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dimension 1 d'une surface de Seifert de genre minimal, et de la représentation

en tresses fermées positives des entrelacs algébriques.

Pour l'affirmation 2, c'est une conséquence facile de la définition 4 du

nombre gordien et du fait que: l'enlacement de deux cercles dans S3 est égal

à l'intersection de deux chaînes qu'ils bordent dans D4.

Application. Nous verrons au § 6 que la conjecture de Milnor est vraie

pour les nœuds du tore de type (2, ri), (3, 4) et (3, 5). La proposition précédente

entraîne, par exemple, que la conjecture de Milnor est vraie pour 1 entrelacs

d'A'Campo, dont le nombre gordien est donc u 6.

Plus facilement encore, la conjecture de Milnor est vraie pour l'entrelacs

de Hopf généralisé T{d, d), associé au point ù-uple ordinaire (cf. § 1). Dans ce

(T<A M-l)
cas u(r(d, d)) —j—

§ 5. Relation entre le nombre gordien
ET D'AUTRES INVARIANTS DE LA THEORIE DES ENTRELACS

A. Nombre gordien et genre de Murasugi

Au § 1, nous avons défini le genre g d'une surface compacte orientable G

comme: g(G) £ giGf où les Gt désignent la surface close obtenue en collant
i

un disque de dimension 2 sur chaque composante de dGt. Le nombre g{Gi)

désigne alors le genre usuel. Ceci est la façon traditionnelle de procéder dans

ce type de situations et amène aux genres de Seifert et de Murasugi pour les

entrelacs dont nous avons parlé au § 2.

Références classiques: K. Murasugi [Mu]; A. Tristam [Tri].
Cependant dans le cas des entrelacs à plusieurs composantes, cette définition

n'est pas toujours la plus pratique. Par exemple un entrelacs de genre zéro

n'est pas nécessairement trivial.
De même, le genre de Murasugi traditionnel des entrelacs se compare mal

avec le nombre gordien. C'est pourquoi nous introduisons un nouvel invariant

que nous proposons d'appeler le grand genre (car il majore le genre habituel).
Soit donc, à nouveau, G une surface compacte, orientable. G n'est pas

nécessairement connexe et son bord a, disons, r composantes connexes.

Désignons par Pr la surface plane connexe, dont le bord a r composantes
connexes. Il y a une façon essentiellement unique d'identifier le bord de G et
le bord de Pr pour obtenir une surface close, orientable G. La surface G est
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connexe si et seulement si G n'a pas de composante connexe close. Alors, par
définition, le grand genre de G, noté t(G) est : t(G) genre usuel de G.

Remarques. 1) Le grand genre d'un anneau est 1, alors que son genre
traditionnel est zéro. Plus généralement t(Pr) r — 1.

2) Une surface est de grand genre nul si et seulement si c'est une union
disjointe de sphères et de disques.

Le lien entre genre et grand genre est donné par le lemme facile suivant,
où b0{G) désigne le nombre de composantes connexes de G.

Lemme. t(G) g(G) + (r - b0(G)).

Le grand genre est un invariant utile dans certaines circonstances. Par

exemple, revenons à la situation du § 1 :

Soit / : (C2, 0) - (C, 0) une application polynomiale ayant 0 pour singularité

isolée. Pour t non nul, suffisamment petit, considérons X /" 1(t) n D,

où D est une boule de Milnor. Abstraitement X est la « fibre de Milnor » de

l'entrelacs algébrique associé à fi

Lemme. Le nombre 5 attaché à la singularité est égal au grand genre de

la fibre de Milnor.

La démonstration résulte d'un calcul immédiat sur l'homologie des surfaces

en question.
Soit maintenant K un entrelacs orienté dans S3. On peut définir son grand

genre de Seifert et son grand genre de Murasugi, en prenant le minimum des

grands genres des surfaces de Seifert pour K (respectivement des surfaces de

Murasugi pour K).
L'économie de vocabulaire qui résulte de ces définitions nous paraît assez

importante. Par exemple un entrelacs est trivial si et seulement si son grand

genre de Seifert est nul. Un entrelacs est fortement cobordant à zéro (au sens

de A. Tristam ou K. Murasugi) si et seulement si son grand genre de Murasugi
est nul.

