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§ 4. Le problème de Milnor

Dans son livre sur les singularités [Mils p. 92] J. Milnor pose la question

suivante (voir aussi [Kir, pb. 1.14]):

Soit / : (C2, 0) - (C, 0) une fonction polynomiale ayant une singularité

isolée en 0. Soit K le nœud algébrique associé au polynôme / et soit 5 le

nombre associé à la singularité qui intervient dans la formule de Riemann-

Roch (cf. § 1). Est-ce que 5 u(K)l
La « conjecture de Milnor » affirme que oui. Nous verrons dans ce

paragraphe que 5 et u(K) ont tous deux une interprétation en termes de points

doubles, ce qui rend la conjecture très plausible.

Il est connu (mais pas évident) que u(K) < 8. La première démonstration

de cette inégalité est due à H. Pinkham, et L. Rudolph en a donné une autre.

Nous présentons ici une preuve très élémentaire de cette inégalité. Elle est le

résultat de discussions passionnantes que nous avons eues avec D. Bennequin,
et nous le remercions de son aide.

Références: H. Pinkham [Pi]; L. Rudolph [Ru].

Finalement nous achèverons ce paragraphe en observant que si la conjecture
de Milnor est vraie pour les singularités à une branche, alors elle est toujours
vraie. Nous remercions F. Michel pour d'utiles conversations sur cette question.

Interprétation du nombre 5 en termes de points doubles proches.
Dans [A], N. A'Campo démontre que la fonction / possède une

déformation analytique réelle /T, telle que, pour x ^ 0, f ~ x(0) possède 8 points
doubles ordinaires (« nodes »). En fait A'Campo démontre bien plus : les nodes

sont tous réels.

Interprétons ce résultat. Soit Df une boule de Milnor pour / f0. Pour
x suffisamment petit, dDE sera aussi transverse à ffl(0) et l'entrelacs XT
déterminé par l'intersection ôDE n 0) dans ôDE sera équivalent (différen-
tiablement et de façon orientée) à K. Pour le vérifier, on observe que « être
transverse » est une condition ouverte, puis on applique le théorème d'extension
des isotopies.

Du point de vue différentiable, le morceau de courbe algébrique / ~ *(0) n DE

r
est l'image d'une immersion de Dr _[_]_ Df avec 8 points doubles génériques.

i 1

De plus ce nombre de points doubles est, en un certain sens, rigide. De façon
plus précise: si pour une certaine déformation fs de / f0, dès que s est
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suffisamment proche de 0, f~ *(()) est l'irfiage d'une immersion de Dr avec des

points doubles génériques pour seules singularités, alors ce nombre de points
doubles est nécessairement égal à 5.

Pour démontrer ces dernières affirmations, on répète l'argument de Milnor
que nous avons rappelé à la fin du § 1 : on homogénise / et on regarde la
courbe projective plane correspondante. On applique le théorème de Riemann-
Roch à cette courbe et à celle correspondant à une petite déformation. Un
calcul facile des genres donne la solution.

D'autre part, souvenons-nous que la définition 4 donne aussi une interprétation

du nombre gordien en termes de nombre minimum de points doubles
r

d'une immersion differentiate de Dr ]_[ Df dans D4.
;= î

La différence entre les deux concepts vient de ce que les deux types
d'immersions considérées ont des propriétés supplémentaires qui sont différentes

dans les deux cas. En effet :

a) Dans le cas du nombre gordien, l'immersion est (seulement) differentiate.
Mais elle se comporte très bien quand on la compose avec la projection
sur R+ : elle est de Morse avec le minimum de points critiques compatibles

avec la topologie de Dr.

b) En ce qui concerne /T-1(0), x petit, x ^ 0, l'immersion est C-analytique.
(C'est beaucoup plus fort que differentiate!) Mais elle se comporte moins

bien quand on projette sur R + : l'application est génériquement de Morse

et n'a pas de minimum.

Références: L. Rudolph [Ru]; J. Milnor [Mi2].
Le mot « ribbon » est souvent employé dans ce dernier contexte. Voir

l'article de L. Rudolph [Ru] cité ci-dessus.

