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224 E. GROSSWALD

2. Notations. In what follows, lower case latin letters stand for rational
integers. In particular, p, with or without subscripts, stands for primes

p & l(mod 4) and q for primes q 3(mod 4). Whenever the modulus is not
specified, it will be understood that the congruence is taken modulo 4.

Also, nl stands for a positive integer divisible only by primes p 1 (which
does not exclude n1 1) and n2 for a positive integer divisible only by
primes q 3 (n2 1 is possible). The symbol [x] stands for the greatest
integer not in excess of x and ab'\\c means that ab | c, but ab+l Jf c. If
f(x) is asymptotically equal to g(x), i.e., if f(x)/g(x) - 1 for x -> oo, we

write jf(x) ~ g(x). A weaker relation will be defined in Section 3.

3. Main Results. The main results are formulated in the following two
theorems.

Theorem 1.

(a) For all k ^ 5, Skt0 0 ; for m ^ 1, the sets Sktfn are finite and

can be determined explicitly.

(b) Fork 4, S4i0 C); form>1, S4>m with S^m
a finite, computable set and [n \ n 4at,teNm}, where Nm

are finite, computable sets.

(c) For k m 3, S3f 0 *=* {n | n 4at, t 7(mod 8)}, while, for m ^ 1, S3 m

-{n\n 4at, t e Mm}, with Mm finite sets.

(d) For k 2, S2,0 {n\3 q prime, q m 3, q2u+1 || n} ; for m > 1, S2>m

{h 2an^nff, where the factors pbi of n1 have exponents bt

that are solutions of the equation

(1) ki+ n fo+i))
Z b(

Pi il «

— m

(e) For k 1, Suo {n ^ t2}, 5ltl {n | n t2} and, for m ^ 2,

^1, m — 0-

All sets Sk>m can be effectively computed, except for S3 m. The
determination of the S3>m depends on the complete listing of the discriminants
d —n of binary quadratic forms of class numbers h( — n) < 2m for

n 3(mod 8) and h( — 4n) ^ 4m for n 1, 2(mod 4), respectively.

It also is of some interest to determine the sets <Sk>m(x) and the numbers
I $k mM I °f their elements, n ^ x, neSk m. In order to avoid exceptions
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that are basically trivial, but would lead to longwinded formulations, in the

statements of the following Theorem 2, we shall assume that x is "large",
i.e., that x is larger than the largest element of any finite set which occurs

in any given formula.
For a neat formulation of Theorem 2, it also is convenient to define

the following sets. For given m, let 0 < ^ ^ b2 < ^ br be a set of
integers that satisfies (1). Then we denote by s{b^b2,'",br) the set of integers

n 2a n\p i1 pb22... pbr; here Pi,p2* pr run independently through all

primes p 1, with the restriction that, for i # j, pt # Pj and (to avoid

multiplicities) pt < p} if i < j and bj. The set of integers that satisfy (1)

and of the form n 2anj is denoted by S(20i,; it is clear that S^ln ^ 0 if and

only if m 1. The set S2>m of all integers that have exactly m partitions
into 2 squares is the union u S(b'm 2""'br) taken over all solution sets of (1).

The meaning of a notation like S{b^b2,--,br)(x) or | S{b^-,br\x) | is clear.
We shall say that /(x) is weakly asymptotic to g(x), in symbols /(x)

~ g(x), if, to every s > 0, there exists x0 x0(s), such that, for x > x0,
it is not possible that either of the two inequalities, f(y) > (1 + s)g(y), or
f(y) < (l-e)g(y), should hold over the whole interval x ^ y ^ x1+e. The
relation is indeed weaker than ordinary asymptotic equality, in that it does

not rule out that one of said inequalities should hold somewhere within
the stated interval.

Theorem 2.

(a) For k ^ 5, all sets Sk 0 are empty, while |Sfc,m(x)| are finite,
computable integers for all m ^ 1.

(b) For k 4, the set S4 0 is empty and, if m ^ 1,

I S4,mW I I SV1,'m I + (log 4)~ 1(| I log X - y log t) +
t e Nm

hereNm are the same sets as in Theorem 1 and 0 < s: | Nm |.

(c) For k3, if m0, then |S3-0(x)| J + O(logx); m > 1,
6

then

(2) I I (log 4)-1(| A/m I log jc — y log -f- ôm
te Mm

where Mm are the same sets as in Theorem 1 and 0 < 5m x «: | Mm

(d) For k2, if m0, then
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I S2,o(x) | x - bx(logx) 1/2

+ o(x(logx)~1/2), b {2 [] (1-4~2)}~1/2
9=3

If m ^ 1, then

(3a) |S<20»(x)| =* b(x/\og x)112 ;

for(bk, b2,...br) ¥=(0),

(3b) I I Ä C(x/log x)1'2, if all b, > 3 ;

(3c) |S(2^--m(x)|
C(x/log x)1/2(log2x)* if 2 bkbk< bk + 1 «S br,

C{x/logx)(log2x)*-1 if 1 bk - bbk < bk+1 < <

ifere log2x log(log x) unrf we shall denote more generally log(log„_ xx)

by log„x. In (3a), b is an absolute constant, while in (3b) and (3c) the

constant C depends on the corresponding set of the bj,j 1, 2,..., r.

