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208 M. BOILEAU ET C. WEBER

G. Les exemples de H. Wend:t.

L’idée de comparer le nombre gordien d’un nceud avec son genre de Seifert
est dé¢ja dans larticle original de H. Wendt [We]. En fait Wendt avait exhibé
des neeuds K (non fibrés!) de genre de Seifert s(K) et de gordien u(K)
> 2s(K) (par exemple le nceud 9,5 dans la tabulation de Reidemester [Re]).

Nous donnons ici une généralisation des exemples de Wendt. Notons
K,,+1,9 = 1,le nceud de bretzel K(3, 3, ..., 3), qui est le bord de la surface cons-
tituee de deux disques reliés par 2q + 1 bandes tordues, et qui est représenté

‘sur la figure 7.

[ 111 [[1]]// 11117/
L/%___ ° Y (/-)/ f}
i J7 ////////////5

FIGURE 7

D’apreés T. Kanenobu [Ka] (voir aussi [Qa]), ce neud n’est jamais fibre.
On a:u(Ky4q) = 2q = 28(K 24+ 1)-

§ 6. SIGNATURES

Historiquement, a notre connaissance, deux voies ont été suivies par les
topologues pour essayer de démontrer la conjecture de Thom.

La premiére consiste a utiliser ce que nous avons explique aux § 1 et 2:
minorer le mieux possible le genre de Murasugi des entrelacs de Hopf géné-
ralisés. Nous avons vu au § 5 que la signature de 'entrelacs donne une pre-
miére minoration. Une difficulté de cette approche est que la signature dépend
en principe aussi bien de d que de r. L’introduction des signatures « tordues »
et le théoréme 3 ci-apres, dus a A. Tristram, permettent d’obtenir des mino-
rations qui ne dépendent que de d.

Référence : A. Tristram [Tri].
Ces signatures ont aussi €té introduites par J. Levine dans le cas des nceuds,

a la fin de son artlcle sur le cobordisme, dans un but différent de celui de

Tristram.
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Référence: J. Levine [Lev]. :

La deuxiéme voie consiste a utiliser le théoréme de la G-signature d’Atiyah-
Singer, en I'appliquant a certains revétements cycliques de CP?, ramifiés sur
une surface différentiable de degré d. Ce fut le chemin suivi par W. C. Hsiang-
R. H. Szczarba et par V. Rohlin.

Références: W. C. Hsiang-R:. H. Szczarba [HS]; V. Rohlin [Rh].

Or, dans les deux cas (Tristram et Rohlin) les calculs que I'on effectue sont
essentiellement les mémes et donnent les mémes bornes. La raison de ce phé-
nomeéne est donnée par O. Viro qui a montré que, dans les deux cas, on calcule
en fait le méme invariant.

Référence: O. Viro [Vi].

Dans ce paragraphe, nous allons suivre 'approche par la théorie des entre-
lacs. Les bornes obtenues sont environ la moitié du nombre escompté dans la
conjecture. Une excellente référence générale sur les signatures « tordues » des
nceuds (i.e. r=1) est donnée par I'article de C. Mc. Gordon [Gor]. Le cas des
entrelacs présente quelques difficultés supplémentaires, liées a Papparition de
la dégénérescence. C’est pourquoi nous avons choisi une présentation plus
proche de K. Murasugi et A. Tristram.

Nous commengons par quelques manipulations matricielles.

Référence: T. Matumoto [Ma].

Soit W un espace vectoriel de dimension finie sur C. Soit [: W x W —» C
une forme sesquilinéaire. Aucune hypothése de « symétrie » ou de non dégé-
nerescence n’est faite sur I Ceci sera utile pour les applications topologiques
que nous avons en vue.

. 1 =
Soit £eC, £ # 1. Posons: [, = 3 {1=8) + (1-§)I*}, ou * désigne la

conjuguee-transposée.

LEMME 1.
a) I, est une forme hermitienne, c’est-a-dire [If = L.

b) Soit © = LTS s I, = 1= Ret,
1—E [1—&)7 "
La preuve découle de calculs faciles.

Nous serons intéressés dans la suite a la dégénérescence et a la signature
des formes [;. (Par a) ceci a bien un sens). La partie b) du lemme 1 montre que
nous ne perdons rien en ne considérant que les formes [, avec | OJ] 1, ce
que nous ferons désormais.
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Rappelons qu’il y a plusieurs fagons de calculer la signature et la dégéné-
rescence d’une forme hermitienne:

1. On diagonalise la forme en appliquant la méthode de la « completion
du carré ». Si r, désigne le nombre de zéros qui se trouvent dans la diagonale,
r. le nombre de reels positifs qui s’y trouvent et r_ celui des réels négatifs,
alors : ry est la degeénerescence et r, — r_ est la signature.

