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224 : E. GROSSWALD

2. NotaTtions. In what follows, lower case latin letters stand for rational
integers. In particular, p, with or without subscripts, stands for primes
p = 1(mod 4) and g for primes ¢ = 3(mod 4). Whenever the modulus is not
specified, it will be understood that the congruence is taken modulo 4.
Also, n, stands for a positive integer divisible only by primes p = 1 (which
does not exclude n,=1) and n, for a positive integer divisible only by
primes g = 3 (n,=1 is possible). The symbol [x] stands for the greatest
integer not in excess of x and a°J| ¢ means that a’|c, but a**! yc If
f(x) is asymptotically equal to g(x), ie, if f(x)/g(x) > 1 for x — oo, we
write f(x) ~ g(x). A weaker relation will be defined in Section 3.

3. Main ResuLts. The main results are formulated in the following two
theorems.

THEOREM 1.

(@) Forall k>=58,0=Q; for m=>=1, the sets S, , are finite and
can be determined explicitly.

(b) For k=4S,0=0Q; for m>1,8,, =SSP, uSP,, with SL,

a finite, computable set and SP, = {n|n = 4, te N,,}, where N,

are finite, computable sets.

() For k = 3,84 = {n|n = 4%t = Tmod 8)}, while, for m>=1,8S;,
={n|n = 4%teM,}, with M, (finite sets.

(d) For k=2,8,0={n|3qprime,q=3,¢"""|n}; for m=1,S5,,
= {n = 2°n,n3}, where the factors p? of n, have exponents b,
that are solutions of the equation

+ I1 (bi-i-l)):l =m.

pi lIn

1
1

0 B

() For k=18 o0=1{n#t},8.,={nln=1t} and, for m=2,
Sl,m = @

All sets S, ,, can be effectively computed, except for S; ,. The deter-
mination of the S5 , depends on the complete listing of the discriminants
d = —n of binary quadratic forms of class numbers h(—n) < 2m for
n = 3(mod 8) and h(—4n) < 4m for n = 1, 2(mod 4), respectively.

It also is of some interest to determine the sets S, ,(x) and the numbers
| Sy m(x)| of their elements, n < x, n€ S, ,,. In order to avoid exceptions

A
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that are basically trivial, but would lead to longwinded formulations, in the
statements of the following Theorem 2, we shall assume that x 1s “large”,
i.e., that x is larger than the largest element of any finite set which occurs
in any given formula.

For a neat formulation of Theorem 2, it also is convenient to define
the following sets. For given m, let 0 < b, < b, < .. < b, be a set of
integers that satisfies (1). Then we denote by S%',2 %) the set of integers
n=2°n3pip%. pb; here p,,p,,..p, run independently through all
primes p = 1, with the restriction that, for i # j, p; # p; and (to avoid
multiplicities) p; < p; if i < j and b; = b;. The set of integers that satisfy (1)
and of the form n = 2°n3 is denoted by S%?),; it is clear that S°), # @ if and
only if m = 1. The set S, ,, of all integers that have exactly m partitions
into 2 squares is the union U S$;2> ) taken over all solution sets of (1).
The meaning of a notation like S, *)(x) or | §¥',~")(x)| is clear.

We shall say that f(x) is weakly asymptotic to g(x), in symbols f(x)
2 g(x), if, to every € > 0, there exists x, = x,(¢), such that, for x > x,,
it is not possible that either of the two inequalities, f(y) > (1+¢)g(y), or
f(y) < (1—¢)g(y), should hold over the whole interval x < y < x'**. The
relation is indeed weaker than ordinary asymptotic equality, in that it does
not rule out that one of said inequalities should hold somewhere within
the stated interval.

THEOREM 2.

(@) For k=5, all sets S,, are empty, while | Se.m(x)| are finite,
computable integers for all m > 1.

(b) For k = 4, theset S, isemptyand,if m > 1,

| SamX) ] =181 + (log )™ (| N,y [logx — Y logt) + g, ,;

teNm

here N, are the same sets as in Theorem | and 0 < €mx < | N, |

b

() For k=3, if m=0, then |s3,o(x)(=%+0(1ogx); if m>1

then_

(2) [ S3.mx)| = (log )™ (| M,, [logx — ) logt) + &

teM,,

m, x>

where M, are the same sets as in Theorem | and 0 < Om x < | M, |.

(d) For k=2, if m =0, then
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| S5,0(x) | = x — bx(log x)~'/?
+ o(x(log x)™'?),b = {2 [] (1—q 3} /2.
g=3

If m>=1, then

(3a) | S§21(x) | = b(x/log x)''?;

for (by, by, .. b)) # (D),
(3b) | SPu-b2o b)) | >~ C(x/log x)'/?, ifall b, > 3;
(30) ' | G107 (x) |

C(x/log x)"2(log,x)t if 2 =b, = by = . = by < bs; <. <b

2

C(x/log x) (logyx)*™ ' if 1 =b, = b, = .. = by < byyy < .. <b,.

