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LE PROBLEME DE J. MILNOR
"SUR LE NOMBRE GORDIEN DES NOEUDS ALGEBRIQUES ')

par Michel BoiLEau et Claude WEBER

INTRODUCTION

Cet article tente de faire le point sur deux conjectures célebres et toujours
ouvertes, celles dites de R. Thom et J. Milnor. Elles sont attirantes, car elles
relient de fagon spectaculaire la géométrie algébrique et la topologie en petites
dimensions. {

En ce qui concerne la topologie, nous avons particulierement mis I'accent
sur la théorie des entrelacs, plutot que sur la théorie des nceuds (connexes). Il
y a a4 cela au moins deux raisons: tout d’abord ‘ce sont les entrelacs qui sont
vraiment liés au sujet et d’autre part, selon le précepte de L. Siebenmann, la
théorie des entrelacs est indissociable de celle des nceuds. Ceci entraine parfois
quelques complications.

Les trois premiers paragraphes de cet article sont essentiellement de la mise
en place de choses connues.

Au § 4 nous donnons une démonstration simple du théoréme de H. Pinkham
qui majore le nombre gordien des entrelacs algébriques. Cette démonstration
a €té obtenue en collaboration avec D. Bennequin. h

Au § 5 nous donnons une preuve des inégalités de H. Wendt dans le cas
des entrelacs et discutons certaines minorations classiques du nombre gordien.
Pour cela nous introduisons le « grand genre » de Murasugi, concept commode
pour minorer le nombre gordien d’un entrelacs.

Au § 6 nous généralisons un peu les théoréemes de A. Tristam sur les signa-
tures des entrelacs. Ces théorémes permettent de trouver des bornes pour la
conjecture de R. Thom qui sont exactement celles données par V. Rohlin d’une
part et par W. C. Hsiang et R. Szczarba d’autre part, en utilisant le théoréme
de la G-signature d’Atiyah-Singer. Qu’une telle voie soit théoriquement possible
était connu de T. Matumoto et O. Viro. Voir aussi V. A. Nezhinskii [Ne] et
S. A. Popov [Po].

1).Cet article a deja paru dans Neuds, tresses et singularités, Monographie de
Enseignement Mathématique N° 31, Genéve 1983, p. 49-98.
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Les détails de plusieurs démonstrations se trouvent dans le manuscrit multi-
copie [BW], du méme titre que cet article.

Nous tenons a remercier Daniel Bennequin, Lé Dung Trang et Frangoise
Michel des nombreuses discussions que nous avons eues sur les sujets traités
ici. L’enthousiasme de Lé pour la conjecture de J. Milnor est trés contagieux!

Le plan de cet article est le suivant:

§ 1. Genre des courbes planes et conjecture de R. Thom.
§ 2. Genres de Murasugi et de Seifert des entrelacs;

§ 3. Nombre gordien des entrelacs.

§4. Le probleme de Milnor.

§ 5. Relations entre le nombre gordien et d’autres invariants de la théorie des
entrelacs.

§ 6. Signatures.

§ 7. Quelques problémes liés au nombre gordien.

§ 1. (GENRE DES COURBES PLANES ET CONJECTURE DE R. THOM

Soit C une courbe algébrique dans CP?2 irréductible. Il existe donc un poly-
nome homogeéne F(X, Y, Z) irréductible, tel que C est constituée par les zéros
de F. Par définition le degré de C est le degré du polynome F.

Supposons C lisse. Alors, du point de vue différentiable, C est une surface
close, connexe, orientée. Elle a un genre topologique g et une version du
théoréme de Riemann-Roch (connue aussi sous le nom de théoréme de Pliicker)
affirme que: 2g = (d—1) (d—2).

Références: W. Fulton [Fu]; R. Walker [Wak].

En fait ce théoréme se trouve dans quasiment tous les livres sur les courbes
planes.

Par le théoréme de Bezout, le degré d peut étre interprété topologiquement
en disant que la classe fondamentale [C] € H,(C; Z) est homologue dans CP?
a d fois la classe représentée par le générateur canonique CP! ¢, CP2 On a
toujours d > 0. Ceci justifie la définition qui suit.

Soit F une surface topologique dans CP2. Supposons F close, connexe,
orientée. On dira que F est de degré d si la classe fondamentale [ F] est homo-
logue dans CP? a d fois [CP']. Quitte a changer l'orientation de F, nous
supposerons toujours d > O. |

Ceci étant précisé, nous pouvons énoncer la
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CONJECTURE DE R. THOM. Soit F une surface différentiable, close, connexe,
orientée dans CP2.  Supposons que F est de degré d > 0. Alors le genre
(d—1)(d—2)

de F est supérieur ou égal a 5 .

Commentaires. 1) Contrairement a la formule de Pliicker -Riemann-Roch,
on ne peut pas s’attendre 4 une égalité. En effet, si on change Fen F 3 T2, ou
T? désigne le tore S' x S! et ou # désigne une somme connexe, on voit que le
degré ne change pas tandis que le genre augmente d’une unite.

2) La conjecture est fausse si on demande seulement que F soit plongee
topologiquement (ou P.L.). En fait M. Kervaire et J. Milnor [KM] ont montre
que, pour tout d = 0, il existe une sphére P.L., localement plate sauf en un
point, qui est de degré d.

3) Bien sir, pour tout d > 1, il existe une courbe algébrique lisse de degré
d. Par exemple celle correspondant au polynome x? + y? + z¢ = 0.

4) Un cas tres particulier de la conjecture affirme qu’une sphére diffé-
rentiable S? dans CP? est de degré plus petit ou égal a 2. La question de savoir
quels éléments de H,(M ; Z) peuvent étre représentés par une sphére diffé-
rentiable a été étudiée pour la premicre fois par Kervaire-Milnor. (M est une
variete différentiable de dimension 4, simplement connexe). Le cas particulier
de CP? a été résolu par A. Tristam. (Voir le § 6; nous verrons que seules les
classes de degré <2 peuvent étre représentées par une S? différentiable.)

Envisageons maintenant la situation ou C n’est pas nécessairement lisse.
En ce cas, la théorie locale des singularités nous permet de décrire C de la
facon suivante:

a) L’ensemble X des points singuliers de C est fini.
b) Pour chaque point singulier ze€ X, il existe une petite boule D, de

dimension réelle 4, centrée en z telle que:

1) ¢D, rencontre C transversalement
i) D, "X = {z}

i) la paire (D,, D,nC) est homéomorphe au cdne de centre z sur la paire
(¢D,, dD,nC).

Comme l'intersection est transverse, D, n C constitue un entrelacs orienté
dans ¢D,. Notons r, le nombre de composantes connexes de cet entrelacs. Par
deéfinition, le nceud ou entrelacs L, est un entrelacs algébrique, a ne pas
confondre avec les entrelacs algébriques de F. Bonahon et L. Siebenmann pour
qui I'adjectif algébrique a une autre signification.

