point free in its action

on S2.

Because no elements of the locally commutative free subgroups of SOn

constructed by Dekker [7] and Borel [5] have —1 as an eigenvalue,

Adams' technique yields the conclusion of Theorem 6, with k 2Xo, for
the action of On + 1 on S", for all n > 2. In- fact, any non-Abelian locally
commutative free subgroup of S03, S04 or S05 must avoid —1 as an

eigenvalue. For S03 this is clear since a rotation that sends a point to its
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antipode must have order 2. Suppose er, t g S05 freely generate a locally
commutative group and some word w has —1 as an eigenvalue. Then this

eigenvalue must have multiplicity 2, whence w2 fixes a 3-dimensional sub-

space of R5. Assume w2 does not begin, on the left, with <j±1 and let

ii (jw2o~1. By freeness, u and w2 are not powers of a common word;
therefore u and w2 do not commute (see [21, p. 42]). But u also fixes

a 3-dimensional subspace, so u and w2 must share a fixed point on the unit
sphere, which contradicts local commutativity. A similar argument works in
R4: choose a basis consisting of two linearly independent fixed points of w2

and two linearly independent fixed points of u; it follows that u and w2

commute. These arguments lead to the following question.

Problem. Does S06 (or SOn, n^6) have a locally commutative free

subgroup of rank 2 which contains a transformation having — 1 as an
eigenvalue

As an application of Theorem 6, consider the result of Theorem 4 (c).

A solution of the following system of 2Xo congruences involving a < 2No,

yields a set E satisfying Theorem 4 (c) for any X such that 2 ^ X ^ 2Xo :

A0 EE Tß, ß < 2*°

Aß u{Aa:ß < a < 2*°} ß < 2*°.
Hence, using Adams' result (when necessary), we obtain the following
corollary to Theorems 1 and 5.

Corollary. Let X be any of Sn, n ^ 3, n odd, or R" or Hn,
with n ^ 3, and let G G{X). Or, let X be Sn, n > 2 or Ln,
n ^ 3, n odd, with G being the group of all isometries of X. Then
there is a subset E of X such that, for any X with 2 ^ X ^ 2Xo,
X may be split into X sets, each of which is G-congruent to E.

Because of the anomaly about H2 discussed in § 6, it is not known whether
the conclusion of Theorem 6 is valid in H2 for some uncountable k. In
particular, we have the following problem, where a set is called a ÎCth part of
H if H2 splits into X sets, each of which is congruent, via PSL2(R),
to the set.

Problem. Does H2 contain a set which is both a half of H2 and a
2No'th part of H2?

Note, however, that because Theorem 6 is valid in H2 with k N0
there is a subset of H2 (indeed, a Borel set; see §8) that is" both a half
of H and an N0 th part of H2 ; consider the set of congruences preceding
the corollary based on the set-variables {T„:n<N0}. Moreover, The-
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orems 1 (c) and 4 (c) yield a subset that is both a third of H2 and a

2*°'th part of H2.

§8. A Paradoxical Decomposition Using Borel Sets

Theorem 8. If n ^ 2, then any system of countably many congruences
involving countably many sets (as in Theorem 6) is satisfiable using a partition
of Hn into Borel sets and isometries.

Proof Consider H2 first, and let F be a free subgroup of PSL2(Z)
whose rank equals the number of congruences to be satisfied; F may be

pose. Theorem 6 is proved by first constructing, by induction, a partition
of F that satisfies the given system using left multiplication in F. Then it is

easy to transfer this decomposition to a set on which F9s action is fixed-

point free by using a choice set for the F-orbits. In general, this requires
the Axiom of Choice, and yields nonmeasurable sets. But, because F is a

discrete subgroup of PSL2(R), there is a fundamental region for F9s action

on H2. In fact (see [18]) there is a (hyperbolic) polygon such that no two

points of the polygon's interior lie in the same F-orbit, and all points in H2

are in the F-orbit of some point in the closure of the polygon. The boundary
of this polygon consists of a countable number of sides (open hyperbolic
segments) and vertices. Since F maps vertices to vertices and sides to sides,

there is a choice set M for the F-orbits that consists of the interior of the

polygon together with some of the vertices and some of the sides. Clearly,
M is a Borel set. Now, if Bn is one of the sets of the partition of F,

then let An — u{<j(M): o e Bn}. This yields a partition of H2 into Borel
sets A„ which satisfy the given congruences. The result for higher dimensions

follows by simple using the standard projection of Hn onto H2 to define

the pieces of a partition of Hn.

Corollary. If n ^ 2 then Hn is paradoxical using Borel sets. In

fact, there are pairwise disjoint Borel sets, Al9 A2, B1, B2 and isometries

ai, a2, t j, x2 e G(Hn) such that Hn u a2(A2) ii(Bi) u t2(B2).

Moreover, there is a Borel set E which is simultaneously a half, a third,

an N0 9th part of H2.