Notations : S(K) pour le grand genre de Seifert de K.

M(K) pour le grand genre de Murasugi de K.

Avec cette notation, la conjecture anonyme du § 2 (voir aussi [Kir, pb. 1.40])

s'énonce : pour tout entrelacs algébrique K, on a M(K) b(K).
Bien sûr, dans le cas des nœuds (entrelacs connexes) il n'y a pas de différence

entre genre et grand genre.
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La proposition suivante donne un lien entre le grand genre de Murasugi

et le nombre gordien.

Proposition. Soit K un entrelacs non orienté dans S3 de nombre

gordien u. Alors, quelle que soit l'orientation de K, on a: M{K) ^ u(K).

Preuve de la proposition. Nous allons utiliser la définition 4 du nombre

gordien. Par hypothèse, il existe une immersion différentiable

G : Dr _\±Df ^D4,
i 1

propre, telle que G_1(S3) Sr et G | Sr est une paramétrisation orientée de K.

De plus les seules singularités de G sont des points doubles génériques en

quantité u. (Nous n'avons pas besoin du comportement de Morse de p ° G.)

Plaçons-nous en un point double de G. Par définition de « générique », il
existe une petite boule B4 au voisinage du point double telle que B4 nlm G

soit difféomorphe à l'intersection de la boule unité dans R4 avec deux plans

réels en position générale.

Par conséquent, cB4 n Im G est un entrelacs de Hopf à deux composantes,
orienté. Cet entrelacs borde dans cB4, de façon orientée, un anneau.

Enlevons de Im G, l'intersection B4 nlm G et mettons à sa place l'anneau

dont nous venons de parler. Effectuons cette opération à chaque point double.

Nous obtenons ainsi une surface V qui est une surface de Murasugi pour K.
Abstraitement, V est obtenue à partir de Dr en enlevant 2u petits disques

dans Dr et en collant u anneaux. Quelle que soit la façon dont on procède le

grand genre de V est toujours le même et est égal à u. (Tandis que le genre
usuel dépend de la façon dont on procède.)

Pour vérifier ce dernier point, on peut remarquer que V est, par
construction, obtenue à partir de Dru Pr S2 en recollant u anneaux orientés.

e

Ceci achève la démonstration de la proposition.
Nous insérons maintenant une petite parenthèse. En prenant un peu de

soin en recollant l'anneau, on peut s'arranger pour que la surface V que l'on
obtient soit « ribbon », c'est-à-dire telle que p | V - R+ ne possède pas de

minimum local.
Si on désigne alors par M'(K) le grand genre de Murasugi pour les surfaces

qui sont « ribbon », on a donc en fait : M'(K) ^ u(K).
D'autre part, l'interprétation de 8 en termes de points doubles proches que

nous avons donnée au § 4 montre que pour un entrelacs algébrique, on a aussi :

M\K) ^ 5(K). Voir [Ru].
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Malheureusement il est très difficile d'utiliser cette information
supplémentaire de façon pertinente. Peut-être un lecteur avisé le pourra-t-il? Nous
achevons là la parenthèse.

Pour comparer le nombre gordien avec le genre de Murasugi traditionnel,
on peut utiliser le lemme du début du paragraphe. Cependant, il y a en principe
une ambiguïté, car on ignore a priori le nombre de composantes connexes de

la surface V que l'on a construite. Il y a toutefois un cas où l'on peut s'en tirer
facilement :

Soit K un entrelacs à r composantes. Associons à K un graphe T(K) de la

façon suivante :

i) Les sommets de F(K) sont en bijection avec les composantes de K.

ii) Une arête relie le sommet Kt au sommet Kp i ± j, si et seulement si

&(Ki9 Kj) * 0.

Il est clair que, si F(K) est connexe, la surface V de Murasugi associée à

une immersion de dénouement G, comme dans la preuve de la proposition
précédente, est toujours connexe. (On utilise le principe du calcul des enlacements

dans S3 par des intersections dans D4). Par conséquent :

Proposition. Soit K un entrelacs à r composantes, tel que F(K) soit

connexe. Alors, quelle que soit l'orientation de K \ m(K) + (r—1) < u(K).