Soit C = Cn (CP2~uD,).

zel
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C est une surface différentiable (en fait C-analytique) connexe (car C est
irréductible), orientée (par lorientation venant des complexes), 2 bord. Le

nombre de composantes connexes du bord 0C est égal a Y 1,
zeX
Par définition, le genre topologique g de C est égal au genre de la surface
C obtenue en attachant un disque de dimension 2 a chaque composante de 0C.
La formule de Riemann-Roch dans le cas d’une courbe avec singularités
dit alors que:

(d—l)z(d 2) _ g+ Y5,

zeX

(nous rappellerons la définition de 6, un peu plus loin).

Références: J. P. Serre [Ser]; P. Samuel [Sam].

Quelques commentaires sur les objets topologiques.

Un entrelacs orienté est la donnée d’une famille finie de courbes différen-
tiables orientées, plongée dans S (ou R®). Un nceud est un entrelacs a une
composante.

Deux tels entrelacs sont équivalents §’il existe un homéomorphisme de S?,
de degré + 1, envoyant I'un des entrelacs sur I’autre, en conservant les orienta-
tions de chaque composante.

Dans notre cas les entrelacs algébriques L, sont orientés par 'orientation
complexe du morceau de courbe algébrique D, n C, dont L, est le bord.

Pour éviter chaque fois de longues perlphrases définissons le genre d’une
surface de la fagcon suivante:

Soit G une surface compacte orientable. Soient G4, G, ..., G, les compo-

santes connexes de G. Soit a, 1 < i < s, la surface close obtenue a partir de
G; en attachant un disque sur chaque composante connexe de 0G;. Alors par

définition, le genre de G est la somme des genres des a—i, 1 < i< s Cest aussi

le genre de la somme connexe des G; (ou des a).

Commentaires sur 9,.
On définit &, en géométrie algébrique de la fagon suivante: on considére
I’anneau local en z: ¢, et sa cloture inteégrale O, o O,. Alors, par définition:

@I

5, = di
1mc(92

Nous allons nous intéresser maintenant a une interprétation topologique
de l'entier &, donnée par J. Milnor.
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A laide d’une carte affine contenant la boule D, nous pouvons supposer
que nous avons une fonction polynomiale f : C* —» C, avec f(0) = 0, et que O
est une singularité isolée de f.

Finalement, pour une petite boule D centrée en 0 € C%, nous pouvons
supposer que la paire (D, D n f~%(0)) est isomorphe, via la carte, a la paire
(D,, D,nC). |

Alors, pour ¢ suffisamment proche de 0, f ~1(t) n 0D est un entrelacs équi-
valent a L,. Cet entrelacs orienté K borde dans D le morceau de courbe lisse
f7')nD = X, = X.

Rappelons que, pour ¢t et ¢/, non nuls, suffisamment proches de 0, les paires
(D, X,) et (D, X,) sont difftomorphes.

Référence: J. Milnor [Mi,].
Comme J. Milnor, notons p l'entier dim, H(X ; Z). J. Milnor démontre
que l'on a nécessairement : ‘

200 =p+r-—1

Il est important pour la compréhension de cet article d’avoir une idee de
la démonstration de la formule de Milnor. Nous en donnons donc une esquisse.

Cas particulier : supposons que Z est réduit a un seul point, noté z.

Comme les entrelacs L, et K ont méme type, il est facile de construire une
surface différentiable F dans CP? en recollant C avec X. F est une surface
close, connexe et orientée. |

Alors, un calcul facile, qui utilise que C et X sont toutes deux connexes,
montre que: |

1
genre de F = genre de C + E(u-f-r——l)

Milnor montre alors qu’il y a une courbe lisse C’, isotope a F. Ceci est une
conséquence du fait que nous avons supposé X réduit a un point.
Par construction, on a:

genre de F = genrede C' = ¢’
et

degre de C = degré de F = degré de C' = d.

(@—1@d-2) _ d—1)(d—2)

Par Riemann-Roch:

g’et( =g + 0.

Le calcul du genre de F montre alors que § =

2
1(+ 1

S r_-
5 (K )
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Finalement, Milnor donne dans son livre un argument pour se ramener au
cas particulier (voir [Mi,], p. 88 a 91). Plus précisément, il montre que tout
germe est équivalent a droite 4 un germe satisfaisant les conditions du cas
particulier. '

Nous donnerons au § 4 une interprétation (classique) de o, en termes de
« points doubles proches ».

Au § 5 nous donnerons une autre notion de genre d’une surface, que nous
appellerons le grand genre. Elle permet de bien voir pourquoi & est la
contribution locale au genre de C'.

§ 2. GENRES DE MURASUGI ET DE SEIFERT DES ENTRELACS

Soit K un entrelacs orienté dans S°. Il est bien connu depuis H. Seifert qu’il
existe des surfaces compactes orientées U = S>, dont le bord orienté est K.
Dans ce qui suit, nous supposerons toujours que U n’a aucune composante
connexe close. U est appelée une surface de Seifert de K.

Le genre de Seifert de K, noté s(K), est le minimum des genres des surfaces
de Seifert de K.

Nous allons maintenant nous intéresser aux entrelacs orientés qui sont
fibrés.

Références: J. Hillman [Hi]; D. Rolfsen [Ro,].
Les faits suivants sur les entrelacs fibrés sont classiques:

a) Les entrelacs algébriques sont fibrés. (C’est le théoreme de Milnor, voir
[Mi, ]).

b) Les surfaces de Seifert d’un entrelacs fibré sont toutes connexes. En voici
briévement la raison: ’homologie en dimension 1 du revétement cyclique
infini associé a 'orientation de I'entrelacs est de type fini sur Z, puisque ce
revétement a le type d’homotopie de la fibre; s’il existe une surface de
Seifert non connexe, ’homologie en question n’est pas de type fini.

c) N’importe quelle surface de Seifert de K, de genre minimum, est isotope a
une fibre de la fibration. Cela résulte essentiellement de la démonstration
du théoréme de fibration de J. Stallings (cf. [St,]). (Si on veut que I'isotopie
reste fixe sur le bord, il faut utiliser F. Waldhausen [Wad].)

d) Milnor démontre dans son théoreme de fibration que, si L est un entrelacs
algébrique, la fibre de la fibration est difffomorphe au morceau de courbe

algébrique que nous avons appelé X au § 1. Par définition,
dim; H(X;Z) = p

N
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1 .-
et donc, en vertu de ¢), s(L) = = [ — (r— 1)] pour n’importe quel entrelacs

)

algébrique L.

