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Finalement, Milnor donne dans son livre un argument pour se ramener au
cas particulier (voir [MiJ, p. 88 à 91). Plus précisément, il montre que tout
germe est équivalent à droite à un germe satisfaisant les conditions du cas

particulier.
Nous donnerons au § 4 une interprétation (classique) de 5Z en termes de

« points doubles proches ».

Au § 5 nous donnerons une autre notion de genre d'une surface, que nous
appellerons le grand genre. Elle permet de bien voir pourquoi 5 est la

contribution locale au genre de C.

§ 2. Genres de Murasugi et de Seifert des entrelacs

Soit K un entrelacs orienté dans S3. Il est bien connu depuis H. Seifert qu'il
existe des surfaces compactes orientées U c= S3, dont le bord orienté est K.
Dans ce qui suit, nous supposerons toujours que U n'a aucune composante
connexe close. U est appelée une surface de Seifert de K.

Le genre de Seifert de K, noté s(K), est le minimum des genres des surfaces

de Seifert de K.
Nous allons maintenant nous intéresser aux entrelacs orientés qui sont

fibrés.

Références: J. Hillman [Hi]; D. Rolfsen [Rox].
Les faits suivants sur les entrelacs fibrés sont classiques :

a) Les entrelacs algébriques sont fibrés. (C'est le théorème de Milnor, voir
[Mû]).

b) Les surfaces de Seifert d'un entrelacs fibré sont toutes connexes. En voici
brièvement la raison : l'homologie en dimension 1 du revêtement cyclique
infini associé à l'orientation de l'entrelacs est de type fini sur Z, puisque ce

revêtement a le type d'homotopie de la fibre; s'il existe une surface de

Seifert non connexe, l'homologie en question n'est pas de type fini.

c) N'importe quelle surface de Seifert de K, de genre minimum, est isotope à

une fibre de la fibration. Cela résulte essentiellement de la démonstration
du théorème de fibration de J. Stallings (cf. [StJ). (Si on veut que l'isotopie
reste fixe sur le bord, il faut utiliser F. Waldhausen [Wad].)

d) Milnor démontre dans son théorème de fibration que, si L est un entrelacs

algébrique, la fibre de la fibration est difféomorphe au morceau de courbe

algébrique que nous avons appelé X au § 1. Par définition,
dimz HfX; Z) p
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et donc, en vertu de c), s(L) — [j-i — (r — 1 )] pour n'importe quel entrelacs

algébrique L.

Considérons maintenant S3 comme le bord de la boule B4. Bien sûr, il
existe des surfaces compactes orientées V a B4 telles que le bord orienté de

V soit égal à un entrelacs orienté donné. A nouveau on impose qu'aucune

composante connexe de V ne soit close. Pour faire joli, on peut toujours

supposer que V est plongée proprement dans £4, c'est-à-dire que ÔV V n S3.

Une surface telle que V est appelée surface de Murasugi de l'entrelacs orienté

donné. Par définition, le genre de Murasugi est le minimum du genre des

surfaces de Murasugi de l'entrelacs K. Nous le noterons m(K).

Evidemment, m(K) ^ s(K) puisque toute surface de Seifert est une surface

de Murasugi.

Référence originale: K. Murasugi [Mu].

Commentaires. 1) Si K est un nœud (r 1), les genres que nous avons
définis de dépendent pas de l'orientation. Plus généralement si on remplace
l'entrelacs orienté K par l'entrelacs K' obtenu en changeant les orientations
de toutes les composantes de K, alors K et K' ont mêmes genres de Seifert,

respectivement de Murasugi. Cependant si on fait d'autres modifications sur
les orientations, en général les genres changent.

2) Il est très facile de trouver des exemples où l'inégalité m{K) ^ s{K) est

stricte. Pensez, par exemple, aux nœuds cobordants à zéro.

Une première relation entre le genre de Murasugi des entrelacs algébriques
et la conjecture de Thom est donnée par la proposition suivante :

Proposition. Supposons qu'il existe un entrelacs algébrique K avec
m(K) < s(K). Alors la conjecture de Thom est fausse.

D'où la conjecture (anonyme à ce qu'il nous semble (cf. [Kir, pb. 1.40]):
« pour tous les entrelacs algébriques K, on a m(K) s(K) ».

Preuve de la proposition. Soit / : C2 C une fonction polynomiale avec

f(0) 0, possédant en 0 une singularité isolée, et dont l'entrelacs algébrique
correspondant est équivalent à K.

Soit C la courbe projective plane obtenue en homogénéisant f. D'après
l'argument donné par J. Milnor dans son livre [Mil5 p. 89] (et en utilisant le
théorème de J. Mather) on peut supposer que C est irréductible. Soit d son
degré.
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L'argument de Milnor que nous avons reproduit à la fin du § 1 montre que
la surface différentiable F c CP2, obtenue en ajoutant à C les morceaux de

surface « de type X » au voisinage de chaque point singulier a un genre g

donné par la formule: 2g (d — l)(d — 2).

Si K a, en vertu de l'hypothèse, un genre de Murasugi strictement plus petit

que son genre de Seifert, choisissons une surface de Murasugi V réalisant le

minimum du genre.
Construisons une surface différentiable F c= CP2 en remplaçant, au

voisinage de l'origine, le morceau de surface X par V Le degré de F est égal

au degré de F. Mais le genre de F' est strictement plus petit que le genre de

F. La surface F serait donc un contre-exemple à la conjecture de Thom.

Nous donnons maintenant une autre relation classique entre la conjecture
de Thom et le genre de Murasugi des entrelacs.