Rappelons que pour un entrelacs algébrique, le coefficient d'enlacement

entre deux composantes n'est jamais nul. De sorte que la proposition précédente

s'applique aux entrelacs algébriques.

B. La conjecture de Thom implique la conjecture de Milnor.

Théorème (classique). Si la conjecture de Thom est vraie, alors la conjecture
de Milnor est vraie.

Preuve. Nous venons de montrer que l'on a toujours: M(K) ^ u(K).
Le théorème de Pinkham dit que, pour un entrelacs algébrique: u(K)

^ 8(K).

Finalement, la conjecture de Thom implique que, pour les entrelacs

algébriques : M(K) b(K). D'où le résultat.

C. Nombre gordien et homotopies d'entrelacs.

Pour ce qui nous concerne, nous prendrons pour définition d'une homo-

topie entre deux entrelacs ce qui suit.
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Soient K et L deux entrelacs non orientés dans S3. On dira que K et L
sont homotopes si on peut passer de K à L en effectuant sur K un nombre

fini d'échanges élémentaires de telle façon que, lors de chaque échange, les deux

brins appartiennent à la même composante.
Il n'est pas difficile de voir que cette définition est équivalente à la

définition traditionnelle. Mais il est clair qu'elle se prête mieux à l'étude du nombre

gordien.

Références (pour la définition traditionnelle) : J. Hillman [Hi] ; J. Milnor

Un entrelacs est, par définition, homotopiquement trivial, s'il est homotope
à un entrelacs trivial.

L'exemple standard d'un entrelacs non trivial et pourtant homotopiquement

trivial est l'entrelacs de J. H. C. Whitehead (Fig. 3).

Ceci suggère la définition suivante (F. Michel) :

Soit L un entrelacs non orienté dans S3. Le nombre gordien homotopique
de L est le nombre minimum d'échanges élémentaires simultanés qu'il faut
effectuer pour transformer L en un entrelacs homotopiquement trivial. On exige
que lors de chaque échange, les deux brins appartiennent à deux composantes
distinctes.

Nous noterons le nombre gordien homotopique de K (homotopy
unknotting number of K) par hu(K).

La proposition suivante n'est pas difficile.

Proposition. Soit K un entrelacs non orienté à r branches :

Ku K2,..., Kr. Alors:

[Mi3].

Figure 3

a) hu(K) > £ | J?(Kn

b) u{K) > hu(K) + £ "(K;).
i= 1
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Notes. 1) L'entrelacs de Whitehead montre que l'inégalité b peut très bien
être stricte.

2) Cette proposition est une version un peu plus forte de l'affirmation 2

que nous avons utilisée au § 4.

Preuve de la proposition. Pour a), c'est encore une fois une conséquence
du principe que « l'enlacement sur le bord est égal à l'intersection à l'intérieur ».

Pour b), nous utilisons le fait que l'on peut effectuer les échanges
élémentaires à l'instant où l'on veut. Voir [BW].

Soit donc G: Dr S3 x R + une immersion selon la définition 4. Nous

pouvons supposer:

i) - g R + n'est l'image par p d'aucun point double.

ii) si Q est un point double de l'immersion G tel que p(Q) < alors Q est un

point d'intersection entre deux disques différents, tandis que

iii) si Q est un point double tel que p(Q) > alors Q est un point double

faisant intervenir deux points d'un même disque.

Alors p_1 c- S3 x |^| est un entrelacs homotopiquement trivial, et la

conclusion suit immédiatement.
L'étude du gordien homotopique semble une question intéressante. Voici

quelques premiers jalons.
1. Soit K un entrelacs à deux composantes et X2. Alors hu{K)

| X(Kl9 K2) I.
Cette égalité est une petite généralisation d'un théorème de J. Milnor, qui

affirme qu'un entrelacs à deux composantes et de coefficient d'enlacement nul
est homotopiquement trivial. Il est facile de s'y ramener, ou de la démontrer
directement.

Référence: J. Milnor [Mi3X
2. Pour les entrelacs avec r ^ 3 composantes, on peut très bien avoir une

inégalité stricte : hu(K) > £ | &(Kh Kj) |.
i<j

Par exemple, l'entrelacs des Borromées est tel que £?{Kh Kj) 0 si i j,
et pourtant il n'est pas homotopiquement trivial. (Pour les Borromées

u hu 2).
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3. Milnor montre que l'entrelacs des Borromées n'est pas homotopi-

quement trivial en utilisant son invariant p. (Ce n'est pas celui des singularités,

mais celui qui est défini dans [Mi3] et dans [Mi4]).