Considérons maintenant S® comme le bord de la boule B*. Bien sir, il
existe des surfaces compactes orientées V' < B* telles que le bord orienté de
V soit égal a4 un entrelacs orienté donné. A nouveau on impose qu’aucune
composante connexe de V ne soit close. Pour faire joli, on peut toujours
supposer que V est plongée proprement dans B*, c’est-a-direque ¢V = V N S3,

Une surface telle que V est appelée surface de Murasugi de l'entrelacs orienté
donné. Par définition, le genre de Murasugi est le minimum du genre des
surfaces de Murasugi de I'entrelacs K. Nous le noterons m(K).

Evidemment, m(K) < s(K) puisque toute surface de Seifert est une surface
de Murasugi.

Référence originale : K. Murasugi [Mu].

Commentaires. 1) Si K est un nceud (r = 1), les genres que nous avons
définis de dépendent pas de I'orientation. Plus généralement si on remplace
I'entrelacs orienté K par Pentrelacs K' obtenu en changeant les orientations
de toutes les composantes de K, alors K et K’ ont mémes genres de Seifert,
respectivement de Murasugi. Cependant si on fait d’autres modifications sur
les orientations, en général les genres changent.

2) 1l est trés facile de trouver des exemples ou I'inégalité m(K) < s(K) est
stricte. Pensez, par exemple, aux nceuds cobordants a zéro.

Une premiere relation entre le genre de Murasugi des entrelacs algébriques
et la conjecture de Thom est donnée par la proposition suivante:

PROPOSITION.  Supposons qu’il existe un entrelacs algébrique K avec
m(K) < s(K). Alors la conjecture de Thom est fausse.

D’ou la conjecture (anonyme a ce qu’il nous semble (cf. [Kir, pb. 1.40]):
« pour tous les entrelacs algébriques K, on a m(K) = s(K) ».

Preuve de la proposition. Soit f : C* — C une fonction polynomiale avec
f(0) = 0, possédant en O une singularité isolée, et dont I’entrelacs algébrique
correspondant est équivalent a K.

Soit C la courbe projective plane obtenue en homogénéisant f. D’aprés
argument donné par J. Milnor dans son livre [Mi,, p. 89] (et en utilisant le

théoreme de J. Mather) on peut supposer que C est irréductible. Soit d son
degré.
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L’argument de Milnor que nous avons reproduit a la fin du § 1 montre que
la surface différentiable F = CP2, obtenue en ajoutant a C les morceaux de
surface « de type X » au voisinage de chaque point singulier a un genre g
donné par la formule: 2g = (d—1) (d—2).

Si K a, en vertu de 'hypothése, un genre de Murasugi strictement plus petit
que son genre de Seifert, choisissons une surface de Murasugi V réalisant le
minimum du genre.

Construisons une surface différentiable F' « CP? en remplagant, au
voisinage de l'origine, le morceau de surface X par V. Le degré de F” est egal
au degré de F. Mais le genre de F’ est strictement plus petit que le genre de
F. La surface F’ serait donc un contre-exemple a la conjecture de Thom.

Nous donnons maintenant une autre relation classique entre la conjecture
de Thom et le genre de Murasugi des entrelacs.

Soit un entier r > 1. Considérons le tore standard T dans S3, et une courbe
fermée simple y sur T de type (1, 1). Considérons l’entrelacs I' obtenu en
dessinant sur T r courbes parallelesa y : v, v,, ..., ¥,- Orientons y arbitrairement
mais de fagon définitive. Orientons chaque vy, arbitrairement. Pour chaque
entier i, avec 1 < i < r, y; est homologue sur T a g;y, ou g; = +1. Posons

i=1
supposant d > 0.
Bien siir, ¥ = d mod 2. Nous noterons I'(r, d) 'un des entrelacs orientés
ainsi obtenu. Ce sont des entrelacs de Hopf généralisés.
Un cas particulier intéressant est I'entrelacs I'(d, d). Il s’agit de Ientrelacs

orienté associé a la singularité x! — y¢ = 0. (Point d-uple ordinaire.)

,
d = ) ¢. Nous ne restreindrons pas la généralité de ce qui va suivre en r

PROPOSITION. La conjecture de Thom est vraie si et seulement si le genre
de Murasugi des entrelacs de Hopf généralisés I'(r,d) est égal a

(d—1)(d—2)
2 | 2
pour tout r et pour tout d.
- (d—1)(d—2)
Remarque. 11 n’est pas difficile de montrer que m(['(r, d)) < 5

et que m(I'(r, d)) < m('(d, d)). | i
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Il serait agréable de montrer que m(I'(r, d)) = m(I'(d, d)). Dans ces condi-
tions la proposition deviendrait : 1a conjecture de Thom est vraie si et seulement
si

, d—1)(d—=2
m(T'(d. d)) = (‘ )7( ) pour tout d > 1.

Preuve de la proposition. C’est une conséquence facile de la topologie de
CP2. Rappelons que si F est une surface différentiable close, connexe, orientée
dans CP?. plus généralement un 2-cycle entier, son degré est obtenu en calcu-
lant le nombre d’intersection F - CP!. A l'aide d’une petite isotopie on peut
toujours supposer que F rencontre CP! transversalement.

Désignons par nt: E — CP? le fibré en disques de dimension 2, normal a
CP! dans CP?. L'intersection F N E se compose en général de r fibres orientées
(par l'orientation de F): By, B, ..., B,. Comme le fibré E est orienté, pour chaque
entier i, 1 < i < r, posons n; = +1 si 'orientation de B, coincide avec celle

r
de E et posons n; = — 1 sinon. On note alors Z n, = d.
i=1

Dautre part, (CP2— E) est une boule de dimension 4, que nous notons B*.
Alors, S3 = ¢B* = ¢E.

Posons F' = F n (CP?—E) = F ~n B* Lebord de F, 0F <= 0E = S3, est
une entrelacs orienté a r composantes. La description usuelle de la fibration
de Hopf montre que c’est un entrelacs I'(r, d).

A partir de ces observations la fin de la démonstration est immédiate, si
on remarque que F’ est une surface de Murasugi pour cet entrelacs.

4 A
( )
~ N
e ~N
_ ~— )
FIGURE 1

Entrelacs de Hopf généralisé (non orienté) & r = 4 composantes connexes.
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Remarque.  Les entrelacs I'(r, d) sont bien faciles a dessiner. Plagons nous
dans le groupe des tresses a r brins B,, et considérons I’élément
a = 01'02'...'0'._1,

puis I’élément B = «". Sans les orientations, I'entrelacs de Hopf généralisé I
correspond a la tresse fermée B. Pour r = 1 on a un cercle non noué et pour
r = 2 on a lentrelacs de Hopf usuel. (Voir la figure 1 dans le cas r = 4.

Avec une description aussi explicite, il est frappant que m(I'(r, d)) ne soit
pas connu. Le § 6 fait le point sur ce que I'on sait actuellement.