Here log,x = log(log x) and we shall denote more generally log(log,_;x)
by log,x. In (3a), b is an absolute constant, while in (3b) and (3c) the

constant C dépends on the corresponding set of the b;,j = 1,2, ..,r.
Finally,
| So.mX) | = 21 ST ) |
and
X
| S2.m(x)| = Cpy (log,x) ™,
’ log x

with C,, and c(m) computable constants, 0 < c(m)e Z.

€ For k=1, 180X =0x]—[/x] |8S1,:x)| = [Jx] and, for
m>1,18;..x)] = 0. ;

Conjecture. All weak asymptotic equalities are actually ordinary asymp-

totic equalities.
The proof of this conjecture depends on a certain (apparently unproven)
Tauberian statement.

Comments. Not only the finite sets S, ,,k = 5, but also the infinite

sets S, ,, have density zero, i.e., lim x~ 1| 84 m(x)| = 0, notwithstanding the
4 e

obvious fact that, if we set S, = u S, ,, then S(x) = x and S, has
m=0

density 1 for all k.
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Also S, ,, with k = 1,2, and 3 and m > 1 have density zero. On the
other hand, S; , has density 1/6, while S, , and S, , have density 1.

The cases k = 1, k = 2, and k > 5 hardly require further comments
and follow trivially from Theorem 1 and 2. On the other hand, the
situation is not quite so obvious for k = 3 and k = 4. By Theorem 2(c),

® 5
@ Y, Ss.n¥) = 5 + Ollog ),

a well-known result (see, e.g., [7], vol. 2, § 176, p. 645), but which does
not seem to follow from (2). Indeed, S5 ,, N S5, = @ for m # m' and this

implies that, if we set S35 = U S;,, then |S5(x)| =] U S3 .(x)]
m=1 m=1

= Y | S35, m(x) | If we replace here | S5 ,.(x)| by (2), the last series diverges.
m=1

The reason for this fact is that, for any fixed x, the summands are given

by (2) only for the finitely many values of m with max (j|jeM,) < x

The other summands have to be replaced by smaller values and there is
no contradiction with (2). For k = 4 the situation is similar.

4. Proofr oF THEOREM 1. It is known (see [1], especially p. 71, and [12])
that, for k > 3, r(n) = c(mn**~(1+0(1)). For k > 5, ¢,(n) > C, > 0, in-
equalities that do not hold for kK = 3, and k = 4. Hence, for k > 5,

Pn) = rdn)/2%k! = C,n*? 125k > m
if

Ly . 2kkp 2/(k— 2)
n?=1 > (2% /Com, or n > nyk,m) = (C m>
k
It is sufficient to check the finitely many n < n, and keep those for which
P(n) = m. Incidentally, in this search, we automatically obtain also the
sets Sy, for all m" < m. This proves (a).

For k = 4, by Lagrange’s Theorem, 540 = @. We now consider m > 1.
We recall that P,(8n) = P,(2n). Also (see [8]), for 8 ¥ n, P,(n) > n/48,
for n # O(mod 4), P,(n) > n/64 for n = 4(mod 8). In either case, P,(n) > m,
for all n # O(mod 8), n > 64m. Consequently, if n # O(mod 8), P,(n) = m is
possible only for n < 64m. We now consider this set {n 64m} and elim-
inate from it the integers divisible by 8; let
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SP, = {n < 64m,n # O(mod 8) | Py(n) = m} .

Next, if n = O(mod 8), we set n = 4°- 2t, with 2t # 0(mod 8) (here t may be
either even or odd). It follows that P,(n) = m implies P,(2t) = m, 8 ) 2t,
so that 2teSY), and 2t < 64m. Consequently, for each 2re S92, all
integers n = 4°- 2t have P,(n) = m; we denote the set of these integers
by S{,. Next we consider the set of odd elements je S ,; for all of
them, P,(j) = m. For each of them we check whether P,(4j) > m, or
P,(4j) = m. In the first case, P,(4%) > m for all a > 1; in the second case
(which i1n fact does not occur), P,(4%) = m for all a = 0. The union of
the latter sets and S¢, is denoted by S%, (in fact, SP, = S, but
that is not important and we suppress the proof). The remaining elements
jeSY,, all odd, for which P,(4j) > m, form the finite set S¢), and this
finishes the proof of Theorem 1(b). :

For k = 3, it 1is classical (see, e.g., [7], vol. 2 §176, p. 644) that
Ss0 = {n|n = 4%8j+7)}. It also is clear that P,(4n) = P,(n). It is, therefore,
sufficient to determine only the set M,, of integers ¢t # O(mod 4), with P,(¢)
= m,asthen S; ,, = {n|n =44 )t,teM,}.

As already observed, Ps;(n) = r3(n)/233! = ry(n)/48 > R,(n)/48, where
R4(n) stands for the number of primitive representations of n as a sum
of 3 squares. Here primitive means that the 3 summands have no non-
trivial common divisor. It is well-known (see [4], § 281, or [1]) that Rj(n)
= 24h(—n), if n = 3(mod 8),n # 3 and R5(n) = 12h(—4n),if n = 1, 2(mod 4),
n # 1. Here h(—n), or h(—4n) is the class number of the quadratic forms
of discriminant d = —n, or d = —4n, respectively. It follows that, if h(—n)
> 2m, or h(—4n) > 4m, respectively, then P,(n) > m. It is known that,
for d < 0, h(d) can take any given value only a finite number of times.
Hence, for any m, there exists a finite integer -n, = ny(m), such that, if
n > ng, then h(—n) exceeds 2m, or h(—4n) exceeds 4m, respectively. Conse-
quently, it is sufficient to examine the finitely many integers 1 < n < ng
and keep among them the set M,, = {t < ny,t % O(mod 4), P;(t) = m}. Then
Pi(n) = m will hold if, and only if n = 4%, with t e M,,. This essentially
completes the proof of Theorem 1(c).