Question. Y a-t-il une connection entre les invariants que Milnor introduit
dans les articles en question et le gordien homotopique des entrelacs?

D. Genre de Murasugi et signature.

Le genre de Murasugi est un invariant très difficile à calculer. En fait il y

a peu de nœuds ou entrelacs pour lesquels on connaisse sa valeur exacte. Dans

ce contexte, la signature donne une minoration utile, car calculable en principe.
Hélas, cette minoration n'est en général pas décisive.

Nous rappelons maintenant de quoi il s'agit, en signalant au lecteur que
nous reviendrons plus en détails sur cette question au § 6 dans le cadre des

signatures de J. Levine et A. Tristram.

Références: K. Murasugi [Mu]; L. Kauffman et L. Taylor [KT].
Soit K un entrelacs orienté dans S3 et soit V une surface de Murasugi

de K.
Considérons le revêtement à 2 feuilles Yv de D4, ramifié sur V. Yv est une

variété de dimension 4, compacte, connexe, orientée (par la projection sur D4).
Elle a un bord qui est le revêtement à 2 feuilles de S3, ramifié sur K.

On considère alors la forme d'intersection sur H2(YV; Q). Cette forme est

Q-bilinéaire, symétrique. Elle peut très bien être dégénérée, car dY est non vide.
Elle a néanmoins une signature.

On montre (cf. Kauffman-Taylor [KT]) que cette signature ne dépend que
de K et pas du choix de la surface de Murasugi V. Notons la <j{K).

Il y a plusieurs façons de calculer explicitement a(K). Pour la théorie
générale, voir Gordon-Litherland [GoL]. Rappelons en particulier que si A
est la forme de Seifert associée à une surface de Seifert U de K, alors
(A + A#) (g) Q est la forme d'intersection de Yv. (A* désigne la transposée
de A).

On a alors le théorème suivant, dû à K. Murasugi [Mu]. Pour une démonstration

plus moderne voir Kauffman-Taylor [KT]. Voir aussi le théorème 2

du § 6.

Théorème. Soit K un entrelacs orienté à r composantes dans S3.

Alors: \ o(K) | ^ 2m(K) + r — nul(K).

Ici, nul(K) désigne la « nullité de Murasugi » de K par opposition à la
nullité d'Alexander, qui est un concept différent ; voir le livre de J. Hillman [Hi].
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Rappelons que par définition nul(K) 1 + qu où q1 est le premier nombre
de Betti rationnel du revêtement à 2 feuilles de S3 ramifié sur K.

On a les renseignements suivants sur la nullité :

Proposition. Soit K un entrelacs orienté à r composantes dans S3.

Alors:

a) nul(K) ^ r

b) si A est la forme de Seifert associée à une surface de Seifert U de K :

nul(K) dimQ(radical de (A + T#)(g)Q) + b0(U), où b0(U) désigne le

nombre de composantes connexes de U.

Corollaire. Pour un nœud (r=l), | <j(K) | ^ 2m(K).

Application de la formule de Murasugi.
Il y a une formule qui donne la signature des entrelacs du tore (cf. § 6).

Cette formule et la formule de Murasugi, appliquées aux entrelacs
algébriques K associés aux singularités Xa — Yb 0, montrent que l'on a M(K)

b(K) lorsque :

i) (a, b) (2, ri), n ^ l (résultat connu de Murasugi [Mu]) ;

ii) (a, b) (3,3) ou (3,4) ou (3,5) ou (3,6) ou (4,4).

Ce sont les seuls entrelacs algébriques pour lesquels la conjecture anonyme
est connue. Par conséquent la conjecture de Milnor est vraie pour ces entrelacs

algébriques.

Rappelons finalement que la signature croit très lentement par satellisation,
de sorte que les formules précédentes donnent de mauvaises minorations pour
les branches à plusieurs paires de Puiseux.

Référence: Y. Shinohara [Shi].

