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182 M. BOILEAU ET C. WEBER

Remarque.  Les entrelacs I'(r, d) sont bien faciles a dessiner. Plagons nous
dans le groupe des tresses a r brins B,, et considérons I’élément
a = 01'02'...'0'._1,

puis I’élément B = «". Sans les orientations, I'entrelacs de Hopf généralisé I
correspond a la tresse fermée B. Pour r = 1 on a un cercle non noué et pour
r = 2 on a lentrelacs de Hopf usuel. (Voir la figure 1 dans le cas r = 4.

Avec une description aussi explicite, il est frappant que m(I'(r, d)) ne soit
pas connu. Le § 6 fait le point sur ce que I'on sait actuellement.

§ 3. NOMBRE GORDIEN DES ENTRELACS

Dans ce paragraphe, nous abandonnons la géométrie algébrique plane, pour
nous intéresser 4 un vieil invariant de la théorie des nceuds, aussi appelé
« Uberschneidungszahl » ou « unknotting number ». Commengons par la
definition originale, légérement mise au goit du jour.

r
Soit S, I'union disjointe de r cercles: S, = | | S}. Une immersion
i=1

¢:S, o~ R?

sera dite générique, si ses seules singularités sont des points doubles ou les
deux brins se coupent transversalement.

Une immersion générique sera dite signée si, en chaque point double, on
a choisi un brin positif et un brin négatif. Expliquons-nous: traditionnellement
~ le brin positif est dessiné par un trait plein et le brin négatif est dessiné par un
trait brisé.
| Soit K un entrelacs dans R3. Soit R% un plan dans R* et choisissons une
- orientation de la normale au plan. La projection orthogonale n: R®* — R? est
une bonne projection pour K, si w | K est une immersion genérique. Une telle
 immersion est signée de fagon naturelle, le brin positif en un point double étant
celui qui se trouve le plus haut. Ceci a un sens puisque nous avons choisi une
~orientation de la normale au plan.
Réciproquement, une immersion signée détermine un entrelacs dans R>,
- dont la classe d’équivalence est bien définie. Nous dirons que cet entrelacs se
trouve au-dessus de I'immersion signée.

LEMME. Soit @:S, o R* une immersion générique. Alors, il existe un

f choix des signes aux points doubles tel que l'entrelacs qui se trouve au-dessus de

)
i
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Pimmersion signée correspondante soit trivial, c’est-a-dire constitué de r cercles
situés dans r plans paralléles.

Preuve du lemme.

a) Décidons que la composante de I'entrelacs qui se trouvera au dessus de
o(S1) sera au dessus de toutes les autres composantes. Pour cela, chaque fois
qu’un point double de ¢ fait intervenir un brin de S} et un brin de S}, pour
j # 1, donnons le signe + au brin de S7.

b) Rendons la composante de I'entrelacs qui se trouve au dessus de ¢(S})
non nouce.

Pour cela, choisissons un point-base * sur S, dont I'image par ¢ n’est pas
un point double. Orientons Si, et parcourons Si a partir de *, dans le sens
donné par l'orientation. |

Soit P, € S}, le premier point double de ¢ | S{ que nous rencontrons. Il
existe donc P} € S}, P}, # Py, tel que @(P,) = @(P}). Attribuons a P le signe
+ et a P le signe —. Nous procédons de méme avec le prochain point double
de ¢ | S, sans signe, que nous rencontrons: nous lui attribuons le signe + et
le signe — va a son jumeau, et ainsi de suite.

Le nceud qui va se trouver au dessus de ¢(S1) est trivial! La raison est que
la restriction de la projection © a ce nceud possede un seul minimum, au point
qui se trouve au dessus de @(*). (Un nceud a 1 pont est trivial.)

Traditionnellement le nceud que nous venons de construire s’appelle le nceud
descendant au-dessus de ¢(S7).

¢) Nous décidons que la composante qui se trouvera au-dessus de @(S3)
sera dans R?, au-dessus de celles correspondant a o(S 1).j = 3. Nous procédons
de fagon analogue au point a).

d) Nous rendons triviale la composante qui se trouve au-dessus de ¢(S3).
Nous procédons comme au point b).

e) Nous continuons de fagon analogue avec chaque composante, 'une aprés
l'autre, de I’entrelacs.

Soient, a nouveau, K un entrelacs dans R* et © une bonne projection de
K. Le lemme précédent montre qu’en faisant un nombre fini de changements
de signes aux points doubles, on peut transformer K en I’entrelacs trivial. Par
définition, le nombre gordien de la projection &t est le minimum des changements
de signes nécessaires pour « trivialiser » K.

Définition 1. Le nombre gordien u(K) de K est le minimum des nombres
gordiens de toutes les bonnes projections de K.
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Note. Pour faire bonne mesure, précisons que nous laissons K varier dans
sa classe d’équivalence. Ainsi, il est clair que le nombre gordien est un invariant
de la classe d’équivalence de K. Il est clair aussi que nous n’avons pas du tout
besoin d’orienter K, de sorte qu’il s’agit de la classe d’équivalence non orientée.