Unfortunately, we are not able to compute effectively ny(m) for arbitrary
m, because we only know the complete list of discriminants d < 0 for
which h(d) = 1, or h(d) = 2 (see [10]). This is sufficient for the determination
of the integers n = 3(mod 8), for which P;(n) = 1; but even the deter-
mination of the integers n = 1, 2(mod 4) with Ps(n) = 1 requires the know-
ledge of the discriminants d < 0, with h(d) = 4 (for combinatorial reasons,
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knowledge of the discriminants d < 0, with h(d) = 3 is not needed; see [2]
for details).

Buell [3] has determined computationally all discriminants —d < 10°
that correspond to class numbers h(d) < 125. Most likely, there are no
other discriminants with h(d) < 125 beyond —d = 10°; however, there exists
no proof of this conjecture. If we assume that Buell’s list is complete,
then we can determine effectively the corresponding values of n, for

= 3(mod 8) up to m = 60 and for n = 1, 2, 5, 6(mod §), up to m = 30.
Out of these finite sets of integers n < ny(m), it is, of course, a simple
matter to select those that lead to P;(n) = m. This completes the proof
of Theorem 1(c).

For k = 2, it is classical that, if we set n = 2°n,n’, where n, contains
only p's and n’ only ¢'s, then n has no representation as a sum of two

squares unless n' = n3. If this condition holds, and n; = [] p!, then

pi=1

ran) = 4 [](b;+1). If n # b? or 2b? then both summands are different
1 1

from zero and distinct, so that P,(n) = r,(n)/2%2! = grz(n) = 5H(b,-+1).

The conditions imposed insure that at least one of the b; is odd, so that
1
Eﬂ(bﬁl) is indeed an integer. In the excluded cases, the exceptional

partitions n = b* + 0, or n = b*> + b® correspond each to only 4 rep-
resentations; hence,

8(P,(n)—1) + 4 = ry(n) and P,(n) = é(rz(n)+4) = %{H(b,-+1)+1},

with [](b;+1) odd. It follows that, if P,(n) = m, then the exponent b,
have to be solutions of [](b;+1) =2m — 3§, § = 1, if n = b2, or 2b2
0 = 0 otherwise. In either case, the b, are a solution set of (1). The
number of these solution sets with 0 < b; € Z is obviously finite for any
given m. The result obtained is equivalent to the statement (d) of Theorem 1.
The case k = 1 is trivial and this finishes the proof of Theorem 1.

5. PROOF OF THEOREM 2. Statements (a), (b), (e) and (2) follow immediately
from Theorem 1. The statements concerning | S5 o(x)| and | S, o(x)| are
due to Landau (see [7], §176-183) and have been given here only for
completeness. It only remains to prove the other statements of (d).
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6. AN AUXILIARY THEOREM. The proof of Theorem 2(d) is unexpectedly
difficult. We start by recalling the concepts of slowly varying functions
and of functions of regular growth.

Definition 1. A function L(x) is said to be slowly varying if, for every
r> 0, lim (L(rx)/L(x)) = 1.

Definition 2. A function ¢(x) is said to be of regular growth if

y
xl—’rr; xd(x)

x 1
dt = ——, with y > 0.
JO ol —— Y
For later use, we remark that all the functions of the type (log,x)%,
as well as their quotients and their products are slowly varying. Also,
functions of the type ¢(x) = x"L(x) with vy > 0 and L(x) slowly varying
are of regular growth.

THeorReEM A. (Karamata, see [6]). Let A(x) be a nondecreasing func-
tion and §(x) = x"L(x), with L(x) slowly varying and vy > 0, so that
d(x) is of regular growth, with &(x) - oo for x — o00. Assume, further-
more, that f(s) is defined by the Stieltjes integral

fls) = J e "d{ A1)},

0

~ convergent for s > 0. Then, if f(s) ~ d(s” ') for s — 0, it follows that,
as x — oo,

Alx) =~ o(x)/T(y+1).

