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dimension 1 d’une surface de Seifert de genre minimal, et de la représentation
en tresses fermées positives des entrelacs algébriques.

Pour laffirmation 2, cest une conséquence facile de la définition 4 du
nombre gordien et du fait que: I'enlacement de deux cercles dans S? est égal
a l'intersection de deux chaines qu’ils bordent dans D*.

Application. Nous verrons au § 6 que la conjecture de Milnor est vraie
pour les neeuds du tore de type (2, n), (3, 4) et (3, 5). La proposition précédente
entraine, par exemple, que la conjecture de Milnor est vraie pour I’entrelacs
d’A’Campo, dont le nombre gordien est donc u = 6.

Plus facilement encore, la conjecture de Milnor est vraie pour I'entrelacs
de Hopf généralisé I'(d, d), associ¢ au point d-uple ordinaire (cf. § 1). Dans ce

dd—1)

cas u(I'(d, d)) = —

§ 5. RELATION ENTRE LE NOMBRE GORDIEN
ET D’AUTRES INVARIANTS DE LA THEORIE DES ENTRELACS

A. Nombre gordien et genre de Murasugi

Au § 1, nous avons défini le genre g d’une surface compacte orientable G

comme: g(G) = Z'g(a), ou les a désignent la surface close obtenue en collant

un disque de dimension 2 sur chaque composante de 0G; Le nombre g(_G_i)
désigne alors le genre usuel. Ceci est la fagon traditionnelle de procéder dans
ce type de situations et améne aux genres de Seifert et de Murasugi pour les
entrelacs dont nous avons parlé au § 2.

Références classiques: K. Murasugi [Mu]; A. Tristam [Tri].

Cependant dans le cas des entrelacs a plusieurs composantes, cette définition
n’est pas toujours la plus pratique. Par exemple un entrelacs de genre zéro
n’est pas nécessairement trivial.

De méme, le genre de Murasugi traditionnel des entrelacs se compare mal
avec le nombre gordien. C’est pourquoi nous introduisons un nouvel invariant
que nous proposons d’appeler le grand genre (car il majore le genre habituel).

Soit donc, a nouveau, G une surface compacte, orientable. G n’est pas
nécessairement connexe et son bord a, disons, r composantes connexes.

Désignons par P, la surface plane connexe, dont le bord a r composantes
connexes. Il y a une fagon essentiellement unique d’identifier le bord de G et
le bord de P, pour obtenir une surface close, orientable G. La surface G est
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connexe si et seulement si G n’a pas de composante connexe close. Alors, par
définition, le grand genre de G, noté t(G) est: t(G) = genre usuel de G.

Remarques. 1) Le grand genre d’un anneau est 1, alors que son genre
traditionnel est zéro. Plus généralement #(P,) = r — 1.

2) Une surface est de grand genre nul si et seulement si c’est une union
disjointe de spheres et de disques.

Le lien entre genre et grand genre est donné par le lemme facile suivant,
ou by(G) désigne le nombre de composantes connexes de G.

LEMME. #(G) = g(G) + (r — by(G)).

Le grand genre est un invariant utile dans certaines circonstances. Par
exemple, revenons a la situation du § 1:

Soit f:(C? 0) - (C, 0) une application polynomiale ayant O pour singu-
larité isolée. Pour t non nul, suffisamment petit, considérons X = f~(t) n D,
ou D est une boule de Milnor. Abstraitement X est la « fibre de Milnor » de
I'entrelacs algébrique associé a f.

LEMME. Le nombre & attaché a la singularité est égal au grand genre de
la fibre de Milnor.

La démonstration résulte d’'un calcul immeédiat sur ’homologie des surfaces
en question.

Soit maintenant K un entrelacs orienté dans S°. On peut définir son grand
genre de Seifert et son grand genre de Murasugi, en prenant le minimum des
grands genres des surfaces de Seifert pour K (respectivement des surfaces de
Murasugi pour K).

L’économie de vocabulaire qui résulte de ces définitions nous parait assez
importante. Par exemple un entrelacs est trivial si et seulement si son grand
genre de Seifert est nul. Un entrelacs est fortement cobordant a zéro (au sens
de A. Tristam ou K. Murasugi) si et seulement si son grand genre de Murasugi
est nul.

