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178 M. BOILEAU ET C. WEBER

Finalement, Milnor donne dans son livre un argument pour se ramener au
cas particulier (voir [Mi,], p. 88 a 91). Plus précisément, il montre que tout
germe est équivalent a droite 4 un germe satisfaisant les conditions du cas
particulier. '

Nous donnerons au § 4 une interprétation (classique) de o, en termes de
« points doubles proches ».

Au § 5 nous donnerons une autre notion de genre d’une surface, que nous
appellerons le grand genre. Elle permet de bien voir pourquoi & est la
contribution locale au genre de C'.

§ 2. GENRES DE MURASUGI ET DE SEIFERT DES ENTRELACS

Soit K un entrelacs orienté dans S°. Il est bien connu depuis H. Seifert qu’il
existe des surfaces compactes orientées U = S>, dont le bord orienté est K.
Dans ce qui suit, nous supposerons toujours que U n’a aucune composante
connexe close. U est appelée une surface de Seifert de K.

Le genre de Seifert de K, noté s(K), est le minimum des genres des surfaces
de Seifert de K.

Nous allons maintenant nous intéresser aux entrelacs orientés qui sont
fibrés.

Références: J. Hillman [Hi]; D. Rolfsen [Ro,].
Les faits suivants sur les entrelacs fibrés sont classiques:

a) Les entrelacs algébriques sont fibrés. (C’est le théoreme de Milnor, voir
[Mi, ]).

b) Les surfaces de Seifert d’un entrelacs fibré sont toutes connexes. En voici
briévement la raison: ’homologie en dimension 1 du revétement cyclique
infini associé a 'orientation de I'entrelacs est de type fini sur Z, puisque ce
revétement a le type d’homotopie de la fibre; s’il existe une surface de
Seifert non connexe, ’homologie en question n’est pas de type fini.

c) N’importe quelle surface de Seifert de K, de genre minimum, est isotope a
une fibre de la fibration. Cela résulte essentiellement de la démonstration
du théoréme de fibration de J. Stallings (cf. [St,]). (Si on veut que I'isotopie
reste fixe sur le bord, il faut utiliser F. Waldhausen [Wad].)

d) Milnor démontre dans son théoreme de fibration que, si L est un entrelacs
algébrique, la fibre de la fibration est difffomorphe au morceau de courbe

algébrique que nous avons appelé X au § 1. Par définition,
dim; H(X;Z) = p

N
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1 .-
et donc, en vertu de ¢), s(L) = = [ — (r— 1)] pour n’importe quel entrelacs

)

algébrique L.

Considérons maintenant S® comme le bord de la boule B*. Bien sir, il
existe des surfaces compactes orientées V' < B* telles que le bord orienté de
V soit égal a4 un entrelacs orienté donné. A nouveau on impose qu’aucune
composante connexe de V ne soit close. Pour faire joli, on peut toujours
supposer que V est plongée proprement dans B*, c’est-a-direque ¢V = V N S3,

Une surface telle que V est appelée surface de Murasugi de l'entrelacs orienté
donné. Par définition, le genre de Murasugi est le minimum du genre des
surfaces de Murasugi de I'entrelacs K. Nous le noterons m(K).

Evidemment, m(K) < s(K) puisque toute surface de Seifert est une surface
de Murasugi.

Référence originale : K. Murasugi [Mu].

Commentaires. 1) Si K est un nceud (r = 1), les genres que nous avons
définis de dépendent pas de I'orientation. Plus généralement si on remplace
I'entrelacs orienté K par Pentrelacs K' obtenu en changeant les orientations
de toutes les composantes de K, alors K et K’ ont mémes genres de Seifert,
respectivement de Murasugi. Cependant si on fait d’autres modifications sur
les orientations, en général les genres changent.

2) 1l est trés facile de trouver des exemples ou I'inégalité m(K) < s(K) est
stricte. Pensez, par exemple, aux nceuds cobordants a zéro.

Une premiere relation entre le genre de Murasugi des entrelacs algébriques
et la conjecture de Thom est donnée par la proposition suivante:

PROPOSITION.  Supposons qu’il existe un entrelacs algébrique K avec
m(K) < s(K). Alors la conjecture de Thom est fausse.

D’ou la conjecture (anonyme a ce qu’il nous semble (cf. [Kir, pb. 1.40]):
« pour tous les entrelacs algébriques K, on a m(K) = s(K) ».

Preuve de la proposition. Soit f : C* — C une fonction polynomiale avec
f(0) = 0, possédant en O une singularité isolée, et dont I’entrelacs algébrique
correspondant est équivalent a K.

Soit C la courbe projective plane obtenue en homogénéisant f. D’aprés
argument donné par J. Milnor dans son livre [Mi,, p. 89] (et en utilisant le

théoreme de J. Mather) on peut supposer que C est irréductible. Soit d son
degré.
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L’argument de Milnor que nous avons reproduit a la fin du § 1 montre que
la surface différentiable F = CP2, obtenue en ajoutant a C les morceaux de
surface « de type X » au voisinage de chaque point singulier a un genre g
donné par la formule: 2g = (d—1) (d—2).

Si K a, en vertu de 'hypothése, un genre de Murasugi strictement plus petit
que son genre de Seifert, choisissons une surface de Murasugi V réalisant le
minimum du genre.

Construisons une surface différentiable F' « CP? en remplagant, au
voisinage de l'origine, le morceau de surface X par V. Le degré de F” est egal
au degré de F. Mais le genre de F’ est strictement plus petit que le genre de
F. La surface F’ serait donc un contre-exemple a la conjecture de Thom.