E. Nombre gordien et revêtements cycliques infinis.

Pour un entrelacs orienté K, on a: M(K) ^ u(K) et M(K) ^ S(K). Il est

donc assez naturel de se demander s'il existe une relation entre le nombre

gordien K et le grand genre de Seifert de K.
Au vu des exemples que nous présentons dans la partie F de ce paragraphe,

nous pensons qu'il n'y en a pas, même pour les entrelacs fibrés.

Tout d'abord on a les théorèmes suivants:
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Théorème (H. Kondo). Soit P{t) un polynôme à coefficients entiers, de

degré 2h tel que P( 1) ± 1 et P(t) t^Pit'1). Alors il existe un

nœud K, de nombre gordien 1, de genre de Seifert h, ayant P(t) pour

polynôme dé Alexander.

Référence: H. Kondo [Ko].

Théorème (T. C. V. Quach). Soit P(t) un polynôme comme dans le

théorème précédent et tel que, en plus, P(0) ±1. Alors il existe un nœud

fibré satisfaisant les mêmes conditions que celles du théorème précédent.

Référence: T. C. V. Quach [Qa].

Note. Ces théorèmes montrent que la situation est plus complexe que le

problème 1.4 de la liste de R. Kirby [Ki] ne laisse supposer.
Nous donnerons dans la partie F des exemples de nœuds rationnels fibrés

de gordien 1 et de genre arbitraire (voir aussi Y. Nakanishi [Na]).
Hélas il est plus difficile de trouver des nœuds de petit genre et de grand

nombre gordien, car on tombe à nouveau sur le problème de la minoration
du nombre gordien.

Dans cette direction, la meilleure minoration connue est toujours celle de

H. Wendt que nous allons décrire maintenant d'une façon un peu différente
de la sienne. Cette minoration se généralise facilement aux cas des entrelacs.

Pour cela nous avons besoin de rappeler quelques notions classiques.
Si K est un entrelacs orienté à r composantes dans S3, il existe un homo-

morphisme surjectif unique /: rc1(5'3 — K) -» Z, qui envoie chaque méridien
orienté de K sur 1. (Un méridien m{ de K est orienté par Jf(mh Kf bij où
les Kj sont les composantes de K).

Désignons par E{K) l'espace total du revêtement cyclique infini du
complément de K dans S3, associé au noyau de l. On peut identifier le groupe
de Galois du revêtement avec le groupe cyclique infini T, noté multiplicati-
vement T {tl}ieZ-

Le groupe d'homologie HfE(K); Z) est de façon naturelle un module sur
le groupe de Galois, donc un ZT-module.

Théorème. Soit K un entrelacs orienté à r composantes dans S3, et
de nombre gordien u. Alors le ZT-module HfE{K); Z) peut être engendré
par u + r — 1 éléments.

Note. Dans le cas d'un nœud (r= 1), HfE(K) ; Z) est le module d'Alexander
de K, et ce théorème est alors implicite dans l'article de H. Wendt et également
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chez D. Rolfsen. D'ailleurs, dans ce cas là, il a été remarqué par beaucoup de

monde, par exemple par Y. Nakanishi.

Références: H. Wendt [We] ; D. Rolfsen [Rox], [Ro2] ; Y. Nakanishi [Na].

Désignons par e(K) le nombre minimum de générateurs du ZT-module

HfE{K); Z). Nous avons donc:

Corollaire 1. e(K) ^ u(K) + r — 1

Nous appellerons cette inégalité, l'inégalité de Wendt. (Rappelons que e(K)

dépend de l'orientation de K, tandis que u(K) en est indépendant).

Corollaire 2. Le module d'Alexander d'un nœud (r=l) de nombre

gordien 1 est monogène.

Commentaires. 1) On voit que la question de l'étude algébrique du module
d'Alexander des nœuds (et plus généralement des modules HfE(K) ; Z) dans le

cas des entrelacs) a un certain intérêt en ce qui concerne le nombre gordien.
Toute méthode permettant d'évaluer e(K) sera la bienvenue. La théorie des

idéaux élémentaires permet de trouver certaines minorations.

2) Une méthode classique, due originalement à H. Seifert, permet de trouver
une présentation du module d'Alexander à partir d'une matrice de Seifert du

nœud. Un petit examen de cette méthode (cf. par exemple [Sei]) montre que

e(K) ^ 2s(K\ lorsque K est un nœud. Par conséquent, la minoration de Wendt

ne peut dépasser deux fois le genre de Seifert dans le cas d'un nœud.

