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§ 4. LE PROBLEME DE MILNOR

Dans son livre sur les singularités [Mi;, p. 92] J. Milnor pose la question
suivante (voir aussi [Kir, pb. 1.14]):

Soit f:(C? 0) — (C, 0) une fonction polynomiale ayant une singularité
isolée en 0. Soit K le nceud algébrique associé au polyndme f et soit 6 le
nombre associé¢ a la singularité qui intervient dans la formule de Riemann-
Roch (cf. § 1). Est-ce que 6 = u(K)?

La « conjecture de Milnor » affirme que oui. Nous verrons dans ce para-
graphe que § et u(K) ont tous deux une interprétation en termes de points
doubles, ce qui rend la conjecture tres plausible.

Il est connu (mais pas évident) que u(K) < 8. La premiére démonstration
de cette inégalité est due a H. Pinkham, et L. Rudolph en a donné une autre.
Nous présentons ici une preuve trés élémentaire de cette inégalité. Elle est le
résultat de discussions passionnantes que nous avons eues avec D. Bennequin,
et nous le remercions de son aide.

Références: H. Pinkham [Pi]; L. Rudolph [Ru].

Finalement nous achéverons ce paragraphe en observant que si la conjecture
de Milnor est vraie pour les singularités a une branche, alors elle est toujours
vraie. Nous remercions F. Michel pour d’utiles conversations sur cette question.

Interprétation du nombre O en termes de points doubles proches.

Dans {A], N. A’Campo démontre que la fonction f posséde une
déformation analytique réelle f,, telle que, pour T # 0, f. *(0) posséde & points
doubles ordinaires (« nodes »). En fait A’Campo démontre bien plus: les nodes
sont tous réels.

Interprétons ce résultat. Soit D une boule de Milnor pour f = f,. Pour
t© suffisamment petit, 0D, sera aussi transverse a f, '(0) et I'entrelacs K,
déterminé par lintersection dD, n f '(0) dans 0D, sera équivalent (différen-
tiablement et de fagon orientée) a K. Pour le vérifier, on observe que « étre
transverse » est une condition ouverte, puis on applique le théoréme d’extension
des isotopies.

Du point de vue différentiable, le morceau de courbe algébrique £ *(0) N D,

r
est 'image d’une immersion de D, = | | D? avec § points doubles génériques.
i=1

De plus ce nombre de points doubles est, en un certain sens, rigide. De fagon
plus precise: si pour une certaine déformation f, de f = f;, dés que s est
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suffisamment proche de 0, f; !(0) est I'itnage d’une immersion de D, avec des
points doubles génériques pour seules singularités, alors ce nombre de points
doubles est nécessairement égal a .

Pour déemontrer ces derniéres affirmations, on répéte 'argument de Milnor
que nous avons rappelé a la fin du § 1: on homogénise f et on regarde la
courbe projective plane correspondante. On applique le théoréme de Riemann-
Roch a cette courbe et a celle correspondant & une petite déformation. Un
calcul facile des genres donne la solution.

D’autre part, souvenons-nous que la définition 4 donne aussi une interpré-
tation du nombre gordien en termes de nombre minimum de points doubles
d’une immersion différentiable de D, = JL[ D? dans D*.

i=1

La différence entre les deux concepts vient de ce que les deux types d’im-
mersions considérées ont des propriétés supplémentaires qui sont différentes
dans les deux cas. En effet:

a) Dans le cas du nombre gordien, I'immersion est (seulement) différentiable.
Mais elle se comporte trés bien quand on la compose avec la projection
sur R, : elle est de Morse avec le minimum de points critiques compatibles
avec la topologie de D,. |

b) En ce qui concerne f. }(0), t petit, T # 0, I'immersion est C-analytique.
(C’est beaucoup plus fort que differentiable!) Mais elle se comporte moins
bien quand on projette sur R, : application est génériquement de Morse
et n’a pas de minimum.

Références: L. Rudolph [Ru]; J. Milnor [Mi,].

Le mot « ribbon » est souvent employé dans ce dernier contexte. Voir
larticle de L. Rudolph [Ru] cité ci-dessus.