Nous donnons maintenant une autre relation classique entre la conjecture
de Thom et le genre de Murasugi des entrelacs.

Soit un entier r > 1. Considérons le tore standard T dans S3, et une courbe
fermée simple y sur T de type (1, 1). Considérons l’entrelacs I' obtenu en
dessinant sur T r courbes parallelesa y : v, v,, ..., ¥,- Orientons y arbitrairement
mais de fagon définitive. Orientons chaque vy, arbitrairement. Pour chaque
entier i, avec 1 < i < r, y; est homologue sur T a g;y, ou g; = +1. Posons

i=1
supposant d > 0.
Bien siir, ¥ = d mod 2. Nous noterons I'(r, d) 'un des entrelacs orientés
ainsi obtenu. Ce sont des entrelacs de Hopf généralisés.
Un cas particulier intéressant est I'entrelacs I'(d, d). Il s’agit de Ientrelacs

orienté associé a la singularité x! — y¢ = 0. (Point d-uple ordinaire.)

,
d = ) ¢. Nous ne restreindrons pas la généralité de ce qui va suivre en r

PROPOSITION. La conjecture de Thom est vraie si et seulement si le genre
de Murasugi des entrelacs de Hopf généralisés I'(r,d) est égal a

(d—1)(d—2)
2 | 2
pour tout r et pour tout d.
- (d—1)(d—2)
Remarque. 11 n’est pas difficile de montrer que m(['(r, d)) < 5

et que m(I'(r, d)) < m('(d, d)). | i
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Il serait agréable de montrer que m(I'(r, d)) = m(I'(d, d)). Dans ces condi-
tions la proposition deviendrait : 1a conjecture de Thom est vraie si et seulement
si

, d—1)(d—=2
m(T'(d. d)) = (‘ )7( ) pour tout d > 1.

Preuve de la proposition. C’est une conséquence facile de la topologie de
CP2. Rappelons que si F est une surface différentiable close, connexe, orientée
dans CP?. plus généralement un 2-cycle entier, son degré est obtenu en calcu-
lant le nombre d’intersection F - CP!. A l'aide d’une petite isotopie on peut
toujours supposer que F rencontre CP! transversalement.

Désignons par nt: E — CP? le fibré en disques de dimension 2, normal a
CP! dans CP?. L'intersection F N E se compose en général de r fibres orientées
(par l'orientation de F): By, B, ..., B,. Comme le fibré E est orienté, pour chaque
entier i, 1 < i < r, posons n; = +1 si 'orientation de B, coincide avec celle

r
de E et posons n; = — 1 sinon. On note alors Z n, = d.
i=1

Dautre part, (CP2— E) est une boule de dimension 4, que nous notons B*.
Alors, S3 = ¢B* = ¢E.

Posons F' = F n (CP?—E) = F ~n B* Lebord de F, 0F <= 0E = S3, est
une entrelacs orienté a r composantes. La description usuelle de la fibration
de Hopf montre que c’est un entrelacs I'(r, d).

A partir de ces observations la fin de la démonstration est immédiate, si
on remarque que F’ est une surface de Murasugi pour cet entrelacs.

4 A
( )
~ N
e ~N
_ ~— )
FIGURE 1

Entrelacs de Hopf généralisé (non orienté) & r = 4 composantes connexes.




182 M. BOILEAU ET C. WEBER

Remarque.  Les entrelacs I'(r, d) sont bien faciles a dessiner. Plagons nous
dans le groupe des tresses a r brins B,, et considérons I’élément
a = 01'02'...'0'._1,

puis I’élément B = «". Sans les orientations, I'entrelacs de Hopf généralisé I
correspond a la tresse fermée B. Pour r = 1 on a un cercle non noué et pour
r = 2 on a lentrelacs de Hopf usuel. (Voir la figure 1 dans le cas r = 4.

Avec une description aussi explicite, il est frappant que m(I'(r, d)) ne soit
pas connu. Le § 6 fait le point sur ce que I'on sait actuellement.

§ 3. NOMBRE GORDIEN DES ENTRELACS

Dans ce paragraphe, nous abandonnons la géométrie algébrique plane, pour
nous intéresser 4 un vieil invariant de la théorie des nceuds, aussi appelé
« Uberschneidungszahl » ou « unknotting number ». Commengons par la
definition originale, légérement mise au goit du jour.

r
Soit S, I'union disjointe de r cercles: S, = | | S}. Une immersion
i=1

¢:S, o~ R?

sera dite générique, si ses seules singularités sont des points doubles ou les
deux brins se coupent transversalement.

Une immersion générique sera dite signée si, en chaque point double, on
a choisi un brin positif et un brin négatif. Expliquons-nous: traditionnellement
~ le brin positif est dessiné par un trait plein et le brin négatif est dessiné par un
trait brisé.
| Soit K un entrelacs dans R3. Soit R% un plan dans R* et choisissons une
- orientation de la normale au plan. La projection orthogonale n: R®* — R? est
une bonne projection pour K, si w | K est une immersion genérique. Une telle
 immersion est signée de fagon naturelle, le brin positif en un point double étant
celui qui se trouve le plus haut. Ceci a un sens puisque nous avons choisi une
~orientation de la normale au plan.
Réciproquement, une immersion signée détermine un entrelacs dans R>,
- dont la classe d’équivalence est bien définie. Nous dirons que cet entrelacs se
trouve au-dessus de I'immersion signée.

LEMME. Soit @:S, o R* une immersion générique. Alors, il existe un

f choix des signes aux points doubles tel que l'entrelacs qui se trouve au-dessus de

)
i
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