Preuve du théorème. Nous allons en donner une basée sur la notion de

description chirurgicale d'un entrelacs, due à D. Rolfsen [Ro:]. De fait, dans

le cas des nœuds (r 1), la démonstration qui suit est implicite dans l'article
de Rolfsen [Ro2].

Reprenons la définition 1 du nombre gordien. (La définition 2 ferait aussi

l'affaire).
K est un entrelacs orienté à r composantes. Considérons une bonne

projection de K et un processus de dénouement de K, basé sur cette projection.
Envisageons un point double de la projection, qui va changer de signe au cours
du processus. Sans tenir compte des signes, la projection est localement:
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Figure 4

Les orientations des brins proviennent de l'orientation de l'entrelacs.

Considérons le segment de droite dessiné en pointillé sur la figure de droite.
« Au-dessus » de ce segment se trouve un plan dans R3. Il est facile de
dessiner un disque A dans ce plan, ayant la propriété que A n K Â n K consiste

en exactement deux points, chacun d'eux étant donné par l'intersection d'un
des deux brins avec A.

Illustration :

Figure 5
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Soit T dA. F est un cercle non noué dans S3, ne rencontrant pas K, et

le nombre d'enlacement de F avec K est nul (grâce à la position choisie du

plan par rapport aux brins orientés).
Soit N un voisinage tubulaire de F dans S3, suffisamment petit pour ne

pas rencontrer K. N est un tore plein et comme F est non noué, S3 — N est

aussi un tore plein W. Un disque méridien de W est précisément le disque A,

un peu rétréci.

Effectuons un twist de Dehn x dans W, concentré au voisinage de À. Pour
cela, choisissons un petit voisinage À x [—1, +1] de À dans W. (Nous
choisissons une identification). Alors, par définition x(x, t) (el(t+ 1)Tt • x, t\ avec

{x, t) e A x [—1, 1], À étant identifié au disque unité dans C. Le twist x se

prolonge par l'identité en un automorphisme de W, mais, attention, il ne se

prolonge pas en un automorphisme de S3.

Comme K est dans W, on peut considérer x(X). Alors, à isotopie près, x(K)
aura même projection que K. Tous les points doubles auront même signe, sauf

celui que nous considérons, qui, lui, a changé de signe.

Précaution : Cette dernière affirmation dépend de la façon dont on identifie
À x [—1, 1] à un voisinage de À dans W. Ce qui compte est la normale au

plan qui contient À, qu'il faut orienter convenablement. Sur l'illustration
précédente, l'orientation de la normale part de l'œil du spectateur pour
traverser A.

Supposons maintenant que le processus de dénouement associé à la bonne

projection, que nous avons choisie pour X, fasse intervenir u changements de

signes aux points doubles.

Nous choisissons u petits tores pleins Nu Nu selon la méthode que nous

venons d'indiquer. La composition des twists x1 o x2 o... c où xt- est le twist
u u

sur Wb est bien définie sur Y n S3 — u Nt; notons la x. L'ordre
i= 1 i= 1

de la composition importe peu car les supports des xt- sont disjoints. Posons

N u Nb
i= 1

Par définition d'un processus de dénouement, x : Y -> Y est un diffeomor-

phisme qui envoie K sur l'entrelacs trivial Tr dans S3.

D'autre part, Y — K S3 — (NuK) est diffeomorphe par x à x( Y) — x(K)
S3 - (NuTr).
On passe de S3 — (NuK) à S3 — K en ajoutant des 2-cellules et des 3-cel-

lules. (On remplit les tores pleins Nlf..., Nu).
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Si p : E{K) -+ S3 — K est la projection du revêtement infini cyclique, associé

à l'homomorphisme d'enlacement total /, posons: Z — p 1(S3 — (NkjK))

P'KY-K).
On passe de Z à E(K) en ajoutant des 2-cellules et des 3-cellules car la

restriction p | : p~ 1(N) — N est un revêtement trivial (produit), puisque le nombre

d'enlacement de chaque tore plein' Nt avec K est nul. Donc le nombre de

générateurs du ZT-module HX(Z\T) majore celui de H^EiK); Z). Nous allons

estimer le nombre de générateurs du ZT-module if1(Z ; Z).