En résumé : Interprétés comme nous venons de la faire, 8 et u(K) ont
indéniablement une certaine ressemblance. Il est tentant d'essayer d'utiliser cette

ressemblance dans les deux interprétations pour montrer qu'ils sont égaux.

Nous allons maintenant démontrer que, pour un entrelacs algébrique

K : u(K) ^ 8. (C'est le théorème de H. Pinkham.) En fait cette inégalité sera

une conséquence d'une proposition plus générale sur les tresses fermées.

Soit donc Bn le groupe des tresses à n brins, de générateurs canoniques

{g1? a2, çj„_i}. Soit ß un mot en les af. Nous désignons par:
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b la longueur du mot.

ß la tresse fermée associée à ß.

r le nombre de composantes de l'entrelacs ß.

Référence générale sur les tresses: J. Birman [Bi].

Proposition. u(ß) ^ —n + r).

Commentaire. Cette majoration n'est pas extraordinaire en principe. Par

exemple, si n r, elle affirme seulement que u(ß) ^ - b, et b n'est rien d'autre

que le nombre de croisements de ß. Un argument analogue à celui donné dans

la preuve du lemme du § 3 donne immédiatement la démonstration dans ce

cas. La majoration est un peu meilleure quand r est petit par rapport à n.

Nous indiquons maintenant comment le théorème de Pinkham se déduit
de la proposition. Nous allons le faire en plusieurs étapes.

a) Il est bien connu qu'un entrelacs algébrique K est équivalent à une tresse

fermée ß, où ß est une tresse positive. Par là on entend que ß peut se représenter

en un mot en les crf, où tous les exposants sont égaux à + 1. Remarquons qu'il
s'agit d'une équivalence entre entrelacs orientés: K est orienté comme nous
l'avons indiqué au § 1 et ß est muni de l'orientation naturelle des tresses fermées.

Ceci est une conséquence du théorème de préparation de Weierstrass.

b) Une tresse positive est, en particulier, une tresse homogène au sens de

J. Staffings [St2]. Dans l'article en question Staffings démontre, généralisant
un concept dû à K. Murasugi, que ß est un entrelacs fibré, et que la fibre est

la surface de Seifert U donnée par la construction de Seifert, effectuée sur la
présentation ß.

c) Un calcul élémentaire donne alors pour la caractéristique d'Euler de

U : x(U) - b0(U) - bfU) — n — b

où bt désigne le i-ème nombre de Betti. Or, b0(U) 1 puisqu'on a un entrelacs
fibré, et bfU) p. D'où \i b — n + 1. D'autre part, la formule de Milnor,
25 p + r — 1, donne 2b b — n+l + r— 1 b — n r.

Remarque. Si on veut démontrer la conjecture de Milnor par des voies
« purement topologiques » par exemple en utilisant essentiellement la théorie
des nœuds et entrelacs, il est difficile de tenir compte assez exactement de

l'hypothèse que l'on part d'un entrelacs algébrique, car les entrelacs algébriques
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constituent une classe assez particulière d'entrelacs toriques itérés. C'est

pourquoi, si on travaille selon ces lignes, il est naturel de généraliser la

conjecture de Milnor en :

Conjecture, (cf. [Ru]). Soit ß une tresse positive. Alors w((3) ^ {b — n + r).

La preuve de la proposition sera faite en plusieurs pas.
1er pas. En supprimant (n — r) croisements, on transforme ß en un entrelacs

à n composantes. Plus précisément, en supprimant (n — r) lettres du mot ß,

convenablement choisies, on obtient un mot y tel que y soit un entrelacs à n

composantes. Bien sûr la longueur de y est b — {n — r).

2e pas. Numérotons les brins de ß (et de y) de droite à gauche:
1, 2,..., n. Désignons par yf la composante de y qui correspond au z-ème brin.