Notations: S(K) pour le grand genre de Seifert de K.
M(K) pour le grand genre de Murasugi de K.
Avec cette notation, la conjecture anonyme du § 2 (voir aussi [Kir, pb. 1.40])
s’énonce: pour tout entrelacs algébrique K, on a M(K) = &(K).
Bien sir, dans le cas des nceuds (entrelacs connexes) il n’y a pas de différence
entre genre et grand genre.
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La proposition suivante donne un lien entre le grand genre de Murasugi
et le nombre gordien.

PROPOSITION. Soit K un entrelacs non orienté dans S> de nombre
gordien u. Alors, quelle que soit lorientation de K, on a: M(K) < u(K).

Preute de la proposition. Nous allons utiliser la définition 4 du nombre
gordien. Par hypothése, il existe une immersion différentiable

G:D, = | | D} - D*,

r
i=1

propre, telle que G~ Y(S3) = S, et G| S, est une paramétrisation orientee de K.
De plus les seules singularités de G sont des points doubles genériques en
quantité u. (Nous n’avons pas besoin du comportement de Morse de p < G.)

Placons-nous en un point double de G. Par définition de « générique », il
existe une petite boule B* au voisinage du point double telle que B* N Im G
soit difféfomorphe a lintersection de la boule unité dans R* avec deux plans
réels en position générale.

Par conséquent, ¢B* n Im G est un entrelacs de Hopf a deux composantes,
orienté. Cet entrelacs borde dans ¢B*, de fagon orientée, un anneau.

Enlevons de Im G, l'intersection B* n Im G et mettons a sa place I'anneau
dont nous venons de parler. Effectuons cette opération a chaque point double.
Nous obtenons ainsi une surface ¥ qui est une surface de Murasugi pour K.

Abstraitement, ¥ est obtenue a partir de D, en enlevant 2u petits disques
dans D, et en collant u anneaux. Quelle que soit la fagon dont on procéde le
grand genre de V est toujours le méme et est égal a u. (Tandis que le genre
usuel dépend de la fagon dont on procede.)

Pour vérifier ce dernier point, on peut remarquer que V est, par
construction, obtenue a partirde D, U P, = S?en recollant u anneaux orientés.

é

Cect acheve la démonstration de la proposition.

Nous insérons maintenant une petite parenthése. En prenant un peu de
soin en recollant ’'anneau, on peut s’arranger pour que la surface ¥ que 1'on
obtient soit « ribbon », cest-a-dire telle que p| ¥V — R, ne posseéde pas de
minimum local.

Si on désigne alors par M'(K) le grand genre de Murasugi pour les surfaces
qui sont « ribbon », on a donc en fait: M'(K) < w(K).

D’autre part, I'interpretation de 8 en termes de points doubles proches que

nous avons donnee au § 4 montre que pour un entrelacs algébrique, on a aussi:
M'(K) < o(K). Voir [Ru].
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Malheureusement il est trés difficile d’utiliser cette information supplé-
mentaire de fagon pertinente. Peut-étre un lecteur avisé le pourra-t-i? Nous
achevons la la parenthese.

Pour comparer le nombre gordien avec le genre de Murasugi traditionnel,
on peut utiliser le lemme du début du paragraphe. Cependant, il y a en principe
une ambiguité, car on ignore a priori le nombre de composantes connexes de
la surface V' que 'on a construite. I1 y a toutefois un cas ou I'on peut s’en tirer
facilement :

Soit K un entrelacs a r composantes. Associons a K un graphe I'(K) de la
fagon suivante:

i) Les sommets de I'(K) sont en bijection avec les composantes de K.

i) Une aréte relie le sommet K; au sommet K, i # j, si et seulement si

Z(K; K;) # 0.

Il est clair que, si I'(K) est connexe, la surface ¥ de Murasugi associée a
une immersion de dénouement G, comme dans la preuve de la proposition pré-
cédente, est toujours connexe. (On utilise le principe du calcul des enlacements
dans S3 par des intersections dans D*). Par conséquent:

PROPOSITION. Soit K un entrelacs a r composantes, tel que T'(K) soit
connexe. Alors, quelle que soit lorientation de K:m(K) + (r—1) < u(K).

Rappelons que pour un entrelacs algébrique, le coefficient d’enlacement
entre deux composantes n’est jamais nul. De sorte que la proposition précé-
dente s’applique aux entrelacs algébriques.

