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G. Les exemples de H. Wendt.

L'idée de comparer le nombre gordien d'un nœud avec son genre de Seifert

est déjà dans l'article original de H. Wendt [We]. En fait Wendt avait exhibé
des nœuds K (non fibrés!) de genre de Seifert s(K) et de gordien u(K)
& 2s(K) (par exemple le nœud 935 dans la tabulation de Reidemester [Re]).

Nous donnons ici une généralisation des exemples de Wendt. Notons

Kiq+u 4 ^ 1, le nœud de bretzel K(3, 3,..., 3), qui est le bord de la surface
constituée de deux disques reliés par 2q + 1 bandes tordues, et qui est représenté

sur la figure 7.

D'après T. Kanenobu [Ka] (voir aussi [Qa]), ce nœud n'est jamais fibré.

Historiquement, à notre connaissance, deux voies ont été suivies par les

topologues pour essayer de démontrer la conjecture de Thom.
La première consiste à utiliser ce que nous avons expliqué aux § 1 et 2 :

minorer le mieux possible le genre de Murasugi des entrelacs de Hopf
généralisés. Nous avons vu au § 5 que la signature de l'entrelacs donne une
première minoration. Une difficulté de cette approche est que la signature dépend

en principe aussi bien de d que de r. L'introduction des signatures « tordues »

et le théorème 3 ci-après, dus à A. Tristram, permettent d'obtenir des

minorations qui ne dépendent que de d.

Référence: A. Tristram [Tri].
Ces signatures ont aussi été introduites par J. Levine dans le cas des nœuds,

à la fin de son article sur le cobordisme, dans un but différent de celui de

Tristram.

Figure 7

On a. u(K2q +1) ^ 2q — 2s(K2q + ±).

§ 6. Signatures
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Référence: J. Levine [Lev].
La deuxième voie consiste à utiliser le théorème de la G-signature d'Atiyah-

Singer, en l'appliquant à certains revêtements cycliques de CP2, ramifiés sur

une surface différentiable de degré d. Ce fut le chemin suivi par W. C. Hsiang-
R. H. Szczarba et par V. Rohlin.

Références: W. C. Hsiang-R. H. Szczarba [HS]; V. Rohlin [Rh].
Or, dans les deux cas (Tristram et Rohlin) les calculs que l'on effectue sont

essentiellement les mêmes et donnent les mêmes bornes. La raison de ce

phénomène est donnée par O. Viro qui a montré que, dans les deux cas, on calcule

en fait le même invariant.

Référence: O. Viro [Vi].
Dans ce paragraphe, nous allons suivre l'approche par la théorie des entrelacs.

Les bornes obtenues sont environ la moitié du nombre escompté dans la

conjecture. Une excellente référence générale sur les signatures « tordues » des

nœuds (i.e. r= 1) est donnée par l'article de C. Me. Gordon [Gor]. Le cas des

entrelacs présente quelques difficultés supplémentaires, liées à l'apparition de

la dégénérescence. C'est pourquoi nous avons choisi une présentation plus
proche de K. Murasugi et A. Tristram.

Nous commençons par quelques manipulations matricielles.

Référence: T. Matumoto [Ma].
Soit W un espace vectoriel de dimension finie sur C. Soit l:W x W - C

une forme sesquilinéaire. Aucune hypothèse de « symétrie » ou de non
dégénérescence n'est faite sur /. Ceci sera utile pour les applications topologiques
que nous avons en vue.

Soit £ g C, Ç ^ L Posons: f - {(1 — £)/ + (1 —£)/*}, où * désigne la

conjuguée-transposée.

Lemme 1.

a) f est une forme hermitienne, c'est-à-dire f.

^ o •
1 - S 1 - Reê

b) Soitco - Alors la —
1 - t, I 1 ~ 11

La preuve découle de calculs faciles.

Nous serons intéressés dans la suite à la dégénérescence et à la signature
des formes f. (Par a) ceci a bien un sens). La partie b) du lemme 1 montre que
nous ne perdons rien en ne considérant que les formes lm avec. | co | 1, ce
que nous ferons désormais.