Pour cela observons que le revêtement cyclique infini, E(Tr) associé à

l'homomorphisme d'enlacement total, de l'entrelacs trivial Tn est difféomorphe à la

somme connexe d'un nombre infini de copies de l'intérieur d'un corps avec

(r — 1) anses. Chaque copie est indexée par un élément de Z, et le générateur

du groupe de Galois T est la transformation qui envoie la copie d'indice i sur

celle d'indice i + 1. En particulier, en tant que ZT-module, Z) est

de rang r — 1.

Soit q \ E(Tr) - S3 - i(K) la projection de revêtement et soit

Z' ç-1(S3-(Afux(K))) q-^Y-K)).

Pour un pull-back de t, Z p~1(Y — K)etZ' q~ 1(x(7 — K)) sont Galois-

équivalents. Les ZT-modules H^Z ; Z) et ELX{Z' ; Z) sont donc isomorphes.

Il est facile de voir que H^Z' ; Z) est engendré par u + r — 1 éléments

comme module sur ZT car Z' E(Tr) — q~1{N), où H^EiX); Z) est de rang
r - 1 en tant que ZT-module, et la restriction q | : <2-1(N) N est un
revêtement trivial de « groupe de Galois » T puisque le nombre d'enlacement

de chaque tore plein Nt avec x(K) — Tr est nul.

Remarque. Nous n'avons utilisé que la partie la plus facile de la méthode

de D. Rolfsen. Dans le cas des nœuds (r= 1), en poussant l'analyse plus loin il
montre comment on peut, en principe, trouver une présentation du module
d'Alexander.

En fait, les énoncés de H. Wendt portent sur l'homologie des revêtements

ramifiés cycliques finis, plutôt que sur celle des revêtements cycliques infinis.
Nous allons nous y ramener par une méthode dont le principe était déjà connu
de H. Seifert dans le cas des nœuds.

Notations. Soit K un entrelacs orienté à r composantes dans S3. Nous
désignerons par En(K) l'espace total du revêtement cyclique à n feuilles de S3,

ramifié sur K. Rappelons que, si r ^ 2, le type topologique de En{K) dépend
de l'orientation de K (dès que 3).
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Le groupe d'homologie H^F^K); Z) est un module sur ZT. M. Sakuma

[Sak] a démontré le théorème suivant, bien connu dans le cas des nœuds (r 1,

cf. [Gor]).

Théorème. HfEJ^K); Z) est isomorphe comme ZT-module à

Coker {1 + t + + tn~1 : H^K); Z) -> H^EiK); Z)}

Références: M. Sakuma [Sak].
Nous obtenons alors l'énoncé traditionnel du théorème de H. Wendt, où

en(K) désigne le nombre minimum de générateurs du groupe abélien

Z).

Théorème (H. Wendt). Soit K un entrelacs orienté à r composantes
dans S3. Alors: en(K) ^ (n— l)(u(X) + r— 1).

Corollaire. e2(K) ^ u(K) + r — 1

Commentaires.

1) Souvenons-nous que, pour un nœud K(r= 1), e2{K) ^ 2s(K).
La méthode de Wendt permet de trouver (ce qu'il a fait, cf. [We]) des nœuds

de nombre gordien u(K) > 2s(K). Nous en donnons des exemples dans la

partie G de ce paragraphe. Bien que les candidats abondent, il semble bien

que pour l'instant, il n'existe aucun nœud pour lequel on sache montrer que
u(K) > 2s{K).

2) Les majorations plus fines,de en(K\ obtenues par S. Kinoshita dans le

cas des nœuds, montrent que le théorème de Wendt fournit souvent une
minoration très faible du nombre gordien u(K).

Références: S. Kinoshita [KinJ, [Kin2].