§ 3. NOMBRE GORDIEN DES ENTRELACS

Dans ce paragraphe, nous abandonnons la géométrie algébrique plane, pour
nous intéresser 4 un vieil invariant de la théorie des nceuds, aussi appelé
« Uberschneidungszahl » ou « unknotting number ». Commengons par la
definition originale, légérement mise au goit du jour.

r
Soit S, I'union disjointe de r cercles: S, = | | S}. Une immersion
i=1

¢:S, o~ R?

sera dite générique, si ses seules singularités sont des points doubles ou les
deux brins se coupent transversalement.

Une immersion générique sera dite signée si, en chaque point double, on
a choisi un brin positif et un brin négatif. Expliquons-nous: traditionnellement
~ le brin positif est dessiné par un trait plein et le brin négatif est dessiné par un
trait brisé.
| Soit K un entrelacs dans R3. Soit R% un plan dans R* et choisissons une
- orientation de la normale au plan. La projection orthogonale n: R®* — R? est
une bonne projection pour K, si w | K est une immersion genérique. Une telle
 immersion est signée de fagon naturelle, le brin positif en un point double étant
celui qui se trouve le plus haut. Ceci a un sens puisque nous avons choisi une
~orientation de la normale au plan.
Réciproquement, une immersion signée détermine un entrelacs dans R>,
- dont la classe d’équivalence est bien définie. Nous dirons que cet entrelacs se
trouve au-dessus de I'immersion signée.

LEMME. Soit @:S, o R* une immersion générique. Alors, il existe un

f choix des signes aux points doubles tel que l'entrelacs qui se trouve au-dessus de

)
i
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Pimmersion signée correspondante soit trivial, c’est-a-dire constitué de r cercles
situés dans r plans paralléles.

Preuve du lemme.

a) Décidons que la composante de I'entrelacs qui se trouvera au dessus de
o(S1) sera au dessus de toutes les autres composantes. Pour cela, chaque fois
qu’un point double de ¢ fait intervenir un brin de S} et un brin de S}, pour
j # 1, donnons le signe + au brin de S7.

b) Rendons la composante de I'entrelacs qui se trouve au dessus de ¢(S})
non nouce.

Pour cela, choisissons un point-base * sur S, dont I'image par ¢ n’est pas
un point double. Orientons Si, et parcourons Si a partir de *, dans le sens
donné par l'orientation. |

Soit P, € S}, le premier point double de ¢ | S{ que nous rencontrons. Il
existe donc P} € S}, P}, # Py, tel que @(P,) = @(P}). Attribuons a P le signe
+ et a P le signe —. Nous procédons de méme avec le prochain point double
de ¢ | S, sans signe, que nous rencontrons: nous lui attribuons le signe + et
le signe — va a son jumeau, et ainsi de suite.

Le nceud qui va se trouver au dessus de ¢(S1) est trivial! La raison est que
la restriction de la projection © a ce nceud possede un seul minimum, au point
qui se trouve au dessus de @(*). (Un nceud a 1 pont est trivial.)

Traditionnellement le nceud que nous venons de construire s’appelle le nceud
descendant au-dessus de ¢(S7).

¢) Nous décidons que la composante qui se trouvera au-dessus de @(S3)
sera dans R?, au-dessus de celles correspondant a o(S 1).j = 3. Nous procédons
de fagon analogue au point a).

d) Nous rendons triviale la composante qui se trouve au-dessus de ¢(S3).
Nous procédons comme au point b).

e) Nous continuons de fagon analogue avec chaque composante, 'une aprés
l'autre, de I’entrelacs.

Soient, a nouveau, K un entrelacs dans R* et © une bonne projection de
K. Le lemme précédent montre qu’en faisant un nombre fini de changements
de signes aux points doubles, on peut transformer K en I’entrelacs trivial. Par
définition, le nombre gordien de la projection &t est le minimum des changements
de signes nécessaires pour « trivialiser » K.

Définition 1. Le nombre gordien u(K) de K est le minimum des nombres
gordiens de toutes les bonnes projections de K.
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Note. Pour faire bonne mesure, précisons que nous laissons K varier dans
sa classe d’équivalence. Ainsi, il est clair que le nombre gordien est un invariant
de la classe d’équivalence de K. Il est clair aussi que nous n’avons pas du tout
besoin d’orienter K, de sorte qu’il s’agit de la classe d’équivalence non orientée.

Remarque. Dans la démonstration du lemme que nous avons donnée, rien
ne nous obligeait a décider arbitrairement que la premiére composante devait
se trouver au-dessus des autres. De méme, nous aurions pu choisir le nceud
montant plutot que le nceud descendant. En procédant alors de fagon plus éco-
nomique, on montre facilement que, si la bonne projection © posséde ! points
doubles, le nombre gordien de 7 est plus petit ou égal a [/2.

Sir = 1, on peut obtenir un petit peu mieux.

Cette remarque indique de fagon (un peu vague) que dans la détermination
du nombre gordien, la principale difficulté consiste a trouver des minorations
de u/(K).

( . : .
ote historique. Sans doute, le nombre gordien a fait partie pendant

longtemps des invariants numériques un peu folkloriques de la théorie des
nceuds. Voir, par exemple, ce qu'en dit K. Reidemeister dans son livre [Re],
page 16-17. La premiere contribution non banale au sujet fut celle de H. Wendt
[We] qui donna une minoration du gordien dont nous parlerons plus tard
au § 5.

Pour pouvoir ¢tudier convenablement les relations du nombre gordien avec
d’autres invariants de la théorie des entrelacs, nous donnons maintenant
d’autres définitions du gordien.

Vers la définition 2.

Soit B? la boule standard de dimension 3. Soient V le diamétre de B
passant par les poles, E l'équateur de B> que I'on découpe en deux arcs de grand
cercle. Poussons un peu ces arcs dans B>, de fagon a ce qu’on obtienne deux
- arcs L et P plongés proprement et d’extrémités communes A et B. Soit H le
diameétre passant par 4 et B (V' = Vertical, H = Horizontal, L = Lointain,
P = Proche; voir figure 2).

Soit K un entrelacs dans S>. Soit  : B> — S* un plongement différentiable
ouP.L,tel que: ™ }K) = V u L. Par définition, I'’échange élémentaire associé
a s consiste a remplacer I'arc (L) de K par I'arc y(P).

Si Vy, .., I, sont v plongements, disjoints deux a deux, de B>, on peut
effectuer v échanges élémentaires simultanés.
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FIGURE 2

La démonstration du lemme montre, qu’étant donné un entrelacs K dans
S3, il existe un certain nombre d’échanges élémentaires simultanés qui
permettent de transformer K en 'entrelacs trivial.

Définition 2. Le nombre gordien de K est le nombre minimum d’échanges
élémentaires simultanés nécessaires pour rendre K trivial.

Manifestement, il n’est pas indispensable cette fois de faire varier K dans
sa classe d’équivalence.

Vers la définition 3.