Finally,

I S2,Jx) I £ I S2>m""iv,(x) I

and

I ^2,mW I — Cmr^(l0g2x)C<\
log X

with Cm and c(m) computable constants, 0 ^ c(m) e Z.

(e) For k1, |Sli0(x)| [x] - |Slil(x)| [^x] and, for
m> 1, I SUm(x) | 0.

Conjecture. All weak asymptotic equalities are actually ordinary asymptotic

equalities.
The proof of this conjecture depends on a certain (apparently unproven)

Tauberian statement.

Comments. Not only the finite sets Sk m,k ^ 5, but also the infinite
sets S4>m have density zero, i.e., lim x-1 | S4fW(x) | 0, notwithstanding the

X —* 00

00

obvious fact that, if we set Sk u Sktfn, then Sfc(x) x and Sk has
m 0

density 1 for all k.
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Also Sfc m with k 1,2, and 3 and m ^ 1 have density zero. On the

other hand, S3t0 has density 1/6, while S2,o anc* ^i,o ^ave density 1.

The cases k 1, k 2, and k ^ 5 hardly require further comments

and follow trivially from Theorem 1 and 2. On the other hand, the

situation is not quite so obvious for k 3 and k 4. By Theorem 2(c),

°o 5x
(4) I S3>m(x) — + O(logx),

m 1 0

a well-known result (see, e.g., [7], vol. 2, § 176, p. 645), but which does

not seem to follow from (2). Indeed, S3>m n S3>m, 0 for m ^ m' and this
oo oo

implies that, if we set S3 u S3 m, then | S'3(x) | | u 53>m(x)|
m =1 m—I

oo

Z I ^3,mW I- If we replace here | S3tW(x) | by (2), the last series diverges.
m t

The reason for this fact is that, for any fixed x, the summands are given
by (2) only for the finitely many values of m with max (j | jeMJ ^ x.
The other summands have to be replaced by smaller values and there is

no contradiction with (2). For k 4 the situation is similar.

4. Proof of Theorem 1. It is known (see [1], especially p. 71, and [12])
that, for k ^ 3, rk(n) — ck(n)nk,2~ A(1 +ö(1)). For k ^ 5, ck(n) > Ck > 0,

inequalities that do not hold for k 3, and k 4. Hence, for k ^ 5,

Pk(n) > rk{n)/2hk\ ^ Cknkl2' 72k/c! > m

if

\2/(k-2)
nfc/2_1 > (2kk\/Ck)m, or n > n0(fc, m) f Zp mJ

It is sufficient to check the finitely many n ^ n0 and keep those for which
Pk(n) m. Incidentally, in this search, we automatically obtain also the
sets Sktm. for all m' < m. This proves (a).

For k 4, by Lagrange's Theorem, 54>0 0. We now consider m ^ 1.
We recall that P4(8n) P4(2n). Also (see [8]), for 8 P4(n) > n/48,
for n # O(mod 4), P4(n) > n/64 for n 4(mod 8). In either case, P4(n) > m,
for all n # O(mod 8), n > 64m. Consequently, if £ O(mod 8), P4(n) m is
possible only for n < 64m. We now consider this set (n < 64m} and elim-
inate from it the integers divisible by 8 ; let
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S433w {n ^ 64m, n ^ 0(mod 8) | P4{n) m}

Next, if n m 0(mod 8), we set n 4a - 21, with It ^ 0(mod 8) (here t may be

either even or odd). It follows that P4(n) m implies P4(2t) m, 8 It,
so that 2teS^3)m and 2t ^ 64m. Consequently, for each 2teS{^m, all
integers n 4a 2t have P4(n) m; we denote the set of these integers
by S44)m. Next we consider the set of odd elements j e for all of
them, P4(j) m. For each of them we check whether P4(4j) > m, or
P4(4j) m. In the first case, P4(4aj) > m for all a ^ 1 ; in the second case

(which in fact does not occur), P4(4aj) m for all a ^ 0. The union of
the latter sets and S {4^m is denoted by S{4t]m (in fact, S(4?m S(£]m, but
that is not important and we suppress the proof). The remaining elements

jeS(43)m, all odd, for which P4(4j) > m, form the finite set S{4?m and this
finishes the proof of Theorem 1(b).

For k 3, it is classical (see, e.g., [7], vol. 2 § 176, p. 644) that
^3,o {n\n 4fl(8j + 7)}. It also is clear that P3(4n) P3(n). It is, therefore,
sufficient to determine only the set Mm of integers t ^ 0(mod 4), with P3(t)

m, as then S3m {n\n 4at, 4 X Ute Mm).
As already observed, P3(n) ^ r3(n)/233 r3{n)/48 ^ jR3(n)/48, where

R3(n) stands for the number of primitive representations of n as a sum
of 3 squares. Here primitive means that the 3 summands have no non-
trivial common divisor. It is well-known (see [4], §281, or [1]) that R3(n)

24h( — n), if n 3(mod 8), n # 3 and R3(n) 12h( — 4n), if n m 1, 2(mod 4),

n ^ 1. Here h( — n\ or h( — 4ri) is the class number of the quadratic forms
of discriminant à — — n, or d —4n, respectively. It follows that, if h( — n)

> 2m, or h{ — 4n) > 4m, respectively, then P3{n) > m. It is known that,
for d < 0, h{d) can take any given value only a finite number of times.