B. La conjecture de Thom implique la conjecture de Milnor.

THEOREME (classique).  Si la conjecture de Thom est vraie, alors la conjecture
de Milnor est vraie. '

Preuve. Nous venons de montrer que 'on a toujours: M(K) < u(K).-

Le théoréme de Pinkham dit que, pour un entrelacs algébrique: u(K)
< O(K).

Finalement, la conjecture de Thom implique que, pour les entrelacs alge-
briques: M(K) = §(K). D’ou le résultat.

C. Nombre gordien et homotopies d’entrelacs.

Pour ce qui nous concerne, nous prendrons pour définition d’une homo-
topie entre deux entrelacs ce qui suit.
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Soient K et L deux entrelacs non orientés dans S°. On dira que K et L
sont homotopes si on peut passer de K a L en effectuant sur K un nombre
fini d’échanges élémentaires de telle fagon que, lors de chaque échange, les deux
brins appartiennent a la méme composante.

Il n’est pas difficile de voir que cette définition est équivalente a la défi-
nition traditionnelle. Mais il est clair qu’elle se préte mieux a I’étude du nombre
gordien.

Références (pour la définition traditionnelle): J. Hillman [Hi]; J. Milnor
[Mi,].

Un entrelacs est, par définition, homotopiquement trivial, s’il est homotope
a un entrelacs trivial.

L’exemple standard d’un entrelacs non trivial et pourtant homotopi-
quement trivial est 'entrelacs de J. H. C. Whitehead (Fig. 3).

FIGURE 3

Ceci suggére la définition suivante (F. Michel):

Soit L un entrelacs non orienté dans S*. Le nombre gordien homotopique
de L est le nombre minimum d’échanges élémentaires simultanés qu’il faut
effectuer pour transformer L en un entrelacs homotopiquement trivial. On exige
que lors de chaque échange, les deux brins appartiennent a deux composantes
distinctes.

Nous noterons le nombre gordien homotopique de K (homotopy un-
knotting number of K) par hu(K).

La proposition suivante n’est pas difficile.

PROPOSITION. Soit K un entrelacs non orienté & r branches
K, K,, ., K, Alors:

a) K) > > | LK, Kj|.

1i<j<r

b) u(K) > hu(K) + 3 u(K).

i=1
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Notes. 1) L’entrelacs de Whitehead montre que I'inégalité b peut trés bien
étre stricte. '

2) Cette proposition est une version un peu plus forte de I'affirmation 2
que nous avons utilisée au § 4.

Preuve de la proposition. Pour a), c’est encore une fois une conséquence
du principe que « I’enlacement sur le bord est égal a I'intersection a 'intérieur ».

Pour b), nous utilisons le fait que 'on peut effectuer les échanges élé-
mentaires a l'instant ou I'on veut. Voir [BW].

Soit donc G: D, .»~ S x R, une immersion selon la définition 4. Nous
pouvons supposer :

1
1) > e R, n’est I'image par p d’aucun point double.

. : : : 1
i1) si Q est un point double de I'immersion G tel que p(Q) < > alors Q est un

point d’intersection entre deux disques différents, tandis que

1
11) si Q est un point double tel que p(Q) > > alors Q est un point double

faisant intervenir deux points d’'un méme disque.

1 1
Alors p~! (5) c S x {5} est un entrelacs homotopiquement trivial, et la

conclusion suit immédiatement.

L’étude du gordien homotopique semble une question intéressante. Voici
quelques premiers jalons.

1. Soit K un entrelacs a deux composantes K; et K,. Alors hu(K)
= | LK, K)) . |

Cette égalité est une petite généralisation d’un théoréme de J. Milnor, qui
affirme qu’un entrelacs a deux composantes et de coefficient d’enlacement nul
est homotopiquement trivial. Il est facile de s’y ramener, ou de la démontrer
directement.

Référence : J. Milnor [Mi;].
2. Pour les entrelacs avec r > 3 composantes, on peut trés bien avoir une
inégalité stricte: hu(K) > ) | L(K;, K))|.
i<j |
Par exemple, I’entrelacs des Borromées est tel que £(K;, K;) = 0sii # j,
et pourtant il n’est pas homotopiquement trivial. (Pour les Borromées

u=hu=2).
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3. Milnor montre que l'entrelacs des Borromées n’est pas homotopi-
quement trivial en utilisant son invariant p. (Ce n’est pas celui des singula-
rités, mais celui qui est défini dans [Mi;] et dans [Mi,]).