En résumé : Interprétés comme nous venons de la faire, 6 et u(K) ont inde-
niablement une certaine ressemblance. Il est tentant d’essayer d’utiliser cette
ressemblance dans les deux interprétations pour montrer qu’ils sont égaux.

Nous allons maintenant démontrer que, pour un entrelacs algébrique
K : u(K) < 6. (Cest le théoreme de H. Pinkham.) En fait cette inégalité sera
une conséquence d’une proposition plus générale sur les tresses fermeées.

Soit donc B, le groupe des tresses a n brins, de générateurs canoniques
{6, G2y Oy—1 ). SOit B un mot en les ;. Nous designons par:
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b la longueur du mot.

B la tresse fermée associée a P.
r le nombre de composantes de 'entrelacs P.

Référence générale sur les tresses: J. Birman [Bi].

PrOPOSITION.  u(B) < = (b—n+7).

N |

Commentaire. Cette majoration n’est pas extraordinaire en principe. Par
& 1 , ,
exemple, si n = r, elle affirme seulement que u(B) < 2 b, et b n’est rien d’autre

que le nombre de croisements de B. Un argument analogue 4 celui donné dans
la preuve du lemme du § 3 donne immédiatement la démonstration dans ce
cas. La majoration est un peu meilleure quand r est petit par rapport a n.

Nous indiquons maintenant comment le théoréme de Pinkham se déduit
de la proposition. Nous allons le faire en plusieurs étapes.

a) Il est bien connu qu’un entrelacs algébrique K est €équivalent a une tresse
fermée P, ou P est une tresse positive. Par 1a on entend que B peut se représenter
en un mot en les o;, ou tous les exposants sont égaux 4 + 1. Remarquons qu’il
s’agit d’'une équivalence entre entrelacs orientés: K est orienté comme nous
I'avons indiqué au § 1 et B est muni de 'orientation naturelle des tresses fermées.
Ceci est une conséquence du théoreme de préparation de Weierstrass.

b) Une tresse positive est, en particulier, une tresse homogéne au sens de
J. Stallings [St,]. Dans Particle en question Stallings démontre, généralisant
un concept d & K. Murasugi, que B est un entrelacs fibré, et que la fibre est
la surface de Seifert U donnée par la construction de Seifert, effectuée sur la
présentation P.

¢) Un calcul ¢lémentaire donne alors pour la caractéristique d’Euler de

U:x(U) = bo(U) = b4(U) =n -1,

ou b; deésigne le i-éme nombre de Betti. Or, bo(U) = 1 puisqu’on a un entrelacs

fibre, et by(U) = p. D’'ou g = b — n + 1. D’autre part, la formule de Milnor,
2=p+r—1,donne2d =b—n+14r—1=5b—n4+r

Remarque. Si on veut démontrer la conjecture de Milnor par des voies
« purement topologiques » par exemple en utilisant essentiellement la théorie
des nceuds et entrelacs, il est difficile de tenir compte assez exactement de
lhypothése que 'on part d’un entrelacs algébrique, car les entrelacs algébriques
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constituent une classe assez particuliére d’entrelacs toriques itérés. Clest
pourquoi, si on travaille selon ces lignes, il est naturel de généraliser la
conjecture de Milnor en:

: .. 2 1
Conjecture. (cf. [Ru]). Soit B une tresse positive. Alors u(B) = 7 (b—n+r).

La preuve de la proposition sera faite en plusieurs pas.

1" pas. En supprimant (n—r) croisements, on transforme f en un entrelacs
a n composantes. Plus précisément, en supprimant (n—r) lettres du mot B,
convenablement choisies, on obtient un mot y tel que ¥ soit un entrelacs a n
composantes. Bien slr la longueur de y est b — (n—r).

2° pas. Numérotons les brins de B (et de y) de droite a gauche:
1, 2, .., n. Désignons par v; la composante de ¥ qui correspond au i-éme brin.

A chaque point d’intersection de la projection de y; avec la projection de
v{i<j) attribuons le signe + si v; passe dessus v; et le signe — sinon. Soit
N(y;, v;) la somme des signes ainsi obtenus. Finalement,

a; = Z N(v; 7))
jETH1

Nous allons transformer la tresse y en une tresse A en changeant les signes
de certains croisements, de fagon a ce que A soit I'entrelacs trivial a n
composantes. Nous allons le faire de fagon économique.