We shall use Theorem A only in the particular case in which A(x)
[ex]
= Y a;, where all a; > 0. In that case, the Stieltjes integral that deﬁnes

i=1
0 o}

f(s) becomes a Dirichlet series, f e SMd{A(t)} = ) ae "'E" = Z

0 n=1

_JQ

; 7. ProoF oF THEOREM 2(d). Consider the set S%2) = {njn=2°n3}. The
generatmg function of the integers n € S'?) is

©
—2s Z’

l—q n

1 1

1 -2 }33

a,
_s

fols) =

b
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where a, = 1if ne SP?), a, = 0 otherwise.
By Perron’s Theorem (see, e.g.,, [11], p. 376):

s

) 1 ctix
S0 =Y a, j fols) = ds.

def n<x 2mi 6—icw

Here Z means that for x € Z the term a, is replaced by —2—ax; however,
{

n<x

in order to avoid this trivial, but cumbersome situation, henceforth we shall
assume, without loss of generality, that x ¢ Z and suppress the prime

The integral is taken along a parallel to the imaginary axis, of abscissa

o > 0, sufficiently large to insure convergence, say o(=Res) = 1. In fact,

the first singularity of the integral occurs at s = 1/2 and it is a branch

point. In order to compute the integral, it is convenient to change

variables, so as to bring the singularity to s = 1. For that reason, we set

f(s) = fo(s/2) and obtain

1 2ctix si2 1 oy tixc ys

£(8) e d(s/2) = — 192 ds,

S(s) = —
(S) 27“ 20—ix (5/2) 27” oy —ix S

xX
where y = \/; and o, = 20. The series ) a,n~%? that represents f(s)

n=1
B A in o > 1 is, of course, no longer a Dirichlet
series, but that is irrelevant to the computation
of the integral, for which we use the method
of Landau (see [7], §§ 180-183 for more details).
We consider the contour ABCDEFGHA.

¢ Along the arcs BC and FG, with |t| > 3,

ol L1 we have o = 1 — c/(log|t]) and, for |t] < 3

E =) o the abscissa from C to F stays constant,
K

o = 1 — ¢/(log 3) = 1, say; here the constant

F ¢ 1s selected in such a way that both (s)

and  L(s) = L(s,x) (x(n) = non-principal
character modulo 4) have no zeros inside and
on the contour. We now cut the plane from t
to 1 and replace the segment DE by the path
G H DL on the upper rim of the cut, followed by
Fiooss 1 an arc of circle around s = 1, of “small”

radius and the segment KE, along the lower rim of the cut. In the cut
plane we have, inside and on the contour,
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q=3

1 1
log f(s) = — log <1 — 2s/2> — 23 log <1 — ——s) == Z E + g4(s),

defined as a singlevalued function; here g¢,(s), as well as all other functions
g(s) that will occur, are holomorphic for o > 1/2. Also,

1 1
5 {log {(s) — log L(s)} = > po ga(s) .

q=3

It follows that

1 .
| log f(s) = 2 {log {(s) — log L(s)} + g5(s)
and that

1 1
027 1~ tog (s—1) = 3 {log(is— 4(9) — log L9} + g.(s).

where now both sides are holomorphic inside and on the contour, without

1 1

the cut. There, also log L(s) is holomorphic, so that i@ = Elog {
' S S —

+ ¢g(s), with g(s) holomorphic inside and on the contour without the cut

(but not necessarily in all of o > 1/2). It follows that, when we turn

around the point s = 1, the argument of f(s) decreases by n and we

conclude that

1) _

S

1 = :
) Toop Ut LA D),

with 4 # 0 holds along the contour. We now compute the integral. It is
wellknown (see, e.g., [7], or [11]) that the integral, computed along the
arcs ABCD and EFGH (with either large values of |s| > T, or small

o1 +iT
values of y°, o < 1), contributes only O(ye”*V{°¢") Also lim J differs

T—-owo o1 —iT

from the finite integral by a similar error term, so that

1 1 '
S0 =5 |+ EG) = - ——.j + E), EQ) = Oye /s,
21 | gxup 27 ) pLke

or

—2mi S(x) = J f(s)X-ds + O(ye~*/llogy)y
DLKE S

The main term of the integral is
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S 1 S
Y —inj2 _ in/2 Y
A- T ds = A(e”™?*—¢™?) ds
J‘DLKE\/(S—I) r\/(l-S)

here
E |=jT d(s—1)
1 \/(_1 \/1_)

and will be absorbed into the error term. Also,

Py _ oy . _ ° - 1/2,,—u
Jomds—yj \/(1_ d(s 1) = leu y~ tdu

1 y log y

- —ulogy,,—1/2 _ -v,,—1/2

=y e u g = —5 J< e v dv
Jo J(og y)

and, for y — oo, the integral equals \/m + O(y~'(log y)~ */?). The other terms
of f(s) form a convergent series and their contribution to the integral
1s easily found to be

of|  yJa=9is) = of] yya-sis) = oftiog )
DLKE 0

= o(y(log y)~/?).
Putting these results together, we obtain

_ 0(y1~6/(log3)) — O(ye_ds/(log}’))

2iA ’
S0 = ) 4= — o T J(og y) 10g y L Hod) = \/(log y) <x/ m )>

From (5) we find that A = lim ,/(s—1)f(s). From the definition of f(s)

s—1

we find

s—1

A% = lim {(s—1) (1—2"%%)" H (1—g™%"2)
= lim {{(s)"'(1—2"%2)" n

s—1
1+2 s/2
= lim {555 [T =™ [] (14797}
_ 1—{-23/2 1
=lm{———  —- 1—g~ %) 1
s—>1{1—2_s/2 L(s) 41;13( a7