Hence, for any m, there exists a finite integer • n0 m n0(m), such that, if
n > h0, then h( — n) exceeds 2m, or h( — 4n) exceeds 4m, respectively.
Consequently, it is sufficient to examine the finitely many integers 1 ^ n ^ n0

and keep among them the set Mm {t ^ n0, t ^ 0(mod 4), P3(t) m}. Then

P3(n) m will hold if, and only if n 4at, with t e Mm. This essentially

completes the proof of Theorem 1(c).

Unfortunately, we are not able to compute effectively n0(m) for arbitrary
m, because we only know the complete list of discriminants d < 0 for
which h(d) 1, or h(d) 2 (see [10]). This is sufficient for the determination
of the integers n 3(mod 8), for which P3(n) 1 ; but even the
determination of the integers n 1, 2(mod 4) with P3{n) 1 requires the knowledge

of the discriminants d < 0, with h(d) — 4 (for combinatorial reasons,
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knowledge of the discriminants à < 0, with h(d) 3 is not needed; see [2]
for details).

Buell [3] has determined computationally all discriminants —d^ 106

that correspond to class numbers h(d) ^ 125. Most likely, there are no
other discriminants with h{d) ^ 125 beyond —d — 106; however, there exists

no proof of this conjecture. If we assume that Buell's list is complete,
then we can determine effectively the corresponding values of n, for
n 3(mod 8) up to m 60 and for n 1, 2, 5, 6(mod 8), up to m — 30.

Out of these finite sets of integers n ^ n0(m), it is, of course, a simple
matter to select those that lead to P3(n) m. This completes the proof
of Theorem 1(c).

For k 2, it is classical that, if we set n 2an1ri, where nx contains
only p's and ri only q's, then n has no representation as a sum of two
squares unless ri n\. If this condition holds, and n1 Yl * then

Pi S 1

r2(n) 4^(6, -1-1). If n ^ h2, or 2b2, then both summands are different

from zero and distinct, so that P2(n) r2(n)/222 Î - r2(n)
8 2

The conditions imposed insure that at least one of the bt is odd, so that

-im+D is indeed an integer. In the excluded cases, the exceptional

partitions n b2 + 0, or n b2 + b2 correspond each to only 4

representations; hence,

8(P2(n)~1) + 4 r2(n)and P2(n)
1

(r2(n) + 4) ~ {[](/,.+ l)+ 1},

with fl(h, + l) odd. It follows that, if P2(n) m, then the exponent h,
have to be solutions of J~](h;+1) 2S, 5=1, if b2, or 2b2,
5 0 otherwise. In either case, the are a solution set of (1). The
number of these solution sets with 0 ^ e Z is obviously finite for any
given m. The result obtained is equivalent to the statement (d) of Theorem 1.

The case k1 is trivial and this finishes the proof of Theorem 1.

5. Proof of Theorem 2. Statements (a), (b), (e) and (2) follow immediately
from Theorem 1. The statements concerning |S3,0(x)| and |S2>0(x)| are
due to Landau (see [7], § 176-183) and have been given here only for
completeness. It only remains to prove the other statements of (d).
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6. An auxiliary Theorem. The proof of Theorem 2(d) is unexpectedly
difficult. We start by recalling the concepts of slowly varying functions
and of functions of regular growth.

Definition 1. A function L(x) is said to be slowly varying if, for every
r > 0, lim (L(rx)/L(x)) 1.

X~+ oo

Definition 2. A function c|)(x) is said to be of regular growth if

lim
x(()(x)

1

(\>(t)dt with y ^ 0.
o y + i

For later use, we remark that all the functions of the type (log„x)a,

as well as their quotients and their products are slowly varying. Also,
functions of the type (|)(x) xYL(x) with y > 0 and L(x) slowly varying
are of regular growth.

Theorem A. (Karamata, see [6]). Let A(x) be a nondecreasing function

and c|)(x) xyL(x), with L(x) slowly varying and y > 0, so that
4>(x) is of regular growth, with (j>(x) oo for x - oo. Assume, furthermore,

that f(s) is defined by the Stieltjes integral

* oo

f(s) e-«d{A(t)},
J 0

convergent for s > 0. Then, if f(s) ~ <t>(s_1) for s -> 0, it follows that,

as x — oo,

A(x) ~ <|>(x)/r(y + 1).

We shall use Theorem A only in the particular case in which A(x)
[ex]
Y, aj> where all aj> 0. In that case, the Stieltjes integral that defines

j= i
foo oo 00 a

f(s) becomes a Dirichlet series, e~std{A(t)} Y ane~slogn Y ~1 •

Jo «=1 n= 1 ns

7. Proof of Theorem 2(d). Consider the set S(20} {n\n 2anj}. The

generating function of the integers n e S(20} is
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where an 1 if ne S(20}, an 0 otherwise.