Remarque. Dans la démonstration du lemme que nous avons donnée, rien
ne nous obligeait a décider arbitrairement que la premiére composante devait
se trouver au-dessus des autres. De méme, nous aurions pu choisir le nceud
montant plutot que le nceud descendant. En procédant alors de fagon plus éco-
nomique, on montre facilement que, si la bonne projection © posséde ! points
doubles, le nombre gordien de 7 est plus petit ou égal a [/2.

Sir = 1, on peut obtenir un petit peu mieux.

Cette remarque indique de fagon (un peu vague) que dans la détermination
du nombre gordien, la principale difficulté consiste a trouver des minorations
de u/(K).

( . : .
ote historique. Sans doute, le nombre gordien a fait partie pendant

longtemps des invariants numériques un peu folkloriques de la théorie des
nceuds. Voir, par exemple, ce qu'en dit K. Reidemeister dans son livre [Re],
page 16-17. La premiere contribution non banale au sujet fut celle de H. Wendt
[We] qui donna une minoration du gordien dont nous parlerons plus tard
au § 5.

Pour pouvoir ¢tudier convenablement les relations du nombre gordien avec
d’autres invariants de la théorie des entrelacs, nous donnons maintenant
d’autres définitions du gordien.

Vers la définition 2.

Soit B? la boule standard de dimension 3. Soient V le diamétre de B
passant par les poles, E l'équateur de B> que I'on découpe en deux arcs de grand
cercle. Poussons un peu ces arcs dans B>, de fagon a ce qu’on obtienne deux
- arcs L et P plongés proprement et d’extrémités communes A et B. Soit H le
diameétre passant par 4 et B (V' = Vertical, H = Horizontal, L = Lointain,
P = Proche; voir figure 2).

Soit K un entrelacs dans S>. Soit  : B> — S* un plongement différentiable
ouP.L,tel que: ™ }K) = V u L. Par définition, I'’échange élémentaire associé
a s consiste a remplacer I'arc (L) de K par I'arc y(P).

Si Vy, .., I, sont v plongements, disjoints deux a deux, de B>, on peut
effectuer v échanges élémentaires simultanés.
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FIGURE 2

La démonstration du lemme montre, qu’étant donné un entrelacs K dans
S3, il existe un certain nombre d’échanges élémentaires simultanés qui
permettent de transformer K en 'entrelacs trivial.

Définition 2. Le nombre gordien de K est le nombre minimum d’échanges
élémentaires simultanés nécessaires pour rendre K trivial.

Manifestement, il n’est pas indispensable cette fois de faire varier K dans
sa classe d’équivalence.

Vers la définition 3.

Soient @, et @, deux plongements différentiablesde S, = || S} dans S°.
i=1

Une homotopie réguliére générique reliant @, a @, est une application
différentiable ®: S, x [0, 1] — S telle que, si ®,(x) = D(x, t), alors:
1. @5 = @oet @y = @,

2. Pour presque tout t € [0, 1] (c’est-a-dire pour tout ¢t € [0, 1], sauf un nombre
fini de valeurs), @, est un plongement.

3. Si @, n’est pas un plongement, alors ®, est une immersion ayant pour
seules singularités des points doubles a tangentes distinctes.

Soit maintenant K un entrelacs dans S Choisissons une paramétrisation
de K, c’est-a-dire un plongement ¢: S, — S* dont I'image est K. (Ce que nous
allons faire est indépendant du choix de la paramétrisation.)
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Un dénouement de K est une homotopie réguliere générique @ reliant ¢
au plongement trivial (paramétrant Ientrelacs trivial). Il existe toujours un
- dénouement de K : encore une fois c’est une conséquence du lemme. Le nombre
gordien du dénouement ® est la somme du nombre des points doubles des @,
pour tout ¢t € [0, 1].

Définition 3. Le nombre gordien de K est le minimum des nombres
gordiens de tous les dénouements de K.

Remarque. Nous avons supposé l'application @ différentiable. Ceci
implique que, si le nombre gordien de ® est nul, les entrelacs paramétrés par
®, et ®, sont equivalents. Ceci est une conséquence du théoréme d’extension
des isotopies de R. Thom.

Attention en général en théorie des entrelacs le terme d’isotopie désigne une
notion plus faible (voir par exemple D. Rolfsen [Ro;], J. Hillman [Hi]).

Vers la définition 4.

Posons D, = || Df;onadD, =S,
i=1
Soit @ : S, < S* un plongement différentiable. Considérons les immersions
:D, o~ S§* x R, ouR,; = [0, +oo[, telles que:
G1(S x {0}) = S,

GIS, =0

R 0y

peo G:D, —» R, estune fonction de Morse avec r maxima pour seuls points
critiques. L’application p : S x R, — R, désigne la projection canonique.

4. les seules singularités de 'immersion G sont des points doubles génériques,
en nombre fini. ‘

Une paramétrisation ¢ de ’entrelacs K étant donnée, il est facile de vérifier
(cf. [BW]) qu’une telle immersion G existe toujours. Le nombre gordien de G
est alors le nombre de points doubles de G.

Définition 4. Le nombre gordien de I'entrelacs K est le minimum des
nombres gordiens de toutes les immersions G possibles.

THEOREME. Les quatre définitions données sont équivalentes.

Pour une démonstration, voir [BW].
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