A chaque point d'intersection de la projection de yf avec la projection de

y/i<j) attribuons le signe + si y, passe dessus jj et le signe — sinon. Soit

N{yh yJ) la somme des signes ainsi obtenus. Finalement,

«i Z N(yh Yj)
j>i + i

Nous allons transformer la tresse y en une tresse X en changeant les signes
de certains croisements, de façon à ce que X soit l'entrelacs trivial à n

composantes. Nous allons le faire de façon économique.
Soient Xl9..., Xn les n composantes de X. Si a1 ^ 0, décidons que X1 sera

au-dessus de toutes les autres composantes X2,Xn. Par contre, si ax < 0,

décidons que X1 sera au-dessous de toutes les autres composantes. De même,
si a2 ^ 0, décidons que X2 sera au-dessus de X3, X4,..., Xn ; sinon décidons qu'elle
sera au-dessous. Par récurrence, si at > 0, décidons que Xt sera au-dessus de

Xi + l,..., Xn; sinon décidons qu'elle sera au-dessous.

En vertu de la définition des N(yh y7), toute cette opération pourra se faire

en effectuant au plus ^-(b — {n — r)) changements de signes aux croisements.

3e pas. Rétablissons les {n — r) croisements que nous avions supprimés dans

le 1er pas. Nous obtenons une tresse s. Nous affirmons que ê est un entrelacs

trivial à r composantes. Bien évidemment ceci achèvera la preuve de la

proposition.
Tout d'abord, il est clair que le nombre de composantes de ê est r, car ß

et ê ont même projection (sans les signes).
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Pour voir que ê est trivial, revenons à X. Par construction, chaque

composante Xt est dans un plan horizontal. Si i ^ j, le plan contenant Xt est

distinct du plan contenant Xj. Toujours par construction, le plan horizontal

contenant X1 est soit au-dessus soit au-dessous de tous les autres.

Considérons alors la permutation w de {1, 2,..., n} associée à la tresse s. Si

w laisse fixe 1, la composante Xl se retrouve inchangée dans s. Il est clair qu'elle
est non nouée et non enlacée avec les autres composantes de ê, car on peut

l'isotoper en un tout petit cercle dans son plan horizontal sans rencontrer
d'obstacle, car le plan horizontal contenant X1 est extrémal.

Si la permutation w ne laisse pas fixe 1, il y a un croisement et un seul qui
relie X1 à une autre composante de X, disons Xk(k^i). On peut considérer ce

croisement comme le bord d'une mini bande verticale (effectuant un demi-tour)
et reliant le plan horizontal contenant Xk à celui contenant Xv

Comme le plan horizontal contenant Xx est extrémal, on peut isotoper la
boucle correspondant à Xl dans ce plan jusqu'à ce qu'on arrive aux extrémités
de la bande verticale, ceci sans rencontrer d'obstacles. Ensuite on isotope les

côtés de la boucle verticale jusqu'à ce qu'on se trouve dans le plan horizontal
contenant Xk.

Un facile raisonnement par récurrence (sur le nombre de brins) achève alors
la démonstration.

Remarque. Notons rc(ß) la projection associée à la présentation en tresse
fermée ß. La démonstration de la proposition 1 donne aussi une minoration
du nombre gordien de la projection ru(ß). Elle montre en effet que :

"Wß)) > j(lcl

où cdésigne la longueur algébrique de la tresse ß (c'est la somme exponentielle
du mot ß).

Pour vérifier cela, remarquons tout d'abord que d'après la démonstration
précédente : u(n(ß)) inf{«(y) ; où y décrit tous les mots possibles, obtenus à

partir du mot ß en supprimant (n-r) lettres pour que y ait composantes}.
Par construction, la longueur algébrique d'une telle tresse y vérifie:

| c'| > [ cI- (n-r).
D'autre part, d'après l'affirmation 2 de la seconde proposition de ce même

paragraphe, u(y)> | X ^(h,Yj) I, où y.) désigne le coefficient d'enlace-
i<j

ment de la composante y f de y avec la composante yj de y.
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La minoration annoncée découle alors de l'égalité: | £ ^{yb Jj) I - I c' I-

i< j 2

Cette égalité se vérifie aisément pour toutes les tresses pures, en utilisant le

disque bordé par chaque composante yf et donné par la présentation en tresse
fermée de y.

Nous conseillons au lecteur d'illustrer la preuve ci-dessus par quelques
exemples de son choix; voir aussi [BW].