Soient @, et @, deux plongements différentiablesde S, = || S} dans S°.
i=1

Une homotopie réguliére générique reliant @, a @, est une application
différentiable ®: S, x [0, 1] — S telle que, si ®,(x) = D(x, t), alors:
1. @5 = @oet @y = @,

2. Pour presque tout t € [0, 1] (c’est-a-dire pour tout ¢t € [0, 1], sauf un nombre
fini de valeurs), @, est un plongement.

3. Si @, n’est pas un plongement, alors ®, est une immersion ayant pour
seules singularités des points doubles a tangentes distinctes.

Soit maintenant K un entrelacs dans S Choisissons une paramétrisation
de K, c’est-a-dire un plongement ¢: S, — S* dont I'image est K. (Ce que nous
allons faire est indépendant du choix de la paramétrisation.)
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Un dénouement de K est une homotopie réguliere générique @ reliant ¢
au plongement trivial (paramétrant Ientrelacs trivial). Il existe toujours un
- dénouement de K : encore une fois c’est une conséquence du lemme. Le nombre
gordien du dénouement ® est la somme du nombre des points doubles des @,
pour tout ¢t € [0, 1].

Définition 3. Le nombre gordien de K est le minimum des nombres
gordiens de tous les dénouements de K.

Remarque. Nous avons supposé l'application @ différentiable. Ceci
implique que, si le nombre gordien de ® est nul, les entrelacs paramétrés par
®, et ®, sont equivalents. Ceci est une conséquence du théoréme d’extension
des isotopies de R. Thom.

Attention en général en théorie des entrelacs le terme d’isotopie désigne une
notion plus faible (voir par exemple D. Rolfsen [Ro;], J. Hillman [Hi]).

Vers la définition 4.

Posons D, = || Df;onadD, =S,
i=1
Soit @ : S, < S* un plongement différentiable. Considérons les immersions
:D, o~ S§* x R, ouR,; = [0, +oo[, telles que:
G1(S x {0}) = S,

GIS, =0

R 0y

peo G:D, —» R, estune fonction de Morse avec r maxima pour seuls points
critiques. L’application p : S x R, — R, désigne la projection canonique.

4. les seules singularités de 'immersion G sont des points doubles génériques,
en nombre fini. ‘

Une paramétrisation ¢ de ’entrelacs K étant donnée, il est facile de vérifier
(cf. [BW]) qu’une telle immersion G existe toujours. Le nombre gordien de G
est alors le nombre de points doubles de G.

Définition 4. Le nombre gordien de I'entrelacs K est le minimum des
nombres gordiens de toutes les immersions G possibles.

THEOREME. Les quatre définitions données sont équivalentes.

Pour une démonstration, voir [BW].
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§ 4. LE PROBLEME DE MILNOR

Dans son livre sur les singularités [Mi;, p. 92] J. Milnor pose la question
suivante (voir aussi [Kir, pb. 1.14]):

Soit f:(C? 0) — (C, 0) une fonction polynomiale ayant une singularité
isolée en 0. Soit K le nceud algébrique associé au polyndme f et soit 6 le
nombre associé¢ a la singularité qui intervient dans la formule de Riemann-
Roch (cf. § 1). Est-ce que 6 = u(K)?

La « conjecture de Milnor » affirme que oui. Nous verrons dans ce para-
graphe que § et u(K) ont tous deux une interprétation en termes de points
doubles, ce qui rend la conjecture tres plausible.

Il est connu (mais pas évident) que u(K) < 8. La premiére démonstration
de cette inégalité est due a H. Pinkham, et L. Rudolph en a donné une autre.
Nous présentons ici une preuve trés élémentaire de cette inégalité. Elle est le
résultat de discussions passionnantes que nous avons eues avec D. Bennequin,
et nous le remercions de son aide.

Références: H. Pinkham [Pi]; L. Rudolph [Ru].

Finalement nous achéverons ce paragraphe en observant que si la conjecture
de Milnor est vraie pour les singularités a une branche, alors elle est toujours
vraie. Nous remercions F. Michel pour d’utiles conversations sur cette question.

Interprétation du nombre O en termes de points doubles proches.

Dans {A], N. A’Campo démontre que la fonction f posséde une
déformation analytique réelle f,, telle que, pour T # 0, f. *(0) posséde & points
doubles ordinaires (« nodes »). En fait A’Campo démontre bien plus: les nodes
sont tous réels.

Interprétons ce résultat. Soit D une boule de Milnor pour f = f,. Pour
t© suffisamment petit, 0D, sera aussi transverse a f, '(0) et I'entrelacs K,
déterminé par lintersection dD, n f '(0) dans 0D, sera équivalent (différen-
tiablement et de fagon orientée) a K. Pour le vérifier, on observe que « étre
transverse » est une condition ouverte, puis on applique le théoréme d’extension
des isotopies.

Du point de vue différentiable, le morceau de courbe algébrique £ *(0) N D,

r
est 'image d’une immersion de D, = | | D? avec § points doubles génériques.
i=1

De plus ce nombre de points doubles est, en un certain sens, rigide. De fagon
plus precise: si pour une certaine déformation f, de f = f;, dés que s est




188 M. BOILEAU ET C. WEBER

suffisamment proche de 0, f; !(0) est I'itnage d’une immersion de D, avec des
points doubles génériques pour seules singularités, alors ce nombre de points
doubles est nécessairement égal a .

Pour déemontrer ces derniéres affirmations, on répéte 'argument de Milnor
que nous avons rappelé a la fin du § 1: on homogénise f et on regarde la
courbe projective plane correspondante. On applique le théoréme de Riemann-
Roch a cette courbe et a celle correspondant & une petite déformation. Un
calcul facile des genres donne la solution.

D’autre part, souvenons-nous que la définition 4 donne aussi une interpré-
tation du nombre gordien en termes de nombre minimum de points doubles
d’une immersion différentiable de D, = JL[ D? dans D*.

i=1

La différence entre les deux concepts vient de ce que les deux types d’im-
mersions considérées ont des propriétés supplémentaires qui sont différentes
dans les deux cas. En effet:

a) Dans le cas du nombre gordien, I'immersion est (seulement) différentiable.
Mais elle se comporte trés bien quand on la compose avec la projection
sur R, : elle est de Morse avec le minimum de points critiques compatibles
avec la topologie de D,. |

b) En ce qui concerne f. }(0), t petit, T # 0, I'immersion est C-analytique.
(C’est beaucoup plus fort que differentiable!) Mais elle se comporte moins
bien quand on projette sur R, : application est génériquement de Morse
et n’a pas de minimum.

Références: L. Rudolph [Ru]; J. Milnor [Mi,].

Le mot « ribbon » est souvent employé dans ce dernier contexte. Voir
larticle de L. Rudolph [Ru] cité ci-dessus.