Question. Y a-t-il une connection entre les invariants que Milnor introduit
dans les articles en question et le gordien homotopique des entrelacs?

D. Genre de Murasugi et signature.

Le genre de Murasugi est un invariant tres difficile a calculer. En fait il y
a peu de nceuds ou entrelacs pour lesquels on connaisse sa valeur exacte. Dans
ce contexte, la signature donne une minoration utile, car calculable en principe.
Hélas, cette minoration n’est en général pas décisive.

Nous rappelons maintenant de quoi il s’agit, en signalant au lecteur que
nous reviendrons plus en détails sur cette question au § 6 dans le cadre des
signatures de J. Levine et A. Tristram.

Références: K. Murasugi [Mu]; L. Kauffman et L. Taylor [KT].

Soit K un entrelacs orienté dans S et soit V une surface de Murasugi
de K.

Considérons le revétement a 2 feuilles Y, de D*, ramifié sur V. Y, est une
variéte de dimension 4, compacte, connexe, orientée (par la projection sur D#).
Elle a un bord qui est le revétement a 2 feuilles de S3, ramifié sur K.

On considere alors la forme d’intersection sur H,(Y; ; Q). Cette forme est
Q-bilinéaire, symétrique. Elle peut trés bien étre dégénérée, car 4Y est non vide.
Elle a néanmoins une signature.

On montre (cf. Kauffman-Taylor [KT]) que cette signature ne dépend que
de K et pas du choix de la surface de Murasugi V. Notons la o(K).

Il y a plusieurs fagons de calculer explicitement o(K). Pour la théorie
générale, voir Gordon-Litherland [GoL]. Rappelons en particulier que si A
est la forme de Seifert associée a une surface de Seifert U de K, alors
(A+A%) ® Q est la forme d’intersection de Y. (4* désigne la transposée
de A).

On a alors le théoréme suivant, di a K. Murasugi [Mu]. Pour une démons-

tration plus moderne voir Kauffman-Taylor [KT]. Voir aussi le théoréme 2
du § 6.

THEOREME. Soit K un entrelacs orienté a r composantes dans S3.
Alors: | o(K)| < 2m(K) + r — nul(K).

Ici, nul(K) désigne la « nullit¢ de Murasugi » de K par opposition a la
nullité¢ d’Alexander, qui est un concept différent ; voir le livre de J. Hillman [Hi].
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Rappelons que par définition nul(K) = 1 + ¢;, ou g, est le premier nombre
- de Betti rationnel du revétement a 2 feuilles de S° ramifié sur K.
On a les renseignements suivants sur la nullité:

PROPOSITION.  Soit K un entrelacs orienté a r composantes dans S3.
Alors :
a) nul(K) <r

b) si A est la forme de Seifert associée a une surface de Seifert U de K:
nul(K) = dimg(radical de (4+A*)®Q) + bo(U), o bo(U) désigne le
nombre de composantes connexes de U.

COROLLAIRE. Pour un neud (r=1), | o(K)| < 2m(K).

Application de la formule de Murasugi.

Il y a une formule qui donne la signature des entrelacs du tore (cf. § 6).
Cette formule et la formule de Murasugi, appliquées aux entrelacs algé-
briques K associés aux singularités X* — Y® = 0, montrent que 'on a M(K) '
= O(K) lorsque: |
1) (a,b) = (2,n), n > 1 (résultat connu de Murasugi [Mu]);
‘ 1) (a, b) = (3,3) ou (3,4) ou (3,5) ou (3,6) ou (4,4).

Ce sont les seuls entrelacs algébriques pour lesquels la conjecture anonyme
~ est connue. Par conséquent la conjecture de Milnor est vraie pour ces entrelacs
algébriques.

Rappelons finalement que la signature croit tres lentement par satellisation,
- de sorte que les formules précédentes donnent de mauvaises minorations pour
les branches a plusieurs paires de Puiseux.

Référence: Y. Shinohara [Shi].

E. Nombre gordien et revétements cycliques infinis.

Pour un entrelacs orienté K, on a: M(K) < u(K) et M(K) < S(K). 11 est
donc assez naturel de se demander s’il existe une relation entre le nombre
gordien K et le grand genre de Seifert de K. .