4
= (1+\/2)2-;C~~41]3 (1—¢g737".
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It follows that

e Ay a2ty Ux { (_L)}‘”Z.
S0 = 2, @ " U /(log y) m 1 > qgs e

J(31e

2
2(2 2 1 —1/2
= —(_—i# { I1 <1——2)} J(x/(log x)) .
g=3 q
. . . 2(2+\/2 { }—”2
This finishes the proof of (3a), with b = H (1—q~

~ 2.3490 ... (based on [] (1—¢q %)~ ! ~ 1.1680).
q=3

In order to gain some insight into the speed of convergence to this
limiting value, we observe that

5(320,000) = ¥ a, (neS%?}, n<320,000) = 372,

372 320000 53413
log 320,000

which is already fairly close to b.

and

8. PROOF OF THEOREM 2(d) (CONTINUATION). Let us consider the set
SYub) = {nn=2°n3 p p% .. plr}, with 3 < b; < b, < .. < b,. The gen-
erating function is

an
S

s

fils) = I;[ Z lj Q= ni::l

o Lessy
2s q2s

n

with a, = 1ifne S, ", a, = 0 otherwise.
b,s

Here the star means that we sum over products p;p;b»s . p b5

where the p; run independently through the primes p = 1, with the following
restrictions: for i # j, also p; # p; and furthermore, in order to avoid
counting more than once a product like p; > p;* with the same exponent,
we require that if b, = b; then for i < j, also p; < p;. When convenient
we shall denote the function represented by this sum simply by X*(s).

bs

For future use we obseive that Y * H p; ° can be written as a sum of
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products of series of the type Z p~» and we shall be interested mainly

in the product with the largest absc1ssa of convergence. So, €.g., Z pi°ps’
=X p O p ¥ — ) p *. The behaviour of this sum depends mainly
> )

p
on the first term, with abscissa of convergence o = 1, while the last term
converges for o > 1/3. Similarly,

* - - -~ - 1 -5 —2s
STpitpit = ) p15p25=5{(2p 2 =Y p

p1<p2
=~(Zp 2+ 9409,

where the first term has the abscissa of convergence o = 1, while g,(s)
is holomorphic for ¢ > 1 — a, with a > 0. More generally,

N N
Xl pit = g Q) + aals)

with g,(s) holomorphic forc > 1 — a,a > 0.

In the present case of f(s) Z converges for o > 1/3, on account of
b; > 3(j=1,2,..,r); hence, fi(s) is represented by its generating function
for o > 1/2 and, just as in the case of fy(s), it has a branch point at
s = 1/2. One may follow exactly the previous computation and obtains
the result

S(x) = Y a, ~ C/(x/(log x)), with C = b) "(1/2)

n<x

an this is precisely (3b).

Let us assume now that 2 = b; = b, = ... = b, < b,,; < .. < b,. The
generating function (essentially the same as for f1(s), with the new values
for the b;’s) may now be written as

fz(s) = 1 H3 Z* pl—zsp2—2s p;25p;+b;i+1s pr—brs
g=
1 — > 1 — 213
1 1 . 1 :
= Ll y (Z Pyt p e+ 93(5)) (ﬁ (Z p“zs) +g4(S)>-
1— 9% 1 - — TP
25 q23

Here the sum Z* is holomorphic at least for ¢ > 1/4 and g,(s) even for

1 [e0]
°>7-4 for some a > 0; also, f5(s) = > a,n~*witha, = 1if
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neSYL, a, =0

otherwise. As before we set S(x) = Z a;. The function f,(s) has a branch
point at s = 1/2 and 1is holomor;;hic for o > 1/2. As before, S(x) will
depend only on the behaviour of f,(s) in the neighborhood of its branch
point. .
Fors — 1/2, Z*(s) + g5(s) = Z*(1/2) + g5(1/2) = D, say. We now obtain
from (5) that

J2s)  fols) 1

2s  2s ﬁ\/(2s——1)(A+O(2S——1))’

1
—1)2)

—sy -1 o —2sy-1 A
so that fi(s) = (12797 [] (1—q"2) ~ BT
and
A 1 1 — 25k
fz(S)ﬁ*\/—z"D‘m{m(gp )+ gas)} -

To replace the last factor, we recall that

logl(2s) = > p~™* + >, q > + hs(s) and log L(2s)
p=1 q=3
= 2P =) a*+ hes),
p=1 qg=3

where hs(s), he(s), etc., are holomorphic for o > 1/4.
It follows that

I

1 1
(6) Zl p~ % E(log {(2s)+1og L(2s)) + hy(s) = — 5 log(2s—1) + hg(s)

1 1
- Elog S—E + hy(s) .

I

and finally

. >1 1 k 1 k—2
N P T) ((l"g J<s—1/2>> - <l°g J(s—m)) o 2))
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1
In order to use Karamata’s Theorem, we set s — 7= z, so that

o = 5 L g iageg sy
n=1 n

Let &(z) = z'*(B log"z}/?); then B(log z'/** is a slowly increasing function,

&(z) is of regular growth, with y = 1/2 and, by Theorem A we obtain that

2 21—k
Alx) = logn<§;= log x ,,/\/n = F¢<(t)> - \/TE ' Bt1/2(10g tl/z)k = W
2

B t}?logt

1-k

= B(log x)'?*(log,x)* .