En résumé : Interprétés comme nous venons de la faire, 6 et u(K) ont inde-
niablement une certaine ressemblance. Il est tentant d’essayer d’utiliser cette
ressemblance dans les deux interprétations pour montrer qu’ils sont égaux.

Nous allons maintenant démontrer que, pour un entrelacs algébrique
K : u(K) < 6. (Cest le théoreme de H. Pinkham.) En fait cette inégalité sera
une conséquence d’une proposition plus générale sur les tresses fermeées.

Soit donc B, le groupe des tresses a n brins, de générateurs canoniques
{6, G2y Oy—1 ). SOit B un mot en les ;. Nous designons par:
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b la longueur du mot.

B la tresse fermée associée a P.
r le nombre de composantes de 'entrelacs P.

Référence générale sur les tresses: J. Birman [Bi].

PrOPOSITION.  u(B) < = (b—n+7).

N |

Commentaire. Cette majoration n’est pas extraordinaire en principe. Par
& 1 , ,
exemple, si n = r, elle affirme seulement que u(B) < 2 b, et b n’est rien d’autre

que le nombre de croisements de B. Un argument analogue 4 celui donné dans
la preuve du lemme du § 3 donne immédiatement la démonstration dans ce
cas. La majoration est un peu meilleure quand r est petit par rapport a n.

Nous indiquons maintenant comment le théoréme de Pinkham se déduit
de la proposition. Nous allons le faire en plusieurs étapes.

a) Il est bien connu qu’un entrelacs algébrique K est €équivalent a une tresse
fermée P, ou P est une tresse positive. Par 1a on entend que B peut se représenter
en un mot en les o;, ou tous les exposants sont égaux 4 + 1. Remarquons qu’il
s’agit d’'une équivalence entre entrelacs orientés: K est orienté comme nous
I'avons indiqué au § 1 et B est muni de 'orientation naturelle des tresses fermées.
Ceci est une conséquence du théoreme de préparation de Weierstrass.

b) Une tresse positive est, en particulier, une tresse homogéne au sens de
J. Stallings [St,]. Dans Particle en question Stallings démontre, généralisant
un concept d & K. Murasugi, que B est un entrelacs fibré, et que la fibre est
la surface de Seifert U donnée par la construction de Seifert, effectuée sur la
présentation P.

¢) Un calcul ¢lémentaire donne alors pour la caractéristique d’Euler de

U:x(U) = bo(U) = b4(U) =n -1,

ou b; deésigne le i-éme nombre de Betti. Or, bo(U) = 1 puisqu’on a un entrelacs

fibre, et by(U) = p. D’'ou g = b — n + 1. D’autre part, la formule de Milnor,
2=p+r—1,donne2d =b—n+14r—1=5b—n4+r

Remarque. Si on veut démontrer la conjecture de Milnor par des voies
« purement topologiques » par exemple en utilisant essentiellement la théorie
des nceuds et entrelacs, il est difficile de tenir compte assez exactement de
lhypothése que 'on part d’un entrelacs algébrique, car les entrelacs algébriques
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constituent une classe assez particuliére d’entrelacs toriques itérés. Clest
pourquoi, si on travaille selon ces lignes, il est naturel de généraliser la
conjecture de Milnor en:

: .. 2 1
Conjecture. (cf. [Ru]). Soit B une tresse positive. Alors u(B) = 7 (b—n+r).

La preuve de la proposition sera faite en plusieurs pas.

1" pas. En supprimant (n—r) croisements, on transforme f en un entrelacs
a n composantes. Plus précisément, en supprimant (n—r) lettres du mot B,
convenablement choisies, on obtient un mot y tel que ¥ soit un entrelacs a n
composantes. Bien slr la longueur de y est b — (n—r).

2° pas. Numérotons les brins de B (et de y) de droite a gauche:
1, 2, .., n. Désignons par v; la composante de ¥ qui correspond au i-éme brin.

A chaque point d’intersection de la projection de y; avec la projection de
v{i<j) attribuons le signe + si v; passe dessus v; et le signe — sinon. Soit
N(y;, v;) la somme des signes ainsi obtenus. Finalement,

a; = Z N(v; 7))
jETH1

Nous allons transformer la tresse y en une tresse A en changeant les signes
de certains croisements, de fagon a ce que A soit I'entrelacs trivial a n
composantes. Nous allons le faire de fagon économique.

Soient Ay, ..., A, les n composantes de A. Si a; > 0, décidons que A, sera
au-dessus de toutes les autres .composantes A,, ..., A,. Par contre, si a; < 0,
décidons que A, sera au-dessous de toutes les autres composantes. De méme,
sia, = 0, décidons que A, sera au-dessus de A5, Ay, ..., A,; Sinon décidons qu’elle
sera au-dessous. Par récurrence, si a; > 0, décidons que A; sera au-dessus de
Ni+ 15 - Ay sinon décidons quelle sera au-dessous.

En vertu de la définition des N(y,, v;), toute cette opération pourra se faire

1 : :
en effectuant au plus 3 (b — (n—r)) changements de signes aux croisements.

3¢ pas. Rétablissons les (n —r) croisements que nous avions supprimes dans
le 1°* pas. Nous obtenons une tresse &. Nous affirmons que € est un entrelacs
trivial & r composantes. Bien évidemment ceci achévera la preuve de la
proposition.

Tout d’abord, il est clair que le nombre de composantes de & est r, car B
et € ont méme projection (sans les signes).




PROBLEME DE MILNOR 191

Pour voir que £ est trivial, revenons a L. Par construction, chaque
composante A; est dans un plan horizontal. Si i # j, le plan contenant A; est
distinct du plan contenant A; Toujours par construction, le plan horizontal
contenant A, est soit au-dessus soit au-dessous de tous les autres.

Considérons alors la permutation w de {1, 2, ..., n} associée a la tresse €. Si
w laisse fixe 1, la composante A, se retrouve inchangée dans &. Il est clair qu’elle
est non nouée et non enlacée avec les autres composantes de €, car on peut
I'isotoper en un tout petit cercle dans son plan horizontal sans rencontrer
d’obstacle, car le plan horizontal contenant A, est extrémal.

Si la permutation w ne laisse pas fixe 1, il y a un croisement et un seul qui
relie A, & une autre composante de A, disons A,(k#1). On peut considérer ce
croisement comme le bord d’une mini bande verticale (effectuant un demi-tour)
et reliant le plan horizontal contenant A, a celui contenant A,.

Comme le plan horizontal contenant A, est extrémal, on peut isotoper la
boucle correspondant a A; dans ce plan jusqu’a ce qu’on arrive aux extrémites
de la bande verticale, ceci sans rencontrer d’obstacles. Ensuite on isotope les
cotés de la boucle verticale jusqu’a ce qu’on se trouve dans le plan horizontal
contenant A,.