210 M. BOILEAU ET C. WEBER

Rappelons qu'il y a plusieurs façons' de calculer la signature et la
dégénérescence d'une forme hermitienne :

1. On diagonalise la forme en appliquant la méthode de la « completion
du carré ». Si r0 désigne le nombre de zéros qui se trouvent dans la diagonale,

r+ le nombre de réels positifs qui s'y trouvent et r_ celui des réels négatifs,
alors : r0 est la dégénérescence et r+ — r_ est la signature.
(Théorème de Sylvester des cours d'Algèbre linéaire)

Notations : deg(/J et sign(/J.

2. On calcule le polynôme caractéristique det(id + tlJ. Alors r0 nombre
de racines nulles, r + nombre de racines positives, et r_ — nombre de racines

négatives.

3. Les topologues citent souvent la méthode du § 3 du livre de B. Jones,

qui n'est pas nécessairement la plus rapide dans les applications.

Référence: B. Jones [Jo].

Lemme 2. Si | co | 1, co ^ 1, on a:

L ^(1-®) {i-o)i*}

La preuve découle d'un calcul immédiat utilisant que si | co | 1, on a:

1 — co

Ce lemme montre que les formes « à la J. Levine » fournissent la même

famille d'invariants que les formes « à la A. Tristram ». Nous en aurons besoin

parfois dans la suite, pour certains calculs. j

Appliquons ce qui précède à la théorie des entrelacs. Soit K un entrelacs

orienté dans S3. Soit U une surface de Seifert pour K, et soit A la forme de

Seifert associée à U.' Comme U n'est pas unique, A n'est pas un invariant
de K. Mais on peut montrer que :

Proposition 1. Si A et A' sont deux formes de Seifert pour K, on

peut passer de l'une à l'autre par un nombre fini d'opérations du type suivant:

i) Isométrie.

ii) Nous utilisons une .notation matricielle, qui est plus succincte,

lia) Passer de A à Ä avec :
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0 0 * 0

A A

ou A

0 0 * 0

* * 0 0 0 0 0 1

0 0 1 0 0 0 0 0

iib) Passer de A à A.

iiia) Passer de A à Ä, avec :

0

A

0

0 0 0

iiib) Passer de A à A.

De plus, si on ne considère que des surfaces de Seifert connexes, les

opérations i) et ii) suffisent.

Référence: C. Me. Gordon-R. Litherland [GoL].
(Le passage-clé est dans la partie II du théorème 11).

Note. Dans cet article, nous ne nous intéressons qu'aux entrelacs fibrés.

Nous pourrions alors nous dispenser de la proposition 1 et du lemme 3 en

utilisant que la fibre plongée est essentiellement unique. On définirait tout à

partir de la forme de Seifert associée à la fibre.

Lemme 3. Soit K un entrelacs orienté dans S3. Soient A et A deux

formes de Seifert pour K, associées à deux surfaces de Seifert connexes
de K. Soit co g C, avec | co | 1 et co ^ 1. Alors :

deg(/4J deg(AJ, et sign(/lj sign(/lj.

Bien sûr, un entrelacs possède toujours des surfaces de Seifert connexes.
Par le lemme 3, nous pouvons définir la dégénérescence et la signature de K
en co, que nous noterons : degJK) et signJK).
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Preuve du lemme 3. Il suffit d'examiner le passage de Am à Äa. Or:

S?31 0

e II K
(1 — co)a„ 0

(1 —00)0"! (l-rô)a„ 0 (1-œ)

0 0 (1-cô) 0

Un calcul immédiat montre que le polynôme caractéristique de Äw est le produit
de celui de Aw par [x2 — 2(1 — Reco)]. Ce dernier a une racine positive et une
racine négative/ ce qui achève la preuve.

Remarque. Si co — 1, la signature que nous venons de définir n'est rien
d'autre que la signature de Murasugi dont nous avons parlé au § 5. Nous avons

vu que dans ce cas, la nullité et la dégénérescence sont reliées par l'égalité:

nul(K) deg_ ^K) + 1

(Ne pas oublier que nos surfaces de Seifert sont maintenant connexes).

Essentiellement pour ne pas rompre avec la tradition, introduisons un
nouvel invariant, la nullité de K en co, définie par: nulm(K) degJK) -f 1.

Les deux théorèmes suivants sont essentiellement dus à A. Tristram [Tri].

Théorème 1. Soit co une racine pl-ème de 1, avec p premier. Soient

K et K' deux entrelacs orientés concordants. Alors :

nulJK) nulJ/C') et signJK) signJK').