JT

We also have, with S(x) = Y a,, by partial summation, that

n<x

a, Sp— Su-1 1 B 1 S(x)
R P L G = R
1 S(y) S(x)

-3) e T

The last term is at most O(1), because the number of integers counted by
S(x) is of the same order as that of integers of the form 2°n* < x; hence,

S 21—k
(7) ) j’; —f gﬁd =~ Bllo x)!*(log,x)*

ns<x

9. SOME TAUBERIAN CONSIDERATIONS. The usual Tauberian theorems do
not seem to apply (see, e.g, a very similar situation in [5], Theorem 3,
where a crucial condition is o > 0, while in the present case o« = 0).

If we assume that under the particular conditions of the present problem,
it is legitimate to differentiate (7), we immediately obtain

8) S(x) = | S%9(x) | ~ C J(Eﬁ‘}) (log, %) = F(x),

1-k
say, with C = Jn B. Without that Tauberian conclusion, we can prove

only that (8) holds in a certain weaker sense, defined in Section 3 as
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weak asymptotic equality and denoted by = . The precise statement is the
following

LEMMA. Given € > 0, arbitrarily small, there exists an x, = Xo(€),
such that, for x = x,, it is not possible that either S(y) = F(y) (1 +¢),
or S(y) < F(y)(1—¢) should hold over the whole interval x <y < x'*¢,

Proof. Assume first that S(y) > F(y) (1+¢); then
1 J‘ S(y) 27*B

dy >
5 y

AN

where 1 — 0 as x - co0. On the other hand, by (7),

&(1+¢) (1—m) (log x)"/*(log,x)",

1 x1+e S 21—kB
2 J . y—(/y“) dy <= logx)llog ) (1 +0)— 1)

N—k

JT
The asymptotic equality (7) now requires that 1 > (1+¢)(1—m), which is
not the case for m sufficiently small (e.g, for n < ¢/2 < 1), 1e, for
x = xo(€). The proof that S(y) < F(y)(1—¢) cannot hold over the whole
interval is similar.

For later use we observe that, if we replace B by its value, we obtain

+ of(log x)"*(log,x)") < e(log x)"*(log,x)* + o((log x)'/*(log,x)") .

227K(1 42712
(=
1

) H (l_q—Z)—l -D.

This finishes the proof of the first result of (3c).

10. COMPLETION OF THE PROOF OF THEOREM 2. The last case to be con-
sidered is that of

(biy s by) — Aay, 2 b b b
Szfm ) = {” |n = 2°n3ppy ... PP RS DRSS - Pr'} s

where 2 < b,,; < .. < b,. The generating function of these integers is

an
S’

n

-

with a, = 1 if ne Gt Pt g = 0 otherwise. We observe that
n 2, m
f5(s) may be written as

b

u
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1 1

o U

q‘='31—q

—2s

,3' C o (7 ity b+ gs) +960) (071,

with ge(s) holomorphic at least for o > 1/2.
The function f5(s) is holomorphic for o > 1, and has a branch point at
s = 1. The behaviour of the summatory function > a, depends only on

n<x

the behaviour of f5(s) in the vicinity of the branch point. There we have
S*(1) + gs(1) = P, say, so that

2 *
S) =0 1—[3 (1-g=%)7"( ; P (5)+g5(s)

and, as s —» 17,

2P
’—“—F(H (I—g7)™H(X p~
« g=3 p=1

As before, we have

2 p =
p=1

It follows that, for s —» 1T,

' 1
(10g(US)LS) + hols) = — 5 Logls—1) + hyols)

| —

2p —2y-1 1 ¢ - 1/2\k
A9~ I, 0=07 (1og ) = Qlogts—b22,

say, with Q constant.
In order to apply Karamata’s Theorem A, we set s — 1 = z and rewrite

fi(s) as f3(z+1) = i

Q(log z7'?)*. By Theorem A we obtain that

AN = Y D~ glog ¥ = 27%Q(log,x)

logn<t =logx

Proceeding as before, we set S(x) = Y. a, and, by partial summation,

n<x

obtain

S, — S, _. 1
Alogx) = ) —"— =} S,,(— _ ! ) + 5) ~ g(logzx)".

n<x n n<x n n+1 x + 1 2k

It is trivial to verify that S(x) = O(x), so that we may neglect the term
S(x)/(x+1). Also,
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1 1 "t du **1 S(u) * S(u)
S i s =1 — :\_J .
n;x "<n n+ 1) n;x X Jn u? j u? du J u? du

ai ai

By proceeding now exactly as in Section 9, we complete the proof of the
1—-k
last claim of (3¢), with C =

(k—1)! P 41;13 (1—g~ %!, with asymptotic

equality at least in the weak ‘sense. If the Tauberian Conjecture holds
(le., if it i1s legitimate to differentiate our asymptotic equality), then the
weak asymptotic equality is, in fact, an ordinary asymptotic equality.

Regardless of m, there always exist solutions with a; = 1. Indeed,
[[(b;+1) = 2m has at least the solution b, = 1, b, = m— 1. This solution is
unique only if m is a prime. More precisely, if m = 2°m,, 2 ¥ m,, then
2m = 2°"'my; = [](b;+1) admits the solution sets 1 = b, = b, = ..
=b.,, <b,y, <..<b,, where b, ,, .., b, are a solution set of

9) [Ta+b) = m; .