Soit un entier r ^ 1. Considérons le tore standard T dans S3, et une courbe
fermée simple y sur T de type (1, 1). Considérons l'entrelacs T obtenu en

dessinant sur T r courbes parallèles à y : y1? y2,..., yr. Orientons y arbitrairement
mais de façon définitive. Orientons chaque yt arbitrairement. Pour chaque
entier i, avec 1 < i ^ r, y(- est homologue sur T à et-y, où et- ±1. Posons

r
d Y sr Nous ne restreindrons pas la généralité de ce qui va suivre en

i 1

supposant d ^ 0.

Bien sûr, r d mod 2. Nous noterons T(r, d) l'un des entrelacs orientés

ainsi obtenu. Ce sont des entrelacs de Hopf généralisés.

Un cas particulier intéressant est l'entrelacs T(d, d). Il s'agit de l'entrelacs
orienté associé à la singularité xd — yd 0. (Point ù-uple ordinaire.)

Proposition. La conjecture de Thom est vraie si et seulement si le genre

de Murasugi des entrelacs de Hopf généralisés T(r, d) est égal à

(d- 1) (d-2)
2

pour tout r et pour tout d.

(d-l)(d-2)
Remarque. Il n'est pas difficile de montrer que m(r(r, d)) ^

et que m(r(r, d)) ^ m(F(d, dj).
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Il serait agréable de montrer que m{Y(r, d)) m(T(d, d)). Dans ces conditions

la proposition deviendrait : la conjecture de Thom est vraie si et seulement
si

m(V(d. d)) ————— pour tout d ^ 1.

Preuve de la proposition. C'est une conséquence facile de la topologie de

CP2. Rappelons que si F est une surface differentiate close, connexe, orientée

dans CP2, plus généralement un 2-cycle entier, son degré est obtenu en calculant

le nombre d'intersection F • CP1. A l'aide d'une petite isotopie on peut
toujours supposer que F rencontre CP1 transversalement.

Désignons par n : £ - CP1 le fibré en disques de dimension 2, normal à

CP1 dans CP2. L'intersection F n E se compose en général de r fibres orientées

(par l'orientation de F) : Bu B2,Br. Comme le fibré E est orienté, pour chaque
entier /. 1 ^ ^ r, posons nt -h 1 si l'orientation de Bt coïncide avec celle

r
de E et posons n-t — 1 sinon. On note alors £ nt d.

i= 1

D'autre part, (CP2 — £) est une boule de dimension 4, que nous notons B4.

Alors, S3 cB4 cE.

Posons F E n (CP2-Ê) E n B4. Le bord de F, ÔF' a ÔE S3, est

une entrelacs orienté à r composantes. La description usuelle de la fibration
de Hopf montre que c'est un entrelacs T(r, d).

A partir de ces observations la fin de la démonstration est immédiate, si

on remarque que F est une surface de Murasugi pour cet entrelacs.

Entrelacs

Figure 1

de Hopf généralisé (non orienté) à r 4 composantes connexes.
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Remarque. Les entrelacs T(r, d) sont bien faciles à dessiner. Plaçons nous
dans le groupe des tresses à r brins Bn et considérons l'élément

a cr1 • a2 *• ö"r_ t

puis l'élément ß ar. Sans les orientations, l'entrelacs de Hopf généralisé T

correspond à la tresse fermée ß. Pour r 1 on a un cercle non noué et pour
r 2 on a l'entrelacs de Hopf usuel. (Voir la figure 1 dans le cas r 4.)

Avec une description aussi explicite, il est frappant que m(r(r, d)) ne soit

pas connu. Le § 6 fait le point sur ce que l'on sait actuellement.

§ 3. Nombre gordien des entrelacs

Dans ce paragraphe, nous abandonnons la géométrie algébrique plane, pour
nous intéresser à un vieil invariant de la théorie des nœuds, aussi appelé

« Uberschneidungszahl » ou « unknotting number ». Commençons par la

définition originale, légèrement mise au goût du jour.
r

Soit Sr l'union disjointe de r cercles: Sr J_[ S}. Une immersion
i= 1

cp : Sr R2

sera dite générique, si ses seules singularités sont des points doubles où les

deux brins se coupent transversalement.
Une immersion générique sera dite signée si, en chaque point double, on

a choisi un brin positif et un brin négatif. Expliquons-nous : traditionnellement
le brin positif est dessiné par un trait plein et le brin négatif est dessiné par un
trait brisé.

Soit K un entrelacs dans R3. Soit R2 un plan dans R3 et choisissons une

orientation de la normale au plan. La projection orthogonale n : R3 -> R2 est

une bonne projection pour K, si n | K est une immersion générique. Une telle

immersion est signée de façon naturelle, le brin positif en un point double étant

celui qui se trouve le plus haut. Ceci a un sens puisque nous avons choisi une

orientation de la normale au plan.

Réciproquement, une immersion signée détermine un entrelacs dans R3,

dont la classe d'équivalence est bien définie. Nous dirons que cet entrelacs se

trouve au-dessus de l'immersion signée.

Lemme. Soit (p : Sr R2 une immersion générique. Alors, il existe un

choix des signes aux points doubles tel que l'entrelacs qui se trouve au-dessus de
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