(Théoreme de Sylvester des cours d’Algebre linéaire)

Notations : deg(l,) et sign(l,).

2. On calcule le polyndéme caractéristique det(id +t,). Alors r, = nombre
de racines nulles, ¥, = nombre de racines positives, et ¥ _ = nombre de racines
négatives.

3. Les topologues citent souvent la méthode du § 3 du livre de B. Jones,
qui n’est pas nécessairement la plus rapide dans les applications.

Référence: B. Jones [Jo].
LEmMME 2. . S8i |o| =1, 0# 1, ona:

L = ~(1—a) {I— ol

2
La preuve découle d’un calcul immédiat utilisant que si |w| = 1, on a:
1 — o
— = —®.
1 —®

Ce lemme montre que les formes «a la J. Levine » fournissent la méme
famille d’invariants que les formes « a la A. Tristram ». Nous en aurons besoin
parfois dans la suite, pour certains calculs. ; ,

Appliquons ce qui précede a la theéorie des entrelacs. Soit K un entrelacs
orienté dans S°. Soit U une surface de Seifert pour K, et soit A la forme de
Seifert associée a U.' Comme U n’est pas unique, 4 n’est pas un invariant
de K. Mais on peut montrer que:

ProrosITION 1. Si A et A’ sont deux formes de Seifert pour K, on
peut passer de Pune da Pautre par un nombre fini d’opérations du type suivant :

i) Isomeétrie. ‘
ii) Nous utilisons une.notation matricielle, qui est plus succincte. o
iia) Passer de 4 4 A avec: | J
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010 *10
A . A
= oud =
*10
e ¥ 0 :
0....0 110 0....0 010
iib) Passer de 4 a A.
iiia) Passer de A a A, avec:
B ]
0
A
A4 =
0. 0
L —

iiib) Passer de 4 a A.

De plus, si on ne considére que des surfaces de Seifert connexes, les ope-
rations 1) et i) suffisent.

Référence: C. Mc. Gordon-R. Litherland [GoL].
(Le passage-clé est dans la partie II du théoreme 11).

Note. Dans cet article, nous ne nous intéressons qu'aux entrelacs fibrés.
Nous pourrions alors nous dispenser de la proposition 1 et du lemme 3 en
utilisant que la fibre plongée est essentiellement unique. On définirait tout a
partir de la forme de Seifert associée a la fibre.

LEMME 3. Soit K un entrelacs orienté dans S3. Soient A et A deux

formes de Seifert pour K, associées d deux surfaces de Seifert connexes
de K. Soit weC, avec |o| =1 et o # 1. Alors:

deg(A4,) = deg(4,), et sign(4,) = sign(4,).

Bien siir, un entrelacs posséde toujours des surfaces de Seifert connexes.
Par le lemme 3, nous pouvons définir la dégénérescence et la signature de K
en o, que nous noterons: deg (K) et sign (K).
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Preuve du lemme 3. 1l suffit d’examiﬁer le passage de 4, a A, Or:

(1 —w)a, 0 .
i, = A,
(1 —w)a, 0
(I—-®)a, ... (1—-wa, 0 (1—w)
0....0 (1—®) 0
L o ]

Un calcul immédiat montre que le polyndme caractéristique de 4, est le produit
de celui de 4, par [x*—2(1 —Rew)]. Ce dernier a une racine positive et une
racine négative, ce qui acheve la preuve.

Remarque. Si® = —1, la signature que nous venons de définir n’est rien
d’autre que la signature de Murasugi dont nous avons parlé au § 5. Nous avons
vu que dans ce cas, la nullité et la dégénérescence sont reliées par 'égalite:

nul(K) = deg_ (K) + 1

(Ne pas oublier que nos surfaces de Seifert sont maintenant connexes).
Essentiellement pour ne pas rompre avec la tradition, introduisons un

nouvel invariant, la nullit¢ de K en o, définie par: nul (K) = deg,(K) + 1.
Les deux théorémes suivants sont essentiellement dus a A. Tristram [Tri].

THEOREME 1. Soit ® une racine p'-éme de 1, avec p premier. Soient
K et K’ deux entrelacs orientés concordants. Alors:

nul (K) = nul (K') et sign,(K) = sign,(K').