By Perron's Theorem (see, e.g., [11], p. 376):

S(x)
1

2ni
fois) —

S

1

Here Y' means that for x e Z the term ax is replaced by - ax\ however,
ïtx t 2

in order to avoid this trivial, but cumbersome situation, henceforth we shall

assume, without loss of generality, that x $Z and suppress the prime
The integral is taken along a parallel to the imaginary axis, of abscissa

a > 0, sufficiently large to insure convergence, say cr( Res) 1. In fact,
the first singularity of the integral occurs at s 1/2 and it is a branch

point. In order to compute the integral, it is convenient to change
variables, so as to bring the singularity to s 1. For that reason, we set

f(s) /0(s/2) and obtain

S(s)
1

2ni

yS/2 l
f(5) 7^7^/2)

2a-ix (V2) 2m

'ai + ix
f{s) — ds

a i - i x $

where y ^fx and ctj 2cr. The series ann
5/2 that represents f(s)

n 1

in a > 1 is, of course, no longer a Dirichlet
series, but that is irrelevant to the computation
of the integral, for which we use the method
of Landau (see [7], §§ 180-183 for more details).
We consider the contour ABCDEFGHA.
Along the arcs BC and FG, with | t \ > 3,

we have a 1 - c/(log|f|) and, for | 11 ^ 3

the abscissa from C to F stays constant,
o" 1 — c/(\og 3) t, say ; here the constant
c is selected in such a way that both Ç(s)

and L(s) L(s, x) (x(n) non-principal
character modulo 4) have no zeros inside and
on the contour. We now cut the plane from x
to 1 and replace the segment DE by the path
DL on the upper rim of the" cut, followed by
an arc of circle around s 1, of "small"

radius and the segment KE, along the lower rim of the cut. In the cut
plane we have, inside and on the contour,
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log m - log (r - Ilog (i -1) » z I + gM,

defined as a singlevalued function; here ^(s), as well as all other functions
gj(s) that will occur, are holomorphic for a > 1/2. Also,

\ {log Ç(s) - log L(s)} £4 + 9i(s) •

* q= 3

It follows that

and that

log /(s) 1
{log C(s) - log L(s)} + g3(s)

logfy- + 1 log (s -1) 1
{log((s-l)Ç(s)) - log L(s)} + gjs),

where now both sides are holomorphic inside and on the contour, without

the cut. There, also log L(s) is holomorphic, so that — log
s 2 s — 1

+ g(s), with g{s) holomorphic inside and on the contour without the cut

(but not necessarily in all of a > 1/2). It follows that, when we turn
around the point s 1, the argument of f(s) decreases by n and we
conclude that

,5>

with A ^ 0 holds along the contour. We now compute the integral. It is

wellknown (see, e.g., [7], or [11]) that the integral, computed along the

arcs ABCD and EFGH (with either large values of | s | ^ T, or small
Çbi+iT

values of yG, a < 1), contributes only 0(ye~a^{logy)). Also lim differs
T-+ oo J ai — iT

from the finite integral by a similar error term, so that

S(x) 2- f + E(y) - T
J ekld 2TH

or

— 2ni S(x)

The main term of the integral is

+ E(y), E(y) O(ye-*^ogy)),

f(s) — ds + 0(ye a^(logy)).
s
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y* ri

here

Eil

^-d
—

ds < y1

ds A(e - in/2 pin,e'"12)

r Vi1"5)
ds

oV(!-s)

T d(s-l)

ds — j} ;

7(1-s)
0(y 1 —c/(log 3h _

oV(s-l)
and will be absorbed into the error term. Also,

%i

o(ye -ctV(log rt)

y

oVd-s)

y

ds y
i ys-i

oVM d(s-l) - y u 1/2y Udu

e ulogyu 1/2du —r-—
o v G°g y)

c

flog y

e v "1/2 dv

and, for y oo, the integral equals -f 0(y_1(log y)~1/2). The other terms
of f(s) form a convergent series and their contribution to the integral
is easily found to be

m

0{ A/(1-s)rfsl °{ ysyJ(l-s)ds} 0(y(log 3/2)

o(p(log y) 1/2).

Putting these results together, we obtain

2iA
SM -,?/= "M^Vdogy)' (l+o(D)- ' + 0(1)

V(iog .v) \VK

From (5) we find that A lim J(s-l)/(s). From the definition of /(s)
S-* 1

we find

A2 lim {(s-l)(l-2"s/2)"2 U (1—<7~s)~2}
1 q~3

lim {Ç(s)_1(l —2~s/2)~2 [] (1 —<3~s)~2}
s^l q=3

1 + 2~s/2

iimi]—^2 n n (i-q'r1}s-+1 1 z P= 1 g 3

l1 + 2~s/2

-S'r^M'nii-r'r')
(1+V2)2--- n (1-9-V1.