Attention Le théorème est faux si co n'est pas une racine p'-ème de 1 avec

p premier. C'est la raison pour laquelle A. Tristram n'envisage que des co qui
sont des racines p-èmes de 1, la généralisation à p1 étant facile.

La définition d'une concordance (on dit aussi cobordisme) entre deux

entrelacs orientés est la suivante :
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Définition. Soient X° et X1 deux entrelacs orientés, à r composantes.

Désignons par (-K1) l'entrelacs obtenu à partir de X1 en changeant l'orientation

de chacune de ses composantes. Nous dirons que X° et X1 sont concordants,

s'il existe un plongement différentiable ®: Sr x [0, 1] -> S3 x [0, 1], tel
r

que: (on rappelle que Sr | | Sf)
i= î

a) O_1(S3x{0}) Sr x {0}
0_1(53x{l}) Sr x {1}

b) O | Sr x {0} (resp. O | Sr x {l})soituneparamétrisationdeX°(resp. deX1).

c) le bord orienté de Im(O) soit X° x {OjJJ^ — X1) x {1}

Théorème 2. Soit V une surface de Murasugi pour l'entrelacs orienté K.

Soit co une racine pl-ème de 1, avec p premier. Alors:

| sign„(X) | + | nulJX) - b0(V) \^r- b0(V) + 2g(V)

(Conformément à nos notations, introduites précédemment, r désigne le nombre

de composantes de X, et b0(V) désigne le nombre de composantes connexes

de V).

Remarque. Comme nulw(K) — b0(V) ^ | nul^X) — b0(V) |, le théorème 2

a pour conséquence l'inégalité | signJK) | ^ r — nulJX) + 2g(V), quelle que
soit V.

Par conséquent, on obtient la formule plus commode :

| sign„(K) K r - nulJX) + 2m(X),

où m(X) désigne le genre de Murasugi de X.
Notre but est d'utiliser cette dernière formule pour minorer le genre de

Murasugi des entrelacs de Hopf généralisés, que nous avons notés T(r, d). Pour
obtenir des minorations qui ne dépendent que de d, nous allons utiliser un
autre résultat de Tristram que nous présentons maintenant.

Soit X un entrelacs orienté dans S3, à r composantes: Ku Xr. Donnons-
nous également un plongement (p: S1 x [0, 1] -> S3 d'un anneau tel que:
cpiS1 x {0}) Xr et (p_1(K) S1 x {0}.

Considérons l'anneau R cp^S1 x [1/2, 1]). Orientons R et considérons le

bord orienté dR. Définissons X* comme étant l'entrelacs orienté X u ÔR. Bien
sûr, X^ a (r + 2) composantes. Soit Xr + 2 tyiS1 x {1}).

Soit n| t i?(Kr + 2, Kf)|| 2(Kr + 2, K) |.
i= 1
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Théorème 3. Soit co une racine ,s-ème de 1, avec s divisant n.

Alors :

signJK) signJKJ et nulJK) nulJXJ - 2

Note. Dans le théorème 3, s n'est pas nécessairement puissance d'un
premier.

On peut donner une démonstration de ces trois théorèmes en suivant les

indications données par A. Tristram lorsque cop 1. Voir [BW].
Nous allons maintenant appliquer les théorèmes précédents aux entrelacs

de Hopf généralisés. Pour cela, nous avons besoin de savoir ce qui se passe

pour les entrelacs du tore. Le théorème qui suit est cité très souvent dans la

littérature, surtout en ce qui concerne la signature classique. Pour ce qui nous
intéresse, les références utiles sont : R. Litherland [Lit] ; T. Matumoto [Ma].

Théorème 4. Soit K(p,q) l'entrelacs (orienté) du tore de type (p, q).

Soit x un nombre réel, 0 < x < 1, et soit co exp(2^/ — 1 tix). Notons:

r0 : le nombre de couples d'entiers (i,j), avec 0 < i < p, 0 < j < q, et tels

que - + - x (mod 1);
P 4

r_ : le nombre de ces couples (i,j), tels que x — 1 < —h — < x mod 2;
P P

r+ : le nombre de ces couples (i,j) tels que x < —h - < x + 1 mod 2.
*

P Q

Alors, nu\„(K(p, qj) r0 + 1 et signw{K(p, q)) r+ - r_.