This corollary shows that the subsets of H" provided by parts (b) of (c)

of Theorem 4 can be taken to be Borel sets in the case k X0. This

obtained as a subgroup of the group generated trans-
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result is completely constructive. For instance, if one labels the quadrilaterals
of the tesselation corresponding to the discrete free group generated by a and

2
X (where a(z) « -——— and x(z) z + 2) and then transfers the paradoxical

decomposition of a free group of rank two to H2 via the labelled
quadrilaterals, one obtains the partition of H2 into four sets A1,A2,B1 and

B2 illustrated in the figure below. Since H2 <j(A2) u
this yields an explicit paradoxical decomposition of the hyperbolic plane using

very simple sets. For another pictorially simple paradox in H2 see [41,

Fig. 5.2].

These results are completely opposite to the situation in S2 and Rn.

Because of surface Lebesgue measure on S", it is obvious that parts (b)
and (c) of Theorem 4 cannot be witnessed by measurable sets. For example,

if m denotes surface Lebesgue measure and E, a measurable set, is a

X'th part of Sthen m(E) if X is finite, and m(E) 0 if X is infinite.
A.

The case of Rn is subtler because R" has infinite measure; the following
result of Mycielski [27] is relevant.

Theorem 9. There is a finitely additive measure ji on the collection

of Lebesgue measurable subsets of R" which is invariant under all similarities
and satisfies p(Rw) 1.

Because the similarity groups in R1 and R2 are solvable, the theorem
of Banach mentioned in § 7 shows that, in these two cases, the measure

can be taken to be defined on all sets.

Note that for k uncountable parts (b) and (c) of Theorem 4 cannot be

witnessed by Borel subsets of Hn. Suppose, for example, that k is uncountable
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and the sets of Theorem 4 (b) are all Borel. Since Borel sets have the

Property of Baire, each Aa may be written as Ra A Ma where Ra is open
and Ma is meager. But each Aa, being Borel equidecomposable to all of H2,
is nonmeager, whence each Ra is nonempty. It follows that the Ra are

pairwise disjoint, which contradicts the separability of H2. A similar argument
shows that the sets cannot all be Lebesgue measurable either.

Let us point out how the proof of Theorem 9 breaks down in hyperbolic
space. Theorem 9 is based on the fact that R" is a union of countably

many sets Br of finite Lebesgue measure satisfying : for any isometry
a, m(BrAcy(Br))/m(Br) -> 0 as r - oo. Simply let Br be the ball of radius r
centered at the origin. Because Theorem 9 is false for Hn if n ^ 2, there

can be no such sequence of almost invariant sets of finite (hyperbolic)
measure in Hn.

§ 9. Linear Transformations of the Euclidean Plane

Paradoxical decompositions in the plane are possible if one allows the

use of area-preserving affine transformations. This was first realized by von
Neumann [31], who showed that a square is paradoxical using this expansion
of the isometry group. In fact, it is sufficient to consider the group
generated by SL2{Z) and all translations; see [39]. In this section we discuss

how the results of this paper are affected by considering linear, or affine,
transformations instead of just isometries.

Let us consider the action of SL2{R) on R2\{0}. The two matrices,

element of which has a fixed point in R2\{0}; this follows from the result

of Magnus and Neumann mentioned in § 6, since an element of SL2(Z)
has a nonzero fixed point in R2 if and only if it has trace 2. It follows

by the technique of § 4 that SL2(R) has a free subgroup with a perfect
set of free generators whose action on R2\{0} is fixed-point free. Therefore

the action of SL2(R) on R2\{0} satisfies all the conclusions of Theorems 4

and 6.

Using techniques of functional analysis, J. Rosenblatt and R. Kallman

(unpublished) have recently shown that the Lebesgue measurable subsets of
R"\{0} (n^2) do not bear a finitely additive, SL„(Z)-invariant measure of total
measure one. (For n ^ 3 this uses the fact that SLn(Z) has Kazhdan's

Property T, while the R2 case uses specific facts about representations of

generate a subgroup of SL2(Z), no nonidentity
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SL2{Z); see [41; Theorem 11.17].) Thus Theorem 9 does not extend to

area-preserving affine transformations. It would be interesting if a paradoxical

decomposition of R2\{0} using measurable sets, similar to the one illustrated

in § 8, could be explicitly constructed. Some sort of paradoxical decomposition

using measurable pieces must exist, by a general theorem of Tarski (see [41]),
but it is not known if one using just four pieces exists. On the other hand,

Belley and Prasad [4] have shown that there is a finitely additive measure

on a certain (not too small) Boolean algebra of Borel subsets of R" that
has total measure one and is invariant under all nonsingular affine
transformations of R" (not just the measure-preserving ones).