Au vu des exemples que nous présentons dans la partie F de ce paragraphe,
nous pensons qu’il n’y en a pas, méme pour les entrelacs fibrés.

Tout d’abord on a les théoremes suivants: Q



PROBLEME DE MILNOR 201

TutorEME (H. Kondo). Soit P(t) un polynéme d coefficients entiers, de
degré 2h, tel que P(1) = + 1 et P(t) = t*"P(t™"). Alors il existe un
neud K, de nombre gordien 1, de genre de Seifert h, ayant P(t) pour
polynome d’ Alexander.

Référence : H. Kondo [Ko].

TutoreME (T. C. V. Quach). Soit P(t) un polynéme comme dans le
théoréme précédent et tel que, en plus, P(0) = + 1. Alors il existe un neud
fibré satisfaisant les mémes conditions que celles du théoréme précédent.

Référence: T. C. V. Quach [Qa].

Note. Ces théorémes montrent que la situation est plus complexe que le
probleme 1.4 de la liste de R. Kirby [Ki] ne laisse supposer.

Nous donnerons dans la partie F des exemples de nceuds rationnels fibrés
de gordien 1 et de genre arbitraire (voir aussi Y. Nakanishi [Na]).

Hélas il est plus difficile de trouver des nceuds de petit genre et de grand
nombre gordien, car on tombe & nouveau sur le probléme de la minoration
du nombre gordien.

Dans cette direction, la meilleure minoration connue est toujours celle de
H. Wendt que nous allons décrire maintenant d’une fagon un peu différente
de la sienne. Cette minoration se généralise facilement aux cas des entrelacs.
Pour cela nous avons besoin de rappeler quelques notions classiques.

Si K est un entrelacs orienté 4 r composantes dans S3, il existe un homo-
morphisme surjectif unique [: 7,(S*—K) — Z, qui envoie chaque méridien
orienté de K sur 1. (Un meéridien m; de K est orienté par £(m;, K;) = §;; ou
les K; sont les composantes de K).

Deésignons par E(K) l'espace total du revétement cyclique infini du
complément de K dans S*, associé au noyau de I. On peut identifier le groupe
de Galois du revétement avec le groupe cyclique infini 7, noté multiplicati-
vement T = {t'};.z.

Le groupe d’homologie H(E(K); Z) est de fagon naturelle un module sur
le groupe de Galois, donc un Z T-module.

THEOREME. Soit K un entrelacs orienté d r composantes dans S3, et
de nombre gordien u. Alors le ZT-module H,(E(K);Z) peut étre engendré
par u + r — 1 éléments.

Note. Danslecas d’unneeud (r=1), H,(E(K); Z) est le module d’Alexander
de K, et ce théoréme est alors implicite dans Iarticle de H. Wendt et également
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chez D. Rolfsen. Drailleurs, dans ce cas 1a, il a été remarqué par beaucoup de
monde, par exemple par Y. Nakanishi.

- Références: H. Wendt [We]; D. Rolfsen [Ro, ], [Ro,]; Y. Nakanishi [Na].

Désignons par e(K) le nombre minimum de générateurs du ZT-module
H,(E(K); Z). Nous avons donc:

COROLLAIRE 1. e(K) < u(K) +r — 1.

Nous appellerons cette inégalité, I'inégalité de Wendt. (Rappelons que e(K)
dépend de I'orientation de K, tandis que u(K) en est indépendant).

COROLLAIRE 2. Le module d’ Alexander d'un neud (r=1) de nombre
gordien 1 est monogene.

Commentaires. 1) On voit que la question de I’étude algébrique du module
d’Alexander des nceuds (et plus généralement des modules H,(E(K) ; Z) dans le
cas des entrelacs) a un certain intérét en ce qui concerne le nombre gordien.
Toute méthode permettant d’évaluer ¢(K) sera la bienvenue. La théorie des
idéaux élémentaires permet de trouver certaines minorations.

2) Une méthode classique, due originalement a H. Seifert, permet de trouver
une présentation du module d’Alexander & partir d’'une matrice de Seifert du
nceud. Un petit examen de cette méthode (cf. par exemple [Sei]) montre que
e(K) < 2s(K), lorsque K est un nceud. Par conséquent, la minoration de Wendt
ne peut dépasser deux fois le genre de Seifert dans le cas d’un nceeud.