Soient Ay, ..., A, les n composantes de A. Si a; > 0, décidons que A, sera
au-dessus de toutes les autres .composantes A,, ..., A,. Par contre, si a; < 0,
décidons que A, sera au-dessous de toutes les autres composantes. De méme,
sia, = 0, décidons que A, sera au-dessus de A5, Ay, ..., A,; Sinon décidons qu’elle
sera au-dessous. Par récurrence, si a; > 0, décidons que A; sera au-dessus de
Ni+ 15 - Ay sinon décidons quelle sera au-dessous.

En vertu de la définition des N(y,, v;), toute cette opération pourra se faire

1 : :
en effectuant au plus 3 (b — (n—r)) changements de signes aux croisements.

3¢ pas. Rétablissons les (n —r) croisements que nous avions supprimes dans
le 1°* pas. Nous obtenons une tresse &. Nous affirmons que € est un entrelacs
trivial & r composantes. Bien évidemment ceci achévera la preuve de la
proposition.

Tout d’abord, il est clair que le nombre de composantes de & est r, car B
et € ont méme projection (sans les signes).
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Pour voir que £ est trivial, revenons a L. Par construction, chaque
composante A; est dans un plan horizontal. Si i # j, le plan contenant A; est
distinct du plan contenant A; Toujours par construction, le plan horizontal
contenant A, est soit au-dessus soit au-dessous de tous les autres.

Considérons alors la permutation w de {1, 2, ..., n} associée a la tresse €. Si
w laisse fixe 1, la composante A, se retrouve inchangée dans &. Il est clair qu’elle
est non nouée et non enlacée avec les autres composantes de €, car on peut
I'isotoper en un tout petit cercle dans son plan horizontal sans rencontrer
d’obstacle, car le plan horizontal contenant A, est extrémal.

Si la permutation w ne laisse pas fixe 1, il y a un croisement et un seul qui
relie A, & une autre composante de A, disons A,(k#1). On peut considérer ce
croisement comme le bord d’une mini bande verticale (effectuant un demi-tour)
et reliant le plan horizontal contenant A, a celui contenant A,.

Comme le plan horizontal contenant A, est extrémal, on peut isotoper la
boucle correspondant a A; dans ce plan jusqu’a ce qu’on arrive aux extrémites
de la bande verticale, ceci sans rencontrer d’obstacles. Ensuite on isotope les
cotés de la boucle verticale jusqu’a ce qu’on se trouve dans le plan horizontal
contenant A,.

Un facile raisonnement par récurrence (sur le nombre de brins) achéve alors
la démonstration.

Remarque. Notons m(B) la projection associée a la présentation en tresse
fermée B. La démonstration de la proposition 1 donne aussi une minoration
du nombre gordien de la projection n(B). Elle montre en effet que:

(le|=n+r),

DO =

u(r(B)) >

ou ¢ désigne la longueur algébrique de la tresse B (C’est la somme exponentielle
du mot B).

Pour vérifier cela, remarquons tout d’abord que d’aprés la démonstration
précédente: u(n(B)) = inf{u(¥); ou y décrit tous les mots possibles, obtenus a
partir du mot B en supprimant (n—r) lettres pour que ¥ ait n composantes}.

Par construction, la longueur algébrique ¢’ d’une telle tresse y vérifie:
[ =1l —(n=r)

D’autre part, d’aprés I'affirmation 2 de la seconde proposition de ce méme
paragraphe, u(y) > | Z LY v;) |, ou Ly, v ;) désigne le coefficient d’enlace-

i<j

ment de la composante y; de 9 avec la composante vy ; de §.
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La minoration annoncée découle alors de Pégalité: | Y L(v, Y| = 3 | ¢ .
i<j

- Cette égalité se vérifie aisément pour toutes les tresses pures, en utilisant le
disque bordé par chaque composante vy; et donné par la présentation en tresse
fermée de 4.