Each of these solution sets leads to an

S(zlm, 1,bc+2,...,br)(x) ~ C (1Og2x)c+1 ,

log x
with

. — 1,...,1,bc+2,..., br
C = C(bc+2,..., b,.,C, }”) and Sz’m - US(Z,m *2 ),

and with the union taken over all solution sets of (9). It follows that
X

| S5 m(x) | = C,, (log,x)*!, with C,, = £ZC(b,.,,..,b,;c,r) and this

log x
finishes the proof of Theorem 2.

11. ExampLes. To illustrate previous results numerically, we present here
examples for all non-trivial cases (a) to (e).
(a) As an example for k > 5, let us study S¢ , and |Se (x)|, for
x > 15 and for x = 12. |
-~ By evaluating, e.g.,, (91.5) in [12], it is easy to show that rg(n) > 4n®
Hence, Pg(n) = re(n)/2°6! > (4/64.6)n* = n*/16.720 and, for n* > 2.16.720,
Pg(n) > 2. This means that Pgn) = 2 is possible only for n < 42.3../10
= 151.789... It is well-known (see [8]) that P¢(n) = 1 holds precisely when
n=1 2, 3, or 7. It remains to check Pg(n) for the integers n = 4, 5, 6
and from 8 to 151. This is very easy with the help of a desk computer,
but is not really difficult even with paper and pencil, especially by use
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of Gino Loria’s tables [9] of the partitions of all integers up to 100 into
(among others) four squares (attention is however due to some errors of
those tables). The result is that Pg(n) = 2 precisely for

neSe, = {4,56,8,10,11, 15} .

Clearly, for x > 15, S, 5(x) = Sg., and | Sg 2(x)| = 7. On the other
hand, 15¢ S¢ ,(12) and | S ,(12) | = 6. '

(b) For k = 4, let us determine S, , and compute |S, ,(x)| for x
sufficiently large and also for x = 100 and x = 20.

By [8], if n £ O(mod 8), then P,(n) > n/48 for n = O(mod 4) and P,(n)
> n/64 for n = O(mod 4). Hence, if n > 96, 4 }t n, then P,(n) > 2. Similarly, if
n > 128 and n = 4(mod 8), then P,(n) > 2. It 1s easy (either with the help
of a computer, or manually by use of [9]) to find the values of all
P,n) for n < 128 and to record the integers n, with P,(n) = 2. We obtain
the set {4, 9, 10, 12, 13, 16, 17, 19, 20, 21, 22, 29, 30, 31, 35, 39, 40,
44, 46, 47, 48, 64, 71, 80, 88, 120}. By following the outlines of Section 4,
we eliminate the integers divisible by 8 and so obtain the set

S, =1{4,9, 10, 12, 13, 17, 19, 20, 21, 22, 29, 30, 31, 35, 39, 44, 46, 47, 71} .

The subset N = SP), of even integers 2t is N = {4, 10, 12, 20, 22, 30,
44, 46}. If 2te N, then also P,(4°-2t) = 2 for integral a > 0, so that
S¢, = {n|n = 4%,a > 0, n e N}. Written explicitly,

SP, = {52%,11.2°, 4%, 3.4 a > 1; 30.4% 46.4% a > 0} .

The other integers of S, are all odd, namely T = {9, 13, 17, 19,
21, 29, 31, 35, 39, 47, 71}. For each of these 11 integers je T, we verify
that P,(4j) > 2, so that T =S¢, and SP, = S, and, consequently,
Si2 =S4 U SY,. This, is, essentially, the result of [8], except for the
addition of 19, 30, 46 omitted there.

To compute | S{,(x)| and, hence | S4 2(x) |, we observe that it follows
from the explicit presentation of S, that, for x > 46,

[ log(x/5) log(x/11) log x log(x/3)
S(2)2 — _ S A
+ | log 2 J+[ log 2 }+[log4J+[log4:|
[ log(x/30) log(x/46)
| log4 J+[ log 4 ]+2

4
= ] _ .
log 2 0og x R(x);
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here the +2 originates from the two cases with a = 0 and

log 5.11 .30. 5
R(x) = og 5 . log 3.30.46 o log(x/5) B log(x/5)
 log?2 log 4 log 2 log 2
. log(x/46) log(x/46)
log 4 log 4
log 55 log 4140
= 1+ R = 12.7890672... + R
Tog 2 + log 4 + 1 + Ry(x) 8906 + Ry(x),
where
R.( log(x/S) log(x/S) N log(x/ll) log(x/11) . log x
n log 2 log 2 log 2 log 2 log 4

log x log(x/3 log(x/3) 10g(x/30) log(x/30)
log 4 log 4 log 4 log 4 log 4

+ Jog(x40) log(x/46 log(x/46
log 4 log 4

It 1s trivial to observe that | Ry(x)| < 3, but one can do better. It is clear
that R;(4x) = R,(x), so that it is sufficient to compute R,(x) only for
1 < x < 4, say. On this interval R,(x) is piecewise continuous and increases
between its (easily determined) points of discontinuity. The absolute extrema
are attained at 3* and at 2.5 (equivalently, 107), respectively, so that,
in fact, —1.4493 < R (x) < 1.4987, or simpler (and somewhat less precisely),
| R,(x)| < 3/2. By taking into account also that |S“’ (x)] = 11 for x > 71,
we conclude that

(10) | S4.2(0) | = log x — 1.78906... — R,(x)

log 2
holds for x > 71.