Preuve du théoreme. Nous allons en donner une basée sur la notion de
description chirurgicale d’un entrelacs, due a D. Rolfsen [Ro;]. De fait, dans
le cas des nceuds (r=1), la démonstration qui suit est implicite dans I’article
de Rolfsen [Ro,].

Reprenons la définition 1 du nombre gordien. (La définition 2 ferait aussi
'affaire).

K est un entrelacs orienté a r composantes. Considérons une bonne pro-
jection de K et un processus de dénouement de K, basé sur cette projection.
Envisageons un point double de la projection, qui va changer de signe au cours
du processus. Sans tenir compte des signes, la projection est localement :
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FIGURE 4

Les orientations des brins proviennent de I'orientation de I'entrelacs.

Considérons le segment de droite dessiné en pointillé sur la figure de droite.
« Au-dessus » de ce segment se trouve un plan dans R>. 11 est facile de des-
siner un disque A dans ce plan, ayant la propriété que A n K = A n K consiste
en exactement deux points, chacun d’eux étant donné par l'intersection d’un
des deux brins avec A.

Hlustration :

FIGURE 5
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Soit I' = OA. T est un cercle non noué dans S3, ne rencontrant pas K, et
le nombre d’enlacement de I" avec K est nul (grace a la position choisie du
plan par rapport aux brins orientés).

Soit N un voisinage tubulaire de I dans S>, suffisamment petit pour ne
pas rencontrer K. N est un tore plein et comme I” est non noué, S3 — N est
aussi un tore plein W. Un disque méridien de W est précisément le disque A,
un peu rétréci.

Effectuons un twist de Dehn t dans W, concentré au voisinage de A. Pour
cela, choisissons un petit voisinage A x [—1, +1] de A dans W. (Nous choi-
sissons une identification). Alors, par définition t(x, t) = (e“* V" x, 1), avec
(x,t)e A x [—1, 1], A étant identifié¢ au disque unité dans C. Le twist T se pro-
longe par l'identité en un automorphisme de W, mais, attention, il ne se
prolonge pas en un automorphisme de S°.

Comme K est dans W, on peut considérer 1(K). Alors, a isotopie pres, Y(K)
aura méme projection que K. Tous les points doubles auront méme signe, sauf
celui que nous considérons, qui, lui, a changé de signe.

Précaution : Cette derniére affirmation dépend de la fagon dont on identifie
A x [—1,1] a un voisinage de A dans W. Ce qui compte est la normale au
plan qui contient A, qu’il faut orienter convenablement. Sur I'illustration pré-
cédente, I'orientation de la normale part de I’eil du spectateur pour tra-
verser A.

Supposons mainterant que le processus de dénouement associ¢ a la bonne
projection, que nous avons choisie pour K, fasse intervenir u changements de
signes aux points doubles.

Nous choisissons u petits tores pleins N, ..., N, selon la méthode que nous
venons d’indiquer. La composition des twists T, T, o ... T,, ou T; est le twist

u u

sur W, est bien définie sur Y = n W, = S — U N;; notons la t. L’ordre

i
i=1 i=1

de la composition importe peu car les supports des t; sont disjoints. Posons

N=0UN,
i=1

Par définition d’'un processus de dénouement, t: Y — Y est un difféeomor-
phisme qui envoie K sur Pentrelacs trivial T, dans S>.

D’autre part, Y — K = S — (NUK) est diffeomorphe par ta 1(Y) — 1K)
= S — (NUT,).

On passe de S° — (NUK) 4 S? — K en ajoutant des 2-cellules et des 3-cel-
lules. (On remplit les tores pleins Ny, ..., N,).




PROBLEME DE MILNOR 205

Sip: E(K) - S* — K estla projection du revétement infini cyclique, associé
4 I'homomorphisme d’enlacement total [, posons: Z = p~}(S*—(NUK))
=p 1(Y—K).

On passe de Z a E(K) en ajoutant des 2-cellules et des 3-cellules car la res-
triction p | : p~{(N) — N est un revétement trivial (produit), puisque le nombre
d’enlacement de chaque tore plein”N; avec K est nul. Donc le nombre de géne-
rateurs du ZT-module H,(Z; Z) majore celui de H,(E(K); Z). Nous allons
estimer le nombre de générateurs du ZT-module H,(Z; Z).