Nous montrons maintenant qu'il suffit de démontrer la conjecture de Milnor
dans le cas des entrelacs algébriques à une branche.

Proposition. Soit L un entrelacs algébriques à r branches :

Lis L2,..., Lr.

Si la conjecture de Milnor est vraie pour chacune des branches, alors elle est

vraie pour L.

Preuve de la proposition. Remarquons que, grâce au théorème de Pinkham,
la conjecture de Milnor est équivalente à 8 ^ u(L). (Les notations sont celles

du début du paragraphe.)
La proposition découle immédiatement des deux affirmations ci-dessous.

Affirmation 1. Soit St-, l'invariant « 8 » pour la z-ème branche. Soit

£?(Lb Lj le coefficient d'enlacement de Lt avec Lj (z ^j On a :

s £ s, + I yi/., Lj)
i 1 i < j

Rappelons que pour un entrelacs algébrique, P£{Lb Lj) > 0.

Affirmation 2. Soit K un entrelacs quelconque à r composantes : Ku Kr.
On a:

u(K) > £ u(Kt) + X I Se(K„ \.
i — 1 i < j

Donnons quelques indications sur la démonstration de ces deux affirmations.

Pour l'affirmation 1, la formule est donnée par Milnor dans son livre [Mi1?

p. 93]. Elle résulte d'un calcul classique en géométrie algébrique, à partir de

la définition de 8 que nous avons donnée en utilisant la clôture intégrale de

l'anneau local.

Pour un topologue, c'est une conséquence facile de la formule de Milnor
28 p + r — 1, de l'interprétation de p comme le rang de l'homologie en
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dimension 1 d'une surface de Seifert de genre minimal, et de la représentation

en tresses fermées positives des entrelacs algébriques.

Pour l'affirmation 2, c'est une conséquence facile de la définition 4 du

nombre gordien et du fait que: l'enlacement de deux cercles dans S3 est égal

à l'intersection de deux chaînes qu'ils bordent dans D4.

Application. Nous verrons au § 6 que la conjecture de Milnor est vraie

pour les nœuds du tore de type (2, ri), (3, 4) et (3, 5). La proposition précédente

entraîne, par exemple, que la conjecture de Milnor est vraie pour 1 entrelacs

d'A'Campo, dont le nombre gordien est donc u 6.

Plus facilement encore, la conjecture de Milnor est vraie pour l'entrelacs

de Hopf généralisé T{d, d), associé au point ù-uple ordinaire (cf. § 1). Dans ce

(T<A M-l)
cas u(r(d, d)) —j—

§ 5. Relation entre le nombre gordien
ET D'AUTRES INVARIANTS DE LA THEORIE DES ENTRELACS

A. Nombre gordien et genre de Murasugi

Au § 1, nous avons défini le genre g d'une surface compacte orientable G

comme: g(G) £ giGf où les Gt désignent la surface close obtenue en collant
i

un disque de dimension 2 sur chaque composante de dGt. Le nombre g{Gi)

désigne alors le genre usuel. Ceci est la façon traditionnelle de procéder dans

ce type de situations et amène aux genres de Seifert et de Murasugi pour les

entrelacs dont nous avons parlé au § 2.

Références classiques: K. Murasugi [Mu]; A. Tristam [Tri].
Cependant dans le cas des entrelacs à plusieurs composantes, cette définition

n'est pas toujours la plus pratique. Par exemple un entrelacs de genre zéro

n'est pas nécessairement trivial.
De même, le genre de Murasugi traditionnel des entrelacs se compare mal

avec le nombre gordien. C'est pourquoi nous introduisons un nouvel invariant

que nous proposons d'appeler le grand genre (car il majore le genre habituel).
Soit donc, à nouveau, G une surface compacte, orientable. G n'est pas

nécessairement connexe et son bord a, disons, r composantes connexes.

Désignons par Pr la surface plane connexe, dont le bord a r composantes
connexes. Il y a une façon essentiellement unique d'identifier le bord de G et
le bord de Pr pour obtenir une surface close, orientable G. La surface G est
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