F. Exemples: nombre gordien et grand genre de Seifert d'un entrelacs.

Considérons les entrelacs algébriques ou, plus généralement les tresses positives

fermées orientées, munies de l'orientation naturelle. Ces entrelacs sont

tous fibrés. Nous avons vu au § 4 que leur grand genre de Seifert est supérieur

ou égal au nombre gordien. Cette remarque a conduit A. Durfee à poser
la question suivante : « a-t-on u(K) ^ s(K) pour tout nœud fibré Kl »

Le but des exemples que nous présentons ici est de donner une réponse

négative à la première question de A. Durfee. En fait, nous conjecturons qu'en

général il n'y a aucun rapport entre ces deux invariants, et qu'étant donnés
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deux entiers positifs u et s arbitraires (s ^2), il existe un nœud fibré de nombre

gordien u et de genre s.

Par exemple, il est facile de construire des nœuds fibrés de gordien 1 et de

genre de Seifert 5 arbitrairement grand (cf. [Na]): il suffit de considérer le

nœud à 2 ponts associé au plombage de 2s bandes paires, suivant :

2 2 2 -2 -2 -2• • • • • • • • • • • •
(Voir aussi les nœuds construits par T. C. V. Quach [Qa]).

Par contre nous ne connaissons aucun exemple de nœuds (fibrés ou non)
de genre 1 et de gordien arbitrairement grand. Les candidats ne manquent pas
(cf. § 7, B-5) ; manquent les invariants pour minorer le nombre gordien.

Voici des exemples qui répondent négativement à la question de A. Durfee:
Soit l'entrelacs de bretzel Kn K{ — 1, 3,..., 3), qui est le bord de la surface

constituée de deux disques reliés par (n+ 1) bandes tordues, et orienté comme
sur la figure 6.

P////fflTTh

Figure 6

Cet entrelacs fibre pour l'orientation donnée, et la surface fibre Fn est la
surface plate hachurée, car cet entrelacs orienté s'obtient à partir de l'entrelacs
fibré torique (2, n+ 1) par n twists de Staffings [St2] (cf. T. C. V. Quach [Qa] ;

Ka] pour une preuve algébrique).

et une application immédiate de l'inégalité de Wendt

2. Pour des détails, voir [BW].

voir aussi T. Kanenobu

n +1
On a S{Kn)

montre que u(Kn)

2

^ n

Commentaires. 1) Dans le cas où n est pair, n 2p, K2p est un nœud
fibré. Alors S(K2p) s(K2p) p et u(K2p) ^ 2p — 1. Ceci donne une réponse
négative à la première question de Durfee dès que p ^ 2.

2) Dans le cas où n est impair, n 2p+ 1, K2p+1 est un entrelacs orienté
à 2 composantes, et pour l'orientation donnée 1. En utilisant
le § 5-c, on montre que u(K2p+1)3p + 1.
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G. Les exemples de H. Wendt.

L'idée de comparer le nombre gordien d'un nœud avec son genre de Seifert

est déjà dans l'article original de H. Wendt [We]. En fait Wendt avait exhibé
des nœuds K (non fibrés!) de genre de Seifert s(K) et de gordien u(K)
& 2s(K) (par exemple le nœud 935 dans la tabulation de Reidemester [Re]).

Nous donnons ici une généralisation des exemples de Wendt. Notons

Kiq+u 4 ^ 1, le nœud de bretzel K(3, 3,..., 3), qui est le bord de la surface
constituée de deux disques reliés par 2q + 1 bandes tordues, et qui est représenté

sur la figure 7.

D'après T. Kanenobu [Ka] (voir aussi [Qa]), ce nœud n'est jamais fibré.

Historiquement, à notre connaissance, deux voies ont été suivies par les

topologues pour essayer de démontrer la conjecture de Thom.
La première consiste à utiliser ce que nous avons expliqué aux § 1 et 2 :

minorer le mieux possible le genre de Murasugi des entrelacs de Hopf
généralisés. Nous avons vu au § 5 que la signature de l'entrelacs donne une
première minoration. Une difficulté de cette approche est que la signature dépend

en principe aussi bien de d que de r. L'introduction des signatures « tordues »

et le théorème 3 ci-après, dus à A. Tristram, permettent d'obtenir des

minorations qui ne dépendent que de d.

Référence: A. Tristram [Tri].
Ces signatures ont aussi été introduites par J. Levine dans le cas des nœuds,

à la fin de son article sur le cobordisme, dans un but différent de celui de

Tristram.

Figure 7

On a. u(K2q +1) ^ 2q — 2s(K2q + ±).

§ 6. Signatures
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