Finally, we mention some unsolved problems about the existence of nice

free groups of affine, area-preserving transformations, positive solutions to
which would yield (via Theorems 4-6) paradoxical decompositions of R". Let
/4„(R) denote the group of affine transformations of R", i.e., transformations
of the form TL, where T is a translation and L e GL+iR). Let SA„(R) be

the subgroup obtained by restricting L to SLn(R), and let SAn(Z) consist
of those TL where L g SLn(Z) and T is a translation by a vector in Zn. Note
that SAn(Z) acts on Z". Since G(R3) c SA3(R), Theorem 1 yields that
SA3(R) has a free non-Abelian subgroup whose action on R3 is fixed-point
free. Consideration of Z3 instead of R3 leads to problem 1 below. Problem 2

is an attempt to get a version of these results for R2 (rather than R2\{0},
which is treated at the beginning of this section). Only local commutativity

is sought because of part (b) of the proposition below. Since and

its transpose freely generate a group of rank two, so do the two
transformations :

y> G ;)(K) and C)"G i)C)+0
Hence perhaps the subgroup of SA2{Z) which these two transformations
generate solves Problem 2 affirmatively. But we are unable to show that
this subgroup is locally commutative.

Problems.

1. Does SA3{Z) have a free subgroup of rank two which is fixed-point
free on Z3

2. Does S/42(R) (or SA2(Z))have a subgroup of rank two which is
locally commutative in its action on R2 (or on Z2)?
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Proposition 10.

(a) If TL g ^„(R) and TL has no fixed points in R", then L has

+ 1 as an eigenvalue, i.e., L has a fixed point in R"\{0}.

(b) If G is a subgroup of SA2(R) which is fixed-point free on R2

then G is solvable.

(a) Suppose T is a translation by the vector v. Since L(x) 4- v x has

no solution, the same is true of (L — I) (x) — v, and therefore det(L — I) 0,

i.e., 1 is an eigenvalue of L.

(b) Let a TL and x T'L' be in G. Then ax - T"LL' so part (a)

yields that each of L, L', LL' has 1 as an eigenvalue. Since these are

2x2 matrices with determinant 1, this implies that all have trace 2. Hence,

by 0. But if either b or y equal zero, then L and L commute, which

implies that the commutators axa-1!-1 and a~1x""1ax are pure translations.
Hence [[G, G], [G, G]] is the identity subgroup, i.e., G is solvable.

Part (b) of the Proposition shows why there is no fixed-point free, non-
Abelian free subgroup of &42(R). But the following problem is unsolved.

Problem 3. Does there exist a free non-Abelian semigroup in ST2(R)

(or SA2{Z)) whose action on R2 is fixed-point free?

Part (a) of Proposition 10 brings to light a distinction between the

groups G(R") according as n is even or odd. The proof of Theorem 1 for
R3 (§ 5) is essentially the same as the proof for S2n + 1 given in § 4. Precisely,

it is shown that A (aeG(R3):a has a fixed point in R3} is nowhere

dense and, in fact, each Rw / ~1 (A) is nowhere dense in the appropriate
product, where w is any group word in finitely many variables. While this

is sufficient to get the existence of perfect free generating sets of fixed-point
free subgroups in R3 and beyond, the set A can fail to be nowhere dense

in the higher dimensions. Indeed, consider R2", n ^ 1. Letting 7i:G(R2")

-> S02n be the canonical homomorphism, it follows from part (a) of
Proposition 10 that G(R")\4 Ç= 7i_1(£), where B {LgS02„:L has 1 as an

eigenvalue}. It is easy to see that B is nowhere dense and it follows that

the same is true of n'\B); i.e., A has a nowhere dense complement. In odd

Proof.

choosing an appropriate basis, we have L

f- by * \
and the trace of the latter being 2 yields that

* 2 —a /
Then LL'
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dimensions, however, the situation in R3 is typical, as the following
proposition shows.

Proposition 11. If n ^ 1 is odd then A {a e G(RW): a has a fixed
point in R") is a nowhere dense subset of G(R").

Proof It is an easy linear algebra exercise (generalizing Proposition 10 (a)

above) to see that a TL has a fixed point in R" if and only if the

translation vector of T is orthogonal to all vectors fixed by L. Since there
is a basis for the fixed space of L that consists of vectors whose entries are

polynomials in the entries of L (Gaussian elimination and scaling), this
latter condition on TL is equivalent to the vanishing of a polynomial in the

entries of a. But the condition is not universally true in G(R") since any
pure translation has no fixed points; therefore the technique introduced in
§ 4 implies that A is nowhere dense, as desired.

This proposition, in exactly the same cases, is valid for SOn + 1,s action
on Sn (see § 4). The following extension of these results is a refinement
of the theorems on the existence of free, fixed-point free groups of isometries
of rank m : it shows that in these cases almost all (from the category
point of view) m-tuples of isometries are free generators of fixed-point free

groups of isometries.

Proposition 12. Suppose n is odd and n ^ 3, and X is one of
R" or Sn. Then any m elements of G(X), with the exception of a meager
set in G{X)m, are free generators of a fixed-point free subgroup of G(X).

Proof For the spherical case this follows from §4, where it was shown
that sj{Rw : w is a group word in m variables} is comeager. The Euclidean
case is proved by observing (see Proposition IPs proof and §5) that there
is a function p that is a polynomial in the entries of such that
p 0 if and only if /M,(a{,..., ct„,) g A. Since, by the rank two case of
Theorem 1 (a), / is not identically zero, f~f{A) is nowhere dense. Therefore
the union over all words in m variables is meager, as desired.
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