As an illustration, we may compute directly that |S, ,(100)| = 25,
observe that (10) yields | S, ,(100) | = 24.78636... — R(100), so that R,(100)
= —.21363...

For x = 20, (10) is no longer valid. Indeed, by direct counting, | S, ,(20) |

4
= 9, and (10) reads | S, ,(20)| = o2 log 20 — 1.78906.. — R,(20), so that

R,(20) = 6.49864.. > 3/2.

4
If we set R, = Max | 5 log x — 1.78906 — S, ,(x)| = 9.21094...

1<n<71 log
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(value attained for n = 8 only), then (10) holds for all x > 1, but with
| Ry(x)| € Ry, rather than | Ry(x)| < 3/2.

(c) For k = 3, let us first find S; ,(100). For that, we eliminate from the
integers 0 < n < 100, first the 12 integers with n = 7(mod 8), for which
P4(n) = 0; next, the 24 integers n < 100 with P3(n) = 1 (this set 1s known;
see [2], or—after a few completions—[8]). From the remaining 64 integers,
we eliminate the 25 integers divisible by 4 and remain with 39 integers.
Of these, the 12 integers of the set {41, 50, 54, 65, 66, 74, 81, 86, 89,
90, 98, 99} have P4(n) > 2, so that we remain with the set

T = {9, 17, 18, 25, 26, 27, 29, 33, 34, 38, 45, 49, 51, 53,
57, 59, 61, 62, 69, 73, 75, 77, 82, 83, 85, 94, 97},

of 27 integers. For all ne T, Py(n) = P4(4°1) = 2 and all n # O(mod 4),
n < 100 with Ps(n) = 2 are in T. By adding to T the set T, = {36, 68,
72, 100} of integers 0 < n = 4% < 100, te T, we, obtain S; ,(100) = T
u Ty, with |S; ,(100)| = 31. From this computation, such results as
1S5 ,(37)| = 10, etc., are obvious.

In order to obtain S5 ,, we have to determine the finite set M, of
integers n # O(mod 4), with P5(n) = 2. For this, we have to determine n,
and ny such that h(—n) > 4 for n > ny, n = 3(mod 8) and h(—4n) > §,
for n > ny, n=1, 2, 5, 6(mod 8). If we assume that Buell’s list [3] is
complete, then n, = 1555 and n, = 862; if [3] is not complete, any n
with h(—n) <4, n > 1555, n=3mod8), or h(—4n) <8 n > 862,
n=1, 2, 5, 6(mod 8), respectively, exceeds 10°. The existence of such an
integer, while not disproven, is highly unlikely. Assuming the completeness
of [3], we have to select among the integers n = 3(mod 8), n < 1555, the
set V; of those integers, with P5(n) = 2; similarly, among the integers
n=1,2, 5 6(mod38), n < 862, the set V, of integers with P5(n) = 2. Then
M, = V,uV,andS; , = {n|n = 4°,te M,}. The numerical work involved
in this (still only tentative) determination of M, does not appear warranted.

(d) For k = 2, let us determine S, , and | S, ,(x)| for large x. Here
m = 2, so that (1) becomes

[[b;+1) =4, or []b;+1) = 3.

There are three solution sets, namely (i) b, = 3; (ii) b, = b, =_1; and (iii)
b, = 2. It follows that

5(23,)2(’6) = {n|n = 2an%P3}a S(zl,'zl) = {n|ln = 2"n§p1p2} 3
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and S%, = {n|n = 2°n3p*}, with S, , = §¥, U LD U SP,. Next, by

1/2 %
) SR = 6y

1/2
) log,x.

Theorem 2(d), | S©,(x) | & C, ( log,x, with

log x

1
C, = - 1—g )1 ~ .5840.. and | S ~ C
3 5 ql;L (1-g~ %) and | 2, 2(x) | 9 <log x

We conclude that
Sy, = {” In = 2a”%”1> with n; = P3,P1P2, or Pz}-
The dominant term is

X X
log,x ~ .5840..
log x log x

(1 Cs

logyx = g(x)

say. The proof suggests that, even if the weak asymptotic equality is a
genuine asymptotic equality, one should expect the ratio of the two sides
of (11) to approach unity only for rather large values of x. The following
tabulation seems to bear this out.

X | S2,2(x) | g(x) ratio g(x)/| Sz, »(x) |
10 0 2.115 o0
102 5 19.365 3.873
103 74 163.390 2.208
10* 822 1,407.840 1.713
10° 8454 12,394.650 1.466
10° 82022 110,995.715 1.353
107 781073 1,007,244.600 1.28956

The function represented by the last ratio appears to be fairly well interp-
olated by the curve 1 + 1.6/log x + 43/log?x. This indicates that, in order
to reduce said ratio even only to 1.1, it would be necessary to go beyond
x = 3.10'3 and further numerical experimentation is not warranted.
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