Un facile raisonnement par récurrence (sur le nombre de brins) achéve alors
la démonstration.

Remarque. Notons m(B) la projection associée a la présentation en tresse
fermée B. La démonstration de la proposition 1 donne aussi une minoration
du nombre gordien de la projection n(B). Elle montre en effet que:

(le|=n+r),

DO =

u(r(B)) >

ou ¢ désigne la longueur algébrique de la tresse B (C’est la somme exponentielle
du mot B).

Pour vérifier cela, remarquons tout d’abord que d’aprés la démonstration
précédente: u(n(B)) = inf{u(¥); ou y décrit tous les mots possibles, obtenus a
partir du mot B en supprimant (n—r) lettres pour que ¥ ait n composantes}.

Par construction, la longueur algébrique ¢’ d’une telle tresse y vérifie:
[ =1l —(n=r)

D’autre part, d’aprés I'affirmation 2 de la seconde proposition de ce méme
paragraphe, u(y) > | Z LY v;) |, ou Ly, v ;) désigne le coefficient d’enlace-

i<j

ment de la composante y; de 9 avec la composante vy ; de §.
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La minoration annoncée découle alors de Pégalité: | Y L(v, Y| = 3 | ¢ .
i<j

- Cette égalité se vérifie aisément pour toutes les tresses pures, en utilisant le
disque bordé par chaque composante vy; et donné par la présentation en tresse
fermée de 4.

Nous conseillons au lecteur d’illustrer la preuve ci-dessus par quelques
exemples de son choix; voir aussi [BW].

Nous montrons maintenant qu’il suffit de démontrer la conjecture de Milnor
dans le cas des entrelacs algébriques a une branche.

PROPOSITION.  Soit L un entrelacs algébriques a r branches :
Ly, L, .,L,.

Si la conjecture de Milnor est vraie pour chacune des branches, alors elle est
vraie pour L.

Preuve de la proposition. Remarquons que, grace au théoréme de Pinkham,
la conjecture de Milnor est équivalente a & < u(L). (Les notations sont celles
du deébut du paragraphe.)

La proposition découle immédiatement des deux affirmations ci-dessous.

Affirmation 1. Soit 9§, l'invariant « d» pour la i-éme branche. Soit
ZL(L;, L;), le coefficient d’enlacement de L; avec L;(i#j). On a:

5= &+ Y ZL,L)

i=1 i<j

Rappelons que pour un entrelacs algébrique, #(L;, L;) > O.

Affirmation 2. Soit K un entrelacs quelconque a r composantes: K, ..., K,.

On a:
uK) = 'Zl u(K;) + zl LK, K)|.
i= i<j

Donnons quelques indications sur la démonstration de ces deux affirma-
tions.

Pour I'affirmation 1, la formule est donnée par Milnor dans son livre [Mi,,
p. 93]. Elle résulte d’un calcul classique en géométrie algébrique, a partir de
la définition de & que nous avons donnée en utilisant la cloture intégrale de
I'anneau local. ,

Pour un topologue, c’est une conséquence facile de la formule de Milnor
26 = p + r — 1, de l'interprétation de p comme le rang de ’homologie en

YN
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dimension 1 d’une surface de Seifert de genre minimal, et de la représentation
en tresses fermées positives des entrelacs algébriques.

Pour laffirmation 2, cest une conséquence facile de la définition 4 du
nombre gordien et du fait que: I'enlacement de deux cercles dans S? est égal
a l'intersection de deux chaines qu’ils bordent dans D*.

Application. Nous verrons au § 6 que la conjecture de Milnor est vraie
pour les neeuds du tore de type (2, n), (3, 4) et (3, 5). La proposition précédente
entraine, par exemple, que la conjecture de Milnor est vraie pour I’entrelacs
d’A’Campo, dont le nombre gordien est donc u = 6.

Plus facilement encore, la conjecture de Milnor est vraie pour I'entrelacs
de Hopf généralisé I'(d, d), associ¢ au point d-uple ordinaire (cf. § 1). Dans ce

dd—1)

cas u(I'(d, d)) = —

§ 5. RELATION ENTRE LE NOMBRE GORDIEN
ET D’AUTRES INVARIANTS DE LA THEORIE DES ENTRELACS

A. Nombre gordien et genre de Murasugi

Au § 1, nous avons défini le genre g d’une surface compacte orientable G

comme: g(G) = Z'g(a), ou les a désignent la surface close obtenue en collant

un disque de dimension 2 sur chaque composante de 0G; Le nombre g(_G_i)
désigne alors le genre usuel. Ceci est la fagon traditionnelle de procéder dans
ce type de situations et améne aux genres de Seifert et de Murasugi pour les
entrelacs dont nous avons parlé au § 2.

Références classiques: K. Murasugi [Mu]; A. Tristam [Tri].

Cependant dans le cas des entrelacs a plusieurs composantes, cette définition
n’est pas toujours la plus pratique. Par exemple un entrelacs de genre zéro
n’est pas nécessairement trivial.

De méme, le genre de Murasugi traditionnel des entrelacs se compare mal
avec le nombre gordien. C’est pourquoi nous introduisons un nouvel invariant
que nous proposons d’appeler le grand genre (car il majore le genre habituel).

Soit donc, a nouveau, G une surface compacte, orientable. G n’est pas
nécessairement connexe et son bord a, disons, r composantes connexes.

Désignons par P, la surface plane connexe, dont le bord a r composantes
connexes. Il y a une fagon essentiellement unique d’identifier le bord de G et
le bord de P, pour obtenir une surface close, orientable G. La surface G est
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connexe si et seulement si G n’a pas de composante connexe close. Alors, par
définition, le grand genre de G, noté t(G) est: t(G) = genre usuel de G.

Remarques. 1) Le grand genre d’un anneau est 1, alors que son genre
traditionnel est zéro. Plus généralement #(P,) = r — 1.

2) Une surface est de grand genre nul si et seulement si c’est une union
disjointe de spheres et de disques.

Le lien entre genre et grand genre est donné par le lemme facile suivant,
ou by(G) désigne le nombre de composantes connexes de G.

LEMME. #(G) = g(G) + (r — by(G)).

Le grand genre est un invariant utile dans certaines circonstances. Par
exemple, revenons a la situation du § 1:

Soit f:(C? 0) - (C, 0) une application polynomiale ayant O pour singu-
larité isolée. Pour t non nul, suffisamment petit, considérons X = f~(t) n D,
ou D est une boule de Milnor. Abstraitement X est la « fibre de Milnor » de
I'entrelacs algébrique associé a f.

LEMME. Le nombre & attaché a la singularité est égal au grand genre de
la fibre de Milnor.

La démonstration résulte d’'un calcul immeédiat sur ’homologie des surfaces
en question.