Nous conseillons au lecteur d’illustrer la preuve ci-dessus par quelques
exemples de son choix; voir aussi [BW].

Nous montrons maintenant qu’il suffit de démontrer la conjecture de Milnor
dans le cas des entrelacs algébriques a une branche.

PROPOSITION.  Soit L un entrelacs algébriques a r branches :
Ly, L, .,L,.

Si la conjecture de Milnor est vraie pour chacune des branches, alors elle est
vraie pour L.

Preuve de la proposition. Remarquons que, grace au théoréme de Pinkham,
la conjecture de Milnor est équivalente a & < u(L). (Les notations sont celles
du deébut du paragraphe.)

La proposition découle immédiatement des deux affirmations ci-dessous.

Affirmation 1. Soit 9§, l'invariant « d» pour la i-éme branche. Soit
ZL(L;, L;), le coefficient d’enlacement de L; avec L;(i#j). On a:

5= &+ Y ZL,L)

i=1 i<j

Rappelons que pour un entrelacs algébrique, #(L;, L;) > O.

Affirmation 2. Soit K un entrelacs quelconque a r composantes: K, ..., K,.

On a:
uK) = 'Zl u(K;) + zl LK, K)|.
i= i<j

Donnons quelques indications sur la démonstration de ces deux affirma-
tions.

Pour I'affirmation 1, la formule est donnée par Milnor dans son livre [Mi,,
p. 93]. Elle résulte d’un calcul classique en géométrie algébrique, a partir de
la définition de & que nous avons donnée en utilisant la cloture intégrale de
I'anneau local. ,

Pour un topologue, c’est une conséquence facile de la formule de Milnor
26 = p + r — 1, de l'interprétation de p comme le rang de ’homologie en

YN
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dimension 1 d’une surface de Seifert de genre minimal, et de la représentation
en tresses fermées positives des entrelacs algébriques.

Pour laffirmation 2, cest une conséquence facile de la définition 4 du
nombre gordien et du fait que: I'enlacement de deux cercles dans S? est égal
a l'intersection de deux chaines qu’ils bordent dans D*.

Application. Nous verrons au § 6 que la conjecture de Milnor est vraie
pour les neeuds du tore de type (2, n), (3, 4) et (3, 5). La proposition précédente
entraine, par exemple, que la conjecture de Milnor est vraie pour I’entrelacs
d’A’Campo, dont le nombre gordien est donc u = 6.

Plus facilement encore, la conjecture de Milnor est vraie pour I'entrelacs
de Hopf généralisé I'(d, d), associ¢ au point d-uple ordinaire (cf. § 1). Dans ce

dd—1)

cas u(I'(d, d)) = —

§ 5. RELATION ENTRE LE NOMBRE GORDIEN
ET D’AUTRES INVARIANTS DE LA THEORIE DES ENTRELACS

A. Nombre gordien et genre de Murasugi

Au § 1, nous avons défini le genre g d’une surface compacte orientable G

comme: g(G) = Z'g(a), ou les a désignent la surface close obtenue en collant

un disque de dimension 2 sur chaque composante de 0G; Le nombre g(_G_i)
désigne alors le genre usuel. Ceci est la fagon traditionnelle de procéder dans
ce type de situations et améne aux genres de Seifert et de Murasugi pour les
entrelacs dont nous avons parlé au § 2.

Références classiques: K. Murasugi [Mu]; A. Tristam [Tri].

Cependant dans le cas des entrelacs a plusieurs composantes, cette définition
n’est pas toujours la plus pratique. Par exemple un entrelacs de genre zéro
n’est pas nécessairement trivial.

De méme, le genre de Murasugi traditionnel des entrelacs se compare mal
avec le nombre gordien. C’est pourquoi nous introduisons un nouvel invariant
que nous proposons d’appeler le grand genre (car il majore le genre habituel).

Soit donc, a nouveau, G une surface compacte, orientable. G n’est pas
nécessairement connexe et son bord a, disons, r composantes connexes.

Désignons par P, la surface plane connexe, dont le bord a r composantes
connexes. Il y a une fagon essentiellement unique d’identifier le bord de G et
le bord de P, pour obtenir une surface close, orientable G. La surface G est
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