Nous allons esquisser une preuve de ce théorème en suivant T. Matumoto

[Ma]. La clé de la preuve est dans la proposition suivante.

Proposition. Soit K un entrelacs du tore, de fibre U et de forme de

Seifert A. Alors, il existe une base de HfiU ; Z) (g) C telle que l'extension

sesquilinéaire l de A à HfiU ; Z) (g) C soit diagonale dans cette base.

Voici quelques points de repères.

Soit a un entier positif. On montre tout d'abord que l'extension
sesquilinéaire de la forme de Seifert associée à la singularité za 0 se diagonalise.
La matrice diagonale est :
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i -r1
i - c2 o

Na a

0

l _ £-(a- 1)

où Ç exp(2v/— lrc/a).

On applique ensuite le théorème de K. Sakamoto [Saa], pour en déduire

qu'une diagonalisation de A sera : Np ® Nq. Pour plus de détails voir l'article
de Matumoto [Ma].

Dans la base correspondante, Aw aura pour élément diagonaux :

Ci exppy"- It i/p),(,2 Ç\p{2^/^în/q), 1 s: < ~ 1, 1 < ; =$ g - 1

Pour calculer le signe de la partie réelle, on utilise l'égalité :

où x exp(2v/—lTut), 0 < t < 1

La suite des calculs est alors sans surprise.

Nous pouvons maintenant démontrer:

Théorème 5. Soit T(r, d) un entrelacs de Hopf généralisé. Alors, on a

Remarque. Très grossièrement, la borne ainsi obtenue, est la moitié de
celle donnée par la conjecture anonyme du § 2.

2 Re{(l — co) (1 — ÇJ" ') (1 — ^2j)} »

ou

(1 — x) — 2y/—l(exp(y/—l7tt)) sinnt,

m(r(r, d)) ^ —-— si d est pair. Si d est impair, soit d pid' avec

p premier, alors : m(T(r, d)) ^
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Le théorème 5 découle d'un calcul un peu long mais sans aucune difficulté
qui donne les signatures tordues des entrelacs T(d, d), grâce au théorème 4.

On choisit co — 1 si d est pair, et oo exp[2-v/^7t(pI — l)/2pl] si d est

impair et d pld! avec p premier.
On applique ensuite les théorèmes 2 et 3 pour étendre la minoration aux

entrelacs T(r, d).

En appliquant l'argument classique de transversalité développé au § 2 nous
obtenons ainsi une preuve du théorème de Rohlin et Hsiang-Szczarba, dans le

cas de CP2.

Théorème ([Rh], [HS]). Soit F une surface différentiable, close, connexe,
orientable dans CP2. Supposons que F est de degré d. Alors le genre de F

d2 — 4 d2 — 4 (d'\ 2

est au moins égal à : —-— si d est pair et à — I — jj si d est

impair, d pld\ avec p premier.

Note. Comme nous n'avons pas pris de précaution quant à l'orientation
globale des entrelacs, les calculs précédents montrent plutôt que la valeur
absolue des signatures est égale au nombre indiqué.

§ 7. Quelques problèmes liés au nombre gordien

Le but de ce paragraphe est de mentionner et de commenter quelques
problèmes liés au nombre gordien d'un entrelacs mais qui ne sont pas directement
rattachés aux problèmes de R. Thom et de J. Milnor.

A-l) Dès qu'on définit un invariant des entrelacs, il est important de

connaître son comportement par rapport à la somme connexe. Il est alors
naturel de posér la question suivante (cf. Knot theory, Proceedings Plans-sur-

Bex [Hau]) : « le nombre gordien est-il additif pour la somme connexe :

c'est-à-dire a-t-on u(K1$K2) u(X] + u(K2)l »

On vérifie aisément que: u{K1 =#= ^2) ^ u(Ki) + ti(K2).

L'exemple de la figure 8, où l'on considère la somme connexe du nœud de

trèfle droit avec le nœud de trèfle gauche, montre que le nombre gordien de

ce nœud, qui est 2 par l'inégalité de Wendt (cf. [QV]), peut-être atteint aussi

bien en dénouant chaque facteur de la somme connexe qu'en ne respectant pas

cette somme connexe.

2) Un cas particulier du problème précédent a reçu beaucoup d'attention
(cf. [LicJ, [GLaJ). Il reste toujours ouvert: «les entrelacs de nombre
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