Attention! Le théoréme est faux si o n’est pas une racine p'-éme de 1 avec
p premier. Cest la raison pour laquelle A. Tristram n’envisage que des ® qui
sont des racines p-émes de 1, la généralisation & p' étant facile.

La définition d’une concordance (on dit aussi cobordisme) entre deux
entrelacs orienteés est la suivante:




PROBLEME DE MILNOR 213

Définition. Soient K° et K! deux entrelacs orientés, 4 r composantes.
Désignons par (— K?) I'entrelacs obtenu a partir de K 1 en changeant I'orien-
tation de chacune de ses composantes. Nous dirons que K O et K! sont concor-
dants, s’il existe un plongement différentiable ®: S, x [0, 1] — S3 x [0, 1], tel

que: (on rappelle que S, = | | S})
i=1

a) @ 1(S*x{0}) = S, x {0}

oY S*x {1}) = 8, x {1}
b) @[S, x {0} (resp.®|S, x {1})soitune paramétrisation de K° (resp.de K%).
c) le bord orienté de Im(®) soit K° x {0} | | (—K*') x {1}.

THEOREME 2. Soit V une surface de Murasugi pour lentrelacs orienté K.
Soit ® une racine p'-éme de 1, avec p premier. Alors:

| sign,(K) | + | nuly(K) — b,(V) | < 7 — b(V) + 29(V)

(Conformément a nos notations, introduites précédemment, r désigne le nombre
de composantes de K, et b, (V) désigne le nombre de composantes connexes
de V).

Remarque. Comme nul (K) — b, (V) < | nul(K) — b,(V) |, le théoréme 2
a pour conséquence l'inégalité | sign (K) | < r — nul (K) + 2g(V), quelle que
soit V.
Par conséquent, on obtient la formule plus commode:

ISlgnm(K)‘ ST — nulm(K) + zm(K) )

ou m(K) désigne le genre de Murasugi de K.

Notre but est d’utiliser cette derniére formule pour minorer le genre de
Murasugi des entrelacs de Hopf généralisés, que nous avons notés I'(r, d). Pour
obtenir des minorations qui ne dépendent que de d, nous allons utiliser un
autre résultat de Tristram que nous présentons maintenant.

Soit K un entrelacs orienté dans S, 4 r composantes: K |, ..., K,. Donnons-
nous également un plongement ¢:S' x [0,1] - S* d’un anneau tel que:
o(S'x {0}) = K, et 9" 1K) = S* x {0}.

Considérons 'anneau R = ¢(S* x [1/2, 1]). Orientons R et considérons le
bord orienté OR. Définissons K, comme étant I’entrelacs orienté K U 0R. Bien
sir, K, a (r+2) composantes. Soit K, ,, = ¢(S* x {1}).

SOlt h = I Z g(Kr+25 Kl)l = lg(Kr+27 K)‘
i=1
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| THEOREME 3. Soit ® une racine .s-éme de 1, avec s divisant n.
- Alors:
sign,(K) = sign,(K,) et nul,(K) = nul(K,) — 2.

Note. Dans le théoreme 3, s n’est pas nécessairement puissance d’un
 premier.

On peut donner une démonstration de ces trois théorémes en suivant les
indications données par A. Tristram lorsque ®” = 1. Voir [BW].

Nous allons maintenant appliquer les théorémes précédents aux entrelacs
de Hopf généralisés. Pour cela, nous avons besoin de savoir ce qui se passe
pour les entrelacs du tore. Le théoréme qui suit est cité tres souvent dans la
littérature, surtout en ce qui concerne la signature classique. Pour ce qui nous
intéresse, les références utiles sont: R. Litherland [Lit]; T. Matumoto [Ma].

THEOREME 4. Soit K(p,q) Ulentrelacs (orienté) du tore de type (p, q).
Soit x un nombreréel, 0 < x < 1, etsoit ® = exp(2./ —1nx). Notons:

ro: le nombre de couples d’entiers (i,j), avec 0 <i <p, 0<j<gq, ettels
j .
que — + d o x (mod 1);
P 4
; .
r_: le nombre de ces couples (i,j), telsque x — 1 < ; + J; < xmod 2;

. j .
r,: le nombre de ces couples (i,j) tels que x < 5 + é < x + 1 mod 2.
| Alors, nul (K(p, q)) = ro + 1 et sign(K(p,q) =r, —r_.