^ 3
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It follows that

S(x)= I an^A- 2(^2+1} ^ {n (l -„«* v71 v (log J7) n /liogx' ^

_
2(2 + 72) f / 1\1"1/2n(i-p)} v(x/(i°g .x))

This finishes the proof of (3a), with b ^+ | pj (i _ 2)j
k 2.3490... (based on f] (l-q-2)'1 - 1.1680).

q= 3

In order to gain some insight into the speed of convergence to this

limiting value, we observe that

S(320,000) £>„ (n&S(2?i, n < 320,000) 372,
n

and

/ / 320,000
372 / A —— — 2.3413

/ -y log 320,000

which is already fairly close to b.

8. Proof of Theorem 2(d) (continuation). Let us consider the set

S2.'m""br) {n\n 2an22p\' p\2... pb/}, with 3 < < < < br. The gen-
erating function is

1 1 r 00 rt

m —r n —rz* n prb« z 5.
1 q=3 1 i= 1 n=l H

2* F1

with 1 if n g S(2^'",br), an 0 otherwise.

Here the star means that we sum over products pïbis b2S
••• Pr~&rS>

where the pt run independently through the primes p 1, with the following
restrictions: for i # also pt ^ pj and furthermore, in order to avoid

counting more than once a product like p[~bs pjhs with the same exponent,
we require that if bt bj then for i < j, also pt < pr When convenient

we shall denote the function represented by this sum simply by £*(s).
r

For future use we observe that £ n VÏbs can t>e written as a sum of



PARTITIONS INTO SQUARES 235

products of series of the type and we shall be interested mainly
p V^* _2s

in the product with the largest abscissa of convergence. So, e.g., £ p x
5

p 2

Œ P_s)(Zp_2s) ~ Z^ ~3s- The behaviour of this sum depends mainly
p p p

on the first term, with abscissa of convergence a 1, while the last term

converges for a > 1/3. Similarly,

I*Pl'P2 s= I PVPV =y{(I>-s)2-2>-2s}
PI < P2 P P

\(£P~s)2 + 9i(s),
I p

where the first term has the abscissa of convergence cr 1, while g^s)
is holomorphic for a > 1 — a, with a > 0. More generally,

X* II P^s ndP't + 9i(s),
i 1 K p

with g2{s) holomorphic for a > 1 — a, a > 0.

In the present case of f^s), converges for a > 1/3, on account of
bj ^ 3(/= 1, 2,..., r) ; hence, f^s) is represented by its generating function
for a > 1/2 and, just as in the case of /0(s), it has a branch point at
s 1/2. One may follow exactly the previous computation and obtains
the result

S(x) X a"-Cy/(x/(log *))> with c
n^x ^

an this is precisely (3b).

Let us assume now that 2 b1 b2 bk < bk+1 ^ ^ br. The

generating function (essentially the same as for f^s), with the new values
for the bi s) may now be written as

flW n ^—T-Z*Pl1°P22l -Pk!'Pt?i"

riärr (r Pk~" " " +e'(") (if (?r 2')*2s q2s

Here the sum is holomorphic at least for cr > 1/4 and g3(s) even for
1 °°

a > - - a, for some a > 0; also, f2(s) £ ann~s with an 1 if4 n i
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neS{l'--br),an0

otherwise. As before we set S(x) Y aj- The funcü°n fi(s) has a branch
j^x

point at s 1/2 and is holomorphic for a > 1/2. As before, 5(x) will
depend only on the behaviour of f2(s) in the neighborhood of its branch

point.
For s - 1/2, Y%) + 03(s) Z*(V2) + #3(1/2) D, say. We now obtain

from (5) that

/(2f) AW=l_ _
2s 2s -yj(2s — 1)

so that /o(s) (1—2-s)_1 f] (l-M2*)""1 ^
1

«Va V2 V(s-i/2)
and

To replace the last factor, we recall that

logÇ(2s) X P~2s + I f2i + hs(s) and log L(2s)
P= 1 <3 3

I P'2s- Ip= 1 q=3

where A5(5), A6(s), etc., are holomorphic for a > 1/4.

It follows that

(6) X P-2s hl°gÇ(2s) + logL(2s)) + Ms) - llog(2s—1) + Ms)
p= 1 2 -2

- ^rlog(s~0 + ^ •

and finally

m B ((los7ïém)' ~ (1o8T2Ï/4 *g"m

B ^logfs-1) ')with

44i\ V 5 v 2JJ'V2
'



PARTITIONS INTO SQUARES 237

In order to use Karamata's Theorem, we set s — - z, so that

f2(s) Z
n=i «

Let 4>(z) zll2(B\ogkz112); then B(log ziaf is a slowly increasing function,

c[>(z) is of regular growth, with y 1/2 and, by Theorem A we obtain that

A{X) Z anl\ln
log n^t logx

m
3 ~• Bt1/2(log t1'2)* —,— B t1/2log

V71 V71

V77
B(log x)1/2(log2x)fc.