Pour cela observons que le revétement cyclique infini, E(7;) associé a 'homo-
morphisme d’enlacement total, de I'entrelacs trivial T,, est difffomorphe a la
somme connexe d'un nombre infini de copies de l'intérieur d’'un corps avec
(r— 1) anses. Chaque copie est indexée par un élément de Z, et le geénerateur
du groupe de Galois T est la transformation qui envoie la copie d’indice i sur
celle d’indice i + 1. En particulier, en tant que ZT-module, H,(E(T;); Z) est
de rang r — 1.

Soit ¢: E(T)) —» S* — t©(K) la projection de revétement et soit

Z' = ¢ ($*=(Nut(K)) = ¢~ '(x(Y—K)).

Pourun pull-backdet,Z = p~ (Y —K)etZ' = g~ *(t(Y —K)) sont Galois-"
équivalents. Les ZT-modules H,(Z; Z) et H,(Z'; Z) sont donc isomorphes.

Il est facile de voir que H(Z'; Z) est engendre par u + r — 1 ¢léments
comme module sur ZT, car Z' = E(T,) — g~ '(N), ou H(E(T;); Z) est de rang
r — 1 en tant que ZT-module, et la restriction g|:q '(N) - N est un
revétement trivial de « groupe de Galois » T, puisque le nombre d’enlacement
de chaque tore plein N; avec ©(K) = T, est nul.

Remarque. Nous n’avons utilisé que la partie la plus facile de la méthode
de D. Rolfsen. Dans le cas des nceuds (r=1), en poussant ’analyse plus loin il
montre comment on peut, en principe, trouver une présentation du module
d’Alexander.

En fait, les énoncés de H. Wendt portent sur ’homologie des revétements
ramifiés cycliques finis, plutdt que sur celle des revétements cycliques infinis.
Nous allons nous y ramener par une méthode dont le principe était déja connu
de H. Seifert dans le cas des nceuds.

Notations. Soit K un entrelacs orienté a r composantes dans S°. Nous
désignerons par E,(K) I'espace total du revétement cyclique a n feuilles de S3,

ramifié sur K. Rappelons que, s1 r > 2, le type topologique de E, (K) dépend
de 'orientation de K (deés que n>3).
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Le groupe d’homologie H,(E,(K); Z) est un module sur ZT. M. Sakuma
[Sak] a démontré le théoréme suivant, bien connu dans le cas des nceuds (r =1,
cf. [Gor)).

THEOREME. H(E(K);Z) est isomorphe comme ZT-module a
Coker {1 + t + .. + t""': H,(E(K); Z) - H,(E(K); Z)} .

Références: M. Sakuma [Sak].
Nous obtenons alors ’énoncé traditionnel du théoréme de H. Wendt, ou
e,(K) désigne le nombre minimum de générateurs du groupe abélien

H\(EKK,);Z).

THEOREME (H. Wendt). Soit K un entrelacs orienté d r composantes
dans S Alors: e (K) < (n—1)(u(K)+r—1).

COROLLAIRE. &,(K) < u(K) +r — 1.

Commentaires.

1) Souvenons-nous que, pour un neeud K(r=1), e,(K) < 2s(K).

La méthode de Wendt permet de trouver (ce qu’il a fait, cf. [ We]) des nceuds
de nombre gordien w(K) = 2s(K). Nous en donnons des exemples dans la
partie G de ce paragraphe. Bien que les candidats abondent, il semble bien
que pour l'instant, il n’existe aucun nceud pour lequel on sache montrer que
u(K) > 2s(K).

2) Les majorations plus fines de e,(K), obtenues par S. Kinoshita dans le
cas des nceuds, montrent que le théoreme de Wendt fournit souvent une mino-
ration trés faible du nombre gordien u(K).

Références: S. Kinoshita [Kin, ], [Kin,].

F. Exemples: nombre gordien et grand genre de Seifert d’'un entrelacs.

Considérons les entrelacs algébriques ou, plus généralement les tresses posi-
tives fermées orientées, munies de l'orientation naturelle. Ces entrelacs sont
tous fibrés. Nous avons vu au § 4 que leur grand genre de Seifert est supé-
rieur ou égal au nombre gordien. Cette remarque a conduit A. Durfee a poser
la question suivante: « a-t-on u(K) < s(K) pour tout nceud fibré K? »

Le but des exemples que nous présentons ici est de donner une réponse
négative a la premiére question de A. Durfee. En fait, nous conjecturons qu’en
général il n’y a aucun rapport entre ces deux invariants, et qu’étant donnés
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deux entiers positifs u et s arbitraires (s> 2), il existe un nceud fibré de nombre
gordien u et de genre s.