- Nous allons esquisser une preuve de ce théoréme en suivant T. Matu-
- moto [Ma]. La clé de la preuve est dans la proposition suivante.

| PROPOSITION. Soit K un entrelacs du tore, de fibre U et de forme de
- Seifert A. Alors, il existe une base de H,(U;Z) ® C telle que I'extension
- sesquilinéaire | de A a HU;Z)® C soit diagonale dans cette base.

‘ Voici quelques points de repéres.

1 Soit a un entier positif. On montre tout d’abord que I'extension sesqui-
linéaire de la forme de Seifert associée a la singularité z* = 0 se diagonalise.
| La matrice diagonale est: i

| o
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e

1—¢° 1!
1— (2 0
N, =a |
0
1.._ C—(a—l)
- —

ou{ = exp(2\/—1n/a).

On applique ensuite le théoréme de K. Sakamoto [Saa], pour en déduire
qu'une diagonalisation de A sera: N, @ N,. Pour plus de détails voir l'article
de Matumoto [Ma].

Dans la base correspondante, 4, aura pour élément diagonaux:

2 Re{(1—w) (1-(7H (1-C59)},
ou

G = exp2y/—1n/p), ;= exp2/—1njg) 1 Si<p—L1<j<q-1.
Pour calculer le signe de la partie réelle, on utilise ’égalité:
(1-x) = — 2\/—:'1(exp(\/——1nt)) sinmt ,
oux = exp(2./—1nt),0 <t < 1.

La suite des calculs est alors sans surprise.

Nous pouvons maintenant démontrer:

THEOREME 5. Soit I'(r,d) un entrelacs de Hopf généralisé. Alors, on a

m(T(r, d)) > d* 4_ 4

si d est pair. Si d est impair, soit d = p'd avec

2 N\ 2
p premier, alors: m(I(r, d)) > d 2 * (%) ,

Remarque. Tres grossierement, la borne ainsi obtenue, est la moitié de
celle donnée par la conjecture anonyme du § 2.
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Le théoreme 5 découle d’un calcul un peu long mais sans aucune difficulté
qui donne les signatures tordues des entrelacs I'(d, d), grace au théoréme 4.

On choisit ® = — 1 si d est pair, et © = exp[2\/—-ln(pi— 1)/2p'] si d est
impair et d = p'd’ avec p premier.

On applique ensuite les théorémes 2 et 3 pour étendre la minoration aux
entrelacs I'(r, d).

En appliquant 'argument classique de transversalité développé au § 2 nous

obtenons ainsi une preuve du théoréme de Rohlin et Hsiang-Szczarba, dans le
cas de CP?,

THEOREME ([Rh], [HS]). Soit F une surface différentiable, close, connexe,
orientable dans CP?. Supposons que F est de degré d. Alorsle genrede F

o dt =4 N e A
est au moins égal a: 5 si d est pair et d i 3 si d est

impair, d = p'd, avec p premier.
Note. Comme nous n’avons pas pris de précaution quant a 'orientation

globale des entrelacs, les calculs précédents montrent plutdot que la valeur
absolue des signatures est €gale au nombre indiqué.

§ 7. QUELQUES PROBLEMES LIES AU NOMBRE GORDIEN

Le but de ce paragraphe est de mentionner et de commenter quelques pro-
blémes liés au nombre gordien d’un entrelacs mais qui ne sont pas directement
rattachés aux problémes de R. Thom et de J. Milnor.

A-1) Dés quon définit un invariant des entrelacs, il est important de
connaitre son comportement par rapport a la somme connexe. Il est alors
naturel de posér la question suivante (cf. Knot theory, Proceedings Plans-sur-
Bex [Hau]): «le nombre gordien est-il additif pour la somme connexe:
c’est-a-dire a-t-on (K, # K,) = w(K;) + u(K,)? »

On vérifie aisément que: u(K,; # K,) < u(K,) + u(K,).

L’exemple de la figure 8, ou 'on considere la somme connexe du nceud de
tréfle droit avec le nceud de tréfle gauche, montre que le nombre gordien de
ce nceud, qui est 2 par I'inégalité de Wendt (cf. [QV]), peut-€tre atteint aussi
bien en dénouant chaque facteur de la somme connexe qu’en ne respectant pas
cette somme connexe.

2) Un cas particulier du probléme précédent a regu beaucoup d’attention
(cf. [Lic;], [GLa,]). Il reste toujours ouvert: «les entrelacs de nombre
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