We also have, with S(x) Z partial summation, that

Y an ^rt i
n^x -\]ft n^x \Jft 7" >J(n+l)J yjx

S(x)

f %) S(x)
"372 dy+-p31 Jx

The last term is at most 0(1), because the number of integers counted by
S(x) is of the same order as that of integers of the form 2 x; hence,

(7) y On 1

7« 2

** wvi 2l~k
~~3/2 dyas —— B(log x)1/2(log2x)*.

t y ' 771

9. Some Tauberian considerations. The usual Tauberian theorems do
not seem to apply (see, e.g., a very similar situation in [5], Theorem 3,

where a crucial condition is a > 0, while in the present case a 0).

If we assume that under the particular conditions of the present problem,
it is legitimate to differentiate (7), we immediately obtain

(8) S(x) I S'7' -^(x) I c C 7(^) aog2x)fc F(x),

21-*
say, with C —-,— B. Without that Tauberian conclusion, we can prove

V ^
only that (8) holds in a certain weaker sense, defined in Section 3 as
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weak asymptotic equality and denoted by ~ The precise statement is the

following

Lemma. Given s > 0, arbitrarily small, there exists an x0 — x0(e),
such that, for x ^ x0, it is not possible that either S(y) ^ F(y)(l + 8),

or S{y) < F(y){l — s) should hold over the whole interval x ^ y ^ x1+£.

Proof Assume first that S(y) > F(y) (1 + 8); then

1
V-1 + £

dy > ~~j— 8(1 + 8) (1 - T|) (log x)1/2(\og2x)k,
y1 V712

where rj - 0 as x oo. On the other hand, by (7),

I /^y1+£

pl dy < ^log2X^log JC)1/2+(1+£) -1)

+ o((log x)1/2(log 2x)k)<FJL s(log x)1/2(log2x)'1 + o((log x)1/2(log2xf).
V71

The asymptotic equality (7) now requires that 1 > (1 + 8)(1 —q), which is

not the case for q sufficiently small (e.g., for q < e/2 < 1), i.e., for
x ^ x0(e). The proof that S(y) < ^(3;) (1 — e) cannot hold over the whole
interval is similar.

For later use we observe that, if we replace B by its value, we obtain

TC q= 3

This finishes the proof of the first result of (3c).

10. Completion of the proof of Theorem 2. The last case to be

considered is that of

{„|„ 2 an\p^i...PM,

where 2 ^ bk+l ^ ^ br. The generating function of these integers is

11 °° n
Ms) —l—n —-j-r p~c-p;sp;tws=1-.,t q=3 1

t n 1 n

¥ Vs

with an 1 if neS^/m1 1^ _ q otherwise. We observe that

/3(s) may be written as
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1 - 2"%P3 1 - q~ls

{n (Z p~f (Z* ptâ*1' -prbrS)(I p'f'1},
K. p p

with g6(s) holomorphic at least for a > 1/2.

The function f3(s) is holomorphic for a > 1, and has a branch point at

5=1. The behaviour of the summatory function Y an depends only on
n^x

the behaviour of f3(s) in the vicinity of the branch point. There we have

X*(l) + 0s(l) -P. say, so that

Ms)=*Tn d-g"2)"1 IK'- q 3 p= 1

and, as s 1+,

Ms) -tjOI*>• q= 3 p= 1

As before, we have

Z y(log(Ç(s)L(s)) + Ms)) - llog(s-l) + ft10(s).
ßmi 2 2

It follows that, for 5 ^ 1+

2P / 1 \k
Ms)* n (1 -g"2)"1 (log ^s_ yJ Q(log(s~ir1/2)k,

say, with Q constant.
In order to apply Karamata's Theorem A, we set s - 1 z and rewrite

/3(s) as /3(z + l) Y — 2(l°g z~ll2)k. By Theorem A we obtain that
n i n

A(t) X - - ß(log tll2)k ~ 2-kQ(\og2x)k
log 71 < Î log X n

Proceeding as before, we set S(x) Y an and, by partial summation,
n^x

obtain

A{log x)X S"~S-1 Z si- -—) +
Q

(1
n$x n nix \n n + lj x + 1 2*

1 g2 J '

It is trivial to verify that S(x) O(x), so that we may neglect the term
S(x)/(x+l). Also.
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v M v c ridu rx+i5w^ (x s(uKh Änl TT L S» ~T ~T~ dü ~ 2~ dU
n^x \n n+lj n^x J n

u2 J fll
u2 J ai

U2

By proceeding now exactly as in Section 9, we complete the proof of the
21 ~k

last claim of (3c), with C — — P ^ (1 — g-2)"1, with asymptotic
(k— 1)! q=3

equality at least in the weak sense. If the Tauberian Conjecture holds

(i.e., if it is legitimate to differentiate our asymptotic equality), then the
weak asymptotic equality is, in fact, an ordinary asymptotic equality.

Regardless of m, there always exist solutions with a1 — 1. Indeed,

Y\(bi+ 1) « 2m has at least the solution b1 1, b2 m— 1. This solution is

unique only if m is a prime. More precisely, if m 2Cm1, 2 J( ml9 then
2m 2c + 1m1 ]^[(h;+l) admits the solution sets 1 b1 b2

bc+1 < bc + 2 ^ ^ br, where bc + 2, -•> br are a solution set of

(9) na+w-»!.
Each of these solution sets leads to an

Sf2\—l-b^Hv> ~ C-^-Oog
log X

with

C « C(bc + 2,..., br; c, r) and S2,m - u5(21;ffl-Uc + 2 w,

and with the union taken over all solution sets of (9). It follows that

I S2,m(x) I ä Cm—(log2x)c + 1, with Cm 2 C(bc + 2,..., br\c, r) and this
log X

finishes the proof of Theorem 2.