Par exemple, il est facile de construire des nceuds fibrés de gordien 1 et de
genre de Seifert s arbitrairement grand (cf. [Na]): il suffit de considérer le
nceud & 2 ponts associé au plombage de 2s bandes paires, suivant:

2 2 2 -2 -2 —2

o—©0 ... 0 ® e ... 0.

(Voir aussi les nceuds construits par T. C. V. Quach [Qa]).

Par contre nous ne connaissons aucun exemple de nceuds (fibrés ou non)
de genre 1 et de gordien arbitrairement grand. Les candidats ne manquent pas
(cf. § 7, B-5); manquent les invariants pour minorer le nombre gordien.

Voici des exemples qui répondent négativement a la question de A. Durfee:

Soit I'entrelacs de bretzel K, = K(—1, 3, ..., 3), qui est le bord de la surface
constituée de deux disques reliés par (n+ 1) bandes tordues, et orienté comme
sur la figure 6.

////////////// Y
- 73 /3

@///// 77/7777 ' //////77)

FIGURE 6

Cet entrelacs fibre pour l'orientation donnée, et la surface fibre F, est la
surface plate hachurée, car cet entrelacs orienté s’obtient 4 partir de entrelacs
fibré torique (2, n+ 1) par n twists de Stallings [St,] (cf. T. C. V. Quach [Qa];
voir aussi T. Kanenobu [Ka] pour une preuve algébrique).

1
OnaS(K,) = [’Hz_

montre que u(K,) > n — 2. Pour des détails, voir [BW].

} et une application immédiate de 'inégalité de Wendt

Commentaires. 1) Dans le cas ou n est pair, n = 2p, K,, est un nceud
fibre. Alors S(K,,) = s(K,,) = pet w(K,,) = 2p — 1. Ceci donne une réponse
neégative & la premiére question de Durfee dés que p > 2.

2) Dans le cas ou n est impair,n = 2p + 1, K,,+ . est un entrelacs orienté
a 2 composantes, et pour l'orientation donnée S(K 2p+1) = p + 1. En utilisant
le § 5-c, on montre que uK,,+1) = 3p + 1
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G. Les exemples de H. Wend:t.

L’idée de comparer le nombre gordien d’un nceud avec son genre de Seifert
est dé¢ja dans larticle original de H. Wendt [We]. En fait Wendt avait exhibé
des neeuds K (non fibrés!) de genre de Seifert s(K) et de gordien u(K)
> 2s(K) (par exemple le nceud 9,5 dans la tabulation de Reidemester [Re]).

Nous donnons ici une généralisation des exemples de Wendt. Notons
K,,+1,9 = 1,le nceud de bretzel K(3, 3, ..., 3), qui est le bord de la surface cons-
tituee de deux disques reliés par 2q + 1 bandes tordues, et qui est représenté

‘sur la figure 7.

[ 111 [[1]]// 11117/
L/%___ ° Y (/-)/ f}
i J7 ////////////5

FIGURE 7

D’apreés T. Kanenobu [Ka] (voir aussi [Qa]), ce neud n’est jamais fibre.
On a:u(Ky4q) = 2q = 28(K 24+ 1)-

§ 6. SIGNATURES

Historiquement, a notre connaissance, deux voies ont été suivies par les
topologues pour essayer de démontrer la conjecture de Thom.

La premiére consiste a utiliser ce que nous avons explique aux § 1 et 2:
minorer le mieux possible le genre de Murasugi des entrelacs de Hopf géné-
ralisés. Nous avons vu au § 5 que la signature de 'entrelacs donne une pre-
miére minoration. Une difficulté de cette approche est que la signature dépend
en principe aussi bien de d que de r. L’introduction des signatures « tordues »
et le théoréme 3 ci-apres, dus a A. Tristram, permettent d’obtenir des mino-
rations qui ne dépendent que de d.

Référence : A. Tristram [Tri].
Ces signatures ont aussi €té introduites par J. Levine dans le cas des nceuds,

a la fin de son artlcle sur le cobordisme, dans un but différent de celui de

Tristram.
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