11. Examples. To illustrate previous results numerically, wé present here

examples for all non-trivial cases (a) to (e).

(a) As an example for k ^ 5, let us study S6t 2 and | S6> 2(x) |, for

x ^ 15 and for x 12.

By evaluating, e.g., (91.5) in [12], it is easy to show that r6(n) > An2.

Hence, P6(n) > r6(n)/266! ^ (4/64.6 \)n2 n2/16.720 and, for n2 > 2.16.720,

P6(n) > 2. This means that P6(n) — 2 is possible only for n ^ 42.3.^/10
151.789... It is well-known (see [8]) that P6(n) 1 holds precisely when

n 1, 2, 3, or 7. It remains to check P6(n) for the integers n 4, 5, 6

and from 8 to 151. This is very easy with the help of a desk computer,
but is not really difficult even with paper and pencil, especially by use
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of Gino Loria's tables [9] of the partitions of all integers up to 100 into

(among others) four squares (attention is however due to some errors of
those tables). The result is that P6(n) 2 precisely for

neS6!2 {4,5,6,8, 10,11,15}.

Clearly, for x ^ 15, S6t2(x) S6<2 and |S6j2WI 7. On the other

hand, 15 $ S6<2( 12) and | S6.2(12) | 6.

(b) For k 4, let us determine S4>2 and compute |S4,2(x)[ for x
sufficiently large and also for x 100 and x 20.

By [8], if n ^ 0(mod 8), then P4(w) > n/48 for n # 0(mod 4) and P4(n)

> n/64 for n 0(mod 4). Hence, if n ^ 96, 4 X Ihen P4(n) > 2. Similarly, if
n ^ 128 and n 4(mod 8), then P4{n) > 2. It is easy (either with the help
of a computer, or manually by use of [9]) to find the values of all
P4(n) for n ^ 128 and to record the integers n, with P4(n) 2. We obtain
the set {4, 9, 10, 12, 13, 16, 17, 19, 20, 21, 22, 29, 30, 31, 35, 39, 40,

44, 46, 47, 48, 64, 71, 80, 88, 120}. By following the outlines of Section 4,

we eliminate the integers divisible by 8 and so obtain the set

^4,}2 (4, 9, 10, 12, 13, 17, 19, 20, 21, 22, 29, 30, 31, 35, 39, 44, 46, 47, 71}

The subset N a S^3)2 of even integers It is N {4, 10, 12, 20, 22, 30,
44, 46}. If It e N, then also P4(4* * 2r) 2 for integral a ^ 0, so that
^44)2 {n\n 4V, a ^ 0, ri e N). Written explicitly,

S£}2 {5.2*, 11.2*, 4*, 3.4*, a £ 1; 30.4*, 46.4*, a > 0}

The other integers of S^3)2 are all odd, namely T {9, 13, 17, 19,
21, 29, 31, 35, 39, 47, 71}. For each of these 11 integers je T, we verify
that P4(4j) > 2, so that T S{4\ and S{4^2 S 42 ani consequently,
S4.2 S 4,2 u S£}2. This, is, essentially, the result of [8], except for the
addition of 19, 30, 46 omitted there.

To compute | S£}2(x) | and, hence | S4,2(x) |, we observe that it follows
from the explicit presentation of S£}2 that, for x ^ 46,

C(2) _à 4 1 —

+

log(x/5)'

log 2

"log(x/30)

log 4

+
log(x/ll)

+
log X

+
l°g(x/3)

log 2 log 4_ log 4

4.
log(x/46)

+ 21

log 4

log 2
log x — ;
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here the + 2 originates from the two cases with a 0 and

log(x/5)
R(X)

log 5-U
+

log 3.30.46
_ 2 +

log(x/5)

log 2
+

+

log 2
'

log 4
'

log 2

log(x/46)
_

log(x/46)

log 4
_

log 4

log 55 log 4140
+ ——— + 1 + R,(x)12.7890672... + Rt(x),

log 2 log 4

where

Ri(x)

+

log(*/5)

log 2

log x"

log 4

log(x/46)

log 4

+

log(x/5)

log 2

log(x/3)

log 4

log(x/46)

log 4

+
log(x/ll)

log 2

log(x/3)

log 4

"log(x/ll)~

log 2

log(x/30)

log 4

logx
log 4

log(x/30)

log 4

It is trivial to observe that [ R^x) | < 3, but one can do better. It is clear

that Rx(4x) i?j(x), so that it is sufficient to compute R^x) only for
1 < x < 4, say. On this interval R^x) is piecewise continuous and increases

between its (easily determined) points of discontinuity. The absolute extrema

are attained at 3+ and at 2.5" (equivalently, 10"), respectively, so that,
in fact, —1.4493 < R^x) < 1.4987, or simpler (and somewhat less precisely),
I Ki(x) I < 3/2. By taking into account also that | S4/2W I 11 for x > 71,

we conclude that

(10) S4.2WI
log 2

logx - 1.78906... - R^x)

holds for x ^ 71.

As an illustration, we may compute directly that |S4i2(100)| 25,

observe that (10) yields | S4>2(100) | 24.78636... — iî1(100), so that Ä1(100)

-.21363...
For x 20, (10) is no longer valid. Indeed, by direct counting, | S4j2(20) |

4
9, and (10) reads | S4>2(20)| -—-log 20 — 1.78906.. — i?2(20), so that

log 2

1^(20) 6.49864.. > 3/2.

If we set R0 Max | -—-
i«n=s7i log2

logx - 1.78906 - S4,2(x) I 9.21094...
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(value attained for n 8 only), then (10) holds for all x ^ 1, but with

I R^x) I ^ R0, rather than | R^x) \ < 3/2.

(c) For k 3, let us first find S3,2(100). For that, we eliminate from the

integers 0 < n ^ 100, first the 12 integers with n 7(mod 8), for which

p3(n) 0; next, the 24 integers n ^ 100 with P3(n) 1 (this set is known;

see [2], or—after a few completions—[8]). From the remaining 64 integers,

we eliminate the 25 integers divisible by 4 and remain with 39 integers.

Of these, the 12 integers of the set {41, 50, 54, 65, 66, 74, 81, 86, 89,

90, 98, 99} have P3{ri) > 2, so that we remain with the set

T {9, 17, 18, 25, 26, 27, 29, 33, 34, 38, 45, 49, 51, 53,

57, 59, 61, 62, 69, 73, 75, 77, 82, 83, 85, 94, 97}

of 27 integers. For all ne T, P3{n) P3(4an) 2 and all n ^ 0(mod 4),

n ^ 100 with P3(n) 2 are in T. By adding to T the set 7} {36, 68,

72, 100} of integers 0 < n 4at ^ 100, te T, we, obtain S32(100) T

uTi, with |S3<2(100)| es 31. From this computation, such results as

I 53 2(37) I 10, etc., are obvious.

In order to obtain S3>2, we have to determine the finite set M2 of
integers n ^ 0(mod 4), with P3(n) 2. For this, we have to determine n0

and n'0 such that h( — n) > 4 for n > n0, n 3(mod 8) and h( — 4n) > 8,

for n> n'0, n 1, 2, 5, 6(mod 8). If we assume that Buell's list [3] is

complete, then n0 1555 and n'0 862; if [3] is not complete, any n

with h(~n) ^ 4, n> 1555, n 3(mod 8), or h( — 4n) ^8, n > 862,

n EE 1, 2, 5, 6(mod 8), respectively, exceeds 106. The existence of such an
integer, while not disproven, is highly unlikely. Assuming the completeness
of [3], we have to select among the integers n 3(mod 8), n ^ 1555, the
set Vl of those integers, with P3(n) 2; similarly, among the integers
n EE 1, 2, 5, 6(mod 8), n ^ 862, the set V2 of integers with P3{n) 2. Then
M2 Vi u F2and S3<2 {n | n 4ût, t e M2}. The numerical work involved
in this (still only tentative) determination of M2 does not appear warranted.

(d) For k 2, let us determine S2 2 and |S2>2(x)| for large x. Here
m 2, so that (1) becomes

rifo+l) 4, or Y\(bi+l) 3.

There are three solution sets, namely (i) bx 3; (ii) b2 =_1; and (iii)
b 2. It follows that

S(23)2M {" I nl'nlp3}, S-W {"I n 2an\plp2},
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and S(22)2 {n\n 2an\p2}, with S2,2 S23)2 u u S(22)2. Next, by

f X \ ^2 x
Theorem 2(d), | S(23)2(x) | ~ Cx I | S^'M I à G log2x, with

\log xjlogx
1 / x \ 1/2

c3 ~ II (!-1 2) 1 - -5840... and | S^2(x) ~ C2 log2x.
2 9=3 Vlog X J

We conclude that

^2,2 {n\n 2an2n1, with n1 pi,p1p2, or p2}

The dominant term is

(11) C3-^—\og2x ~ .5840.. —^— log2x g(x)
log x log x

say. The proof suggests that, even if the weak asymptotic equality is a

genuine asymptotic equality, one should expect the ratio of the two sides

of (11) to approach unity only for rather large values of x. The following
tabulation seems to bear this out.

X 1 s2,2(x) 1 9(x) ratio g(x)/\ S2>2(x)|

10 0 2.115 00

102 5 19.365 3.873

103 74 163.390 2.208

104 822 1,407.840 1.713

105 8454 12,394.650 1.466

106 82022 110,995.715 1.353

107 781073 1,007,244.600 1.28956

The function represented by the last ratio appears to be fairly well interpolated

by the curve 1 + 1.6/log x + 43/log2x. This indicates that, in order

to reduce said ratio even only to 1.1, it would be necessary to go beyond

x 3.1013 and further numerical experimentation is not warranted.
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