Soit maintenant K un entrelacs orienté dans S°. On peut définir son grand
genre de Seifert et son grand genre de Murasugi, en prenant le minimum des
grands genres des surfaces de Seifert pour K (respectivement des surfaces de
Murasugi pour K).

L’économie de vocabulaire qui résulte de ces définitions nous parait assez
importante. Par exemple un entrelacs est trivial si et seulement si son grand
genre de Seifert est nul. Un entrelacs est fortement cobordant a zéro (au sens
de A. Tristam ou K. Murasugi) si et seulement si son grand genre de Murasugi
est nul.

Notations: S(K) pour le grand genre de Seifert de K.
M(K) pour le grand genre de Murasugi de K.
Avec cette notation, la conjecture anonyme du § 2 (voir aussi [Kir, pb. 1.40])
s’énonce: pour tout entrelacs algébrique K, on a M(K) = &(K).
Bien sir, dans le cas des nceuds (entrelacs connexes) il n’y a pas de différence
entre genre et grand genre.
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La proposition suivante donne un lien entre le grand genre de Murasugi
et le nombre gordien.

PROPOSITION. Soit K un entrelacs non orienté dans S> de nombre
gordien u. Alors, quelle que soit lorientation de K, on a: M(K) < u(K).

Preute de la proposition. Nous allons utiliser la définition 4 du nombre
gordien. Par hypothése, il existe une immersion différentiable

G:D, = | | D} - D*,

r
i=1

propre, telle que G~ Y(S3) = S, et G| S, est une paramétrisation orientee de K.
De plus les seules singularités de G sont des points doubles genériques en
quantité u. (Nous n’avons pas besoin du comportement de Morse de p < G.)

Placons-nous en un point double de G. Par définition de « générique », il
existe une petite boule B* au voisinage du point double telle que B* N Im G
soit difféfomorphe a lintersection de la boule unité dans R* avec deux plans
réels en position générale.

Par conséquent, ¢B* n Im G est un entrelacs de Hopf a deux composantes,
orienté. Cet entrelacs borde dans ¢B*, de fagon orientée, un anneau.

Enlevons de Im G, l'intersection B* n Im G et mettons a sa place I'anneau
dont nous venons de parler. Effectuons cette opération a chaque point double.
Nous obtenons ainsi une surface ¥ qui est une surface de Murasugi pour K.

Abstraitement, ¥ est obtenue a partir de D, en enlevant 2u petits disques
dans D, et en collant u anneaux. Quelle que soit la fagon dont on procéde le
grand genre de V est toujours le méme et est égal a u. (Tandis que le genre
usuel dépend de la fagon dont on procede.)

Pour vérifier ce dernier point, on peut remarquer que V est, par
construction, obtenue a partirde D, U P, = S?en recollant u anneaux orientés.

é

Cect acheve la démonstration de la proposition.

Nous insérons maintenant une petite parenthése. En prenant un peu de
soin en recollant ’'anneau, on peut s’arranger pour que la surface ¥ que 1'on
obtient soit « ribbon », cest-a-dire telle que p| ¥V — R, ne posseéde pas de
minimum local.

Si on désigne alors par M'(K) le grand genre de Murasugi pour les surfaces
qui sont « ribbon », on a donc en fait: M'(K) < w(K).

D’autre part, I'interpretation de 8 en termes de points doubles proches que

nous avons donnee au § 4 montre que pour un entrelacs algébrique, on a aussi:
M'(K) < o(K). Voir [Ru].
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Malheureusement il est trés difficile d’utiliser cette information supplé-
mentaire de fagon pertinente. Peut-étre un lecteur avisé le pourra-t-i? Nous
achevons la la parenthese.

Pour comparer le nombre gordien avec le genre de Murasugi traditionnel,
on peut utiliser le lemme du début du paragraphe. Cependant, il y a en principe
une ambiguité, car on ignore a priori le nombre de composantes connexes de
la surface V' que 'on a construite. I1 y a toutefois un cas ou I'on peut s’en tirer
facilement :

Soit K un entrelacs a r composantes. Associons a K un graphe I'(K) de la
fagon suivante:

i) Les sommets de I'(K) sont en bijection avec les composantes de K.

i) Une aréte relie le sommet K; au sommet K, i # j, si et seulement si

Z(K; K;) # 0.

Il est clair que, si I'(K) est connexe, la surface ¥ de Murasugi associée a
une immersion de dénouement G, comme dans la preuve de la proposition pré-
cédente, est toujours connexe. (On utilise le principe du calcul des enlacements
dans S3 par des intersections dans D*). Par conséquent:

PROPOSITION. Soit K un entrelacs a r composantes, tel que T'(K) soit
connexe. Alors, quelle que soit lorientation de K:m(K) + (r—1) < u(K).

Rappelons que pour un entrelacs algébrique, le coefficient d’enlacement
entre deux composantes n’est jamais nul. De sorte que la proposition précé-
dente s’applique aux entrelacs algébriques.

B. La conjecture de Thom implique la conjecture de Milnor.

THEOREME (classique).  Si la conjecture de Thom est vraie, alors la conjecture
de Milnor est vraie. '

Preuve. Nous venons de montrer que 'on a toujours: M(K) < u(K).-

Le théoréme de Pinkham dit que, pour un entrelacs algébrique: u(K)
< O(K).

Finalement, la conjecture de Thom implique que, pour les entrelacs alge-
briques: M(K) = §(K). D’ou le résultat.

C. Nombre gordien et homotopies d’entrelacs.

Pour ce qui nous concerne, nous prendrons pour définition d’une homo-
topie entre deux entrelacs ce qui suit.
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Soient K et L deux entrelacs non orientés dans S°. On dira que K et L
sont homotopes si on peut passer de K a L en effectuant sur K un nombre
fini d’échanges élémentaires de telle fagon que, lors de chaque échange, les deux
brins appartiennent a la méme composante.

Il n’est pas difficile de voir que cette définition est équivalente a la défi-
nition traditionnelle. Mais il est clair qu’elle se préte mieux a I’étude du nombre
gordien.

Références (pour la définition traditionnelle): J. Hillman [Hi]; J. Milnor
[Mi,].

Un entrelacs est, par définition, homotopiquement trivial, s’il est homotope
a un entrelacs trivial.

L’exemple standard d’un entrelacs non trivial et pourtant homotopi-
quement trivial est 'entrelacs de J. H. C. Whitehead (Fig. 3).

FIGURE 3

Ceci suggére la définition suivante (F. Michel):

Soit L un entrelacs non orienté dans S*. Le nombre gordien homotopique
de L est le nombre minimum d’échanges élémentaires simultanés qu’il faut
effectuer pour transformer L en un entrelacs homotopiquement trivial. On exige
que lors de chaque échange, les deux brins appartiennent a deux composantes
distinctes.

Nous noterons le nombre gordien homotopique de K (homotopy un-
knotting number of K) par hu(K).

La proposition suivante n’est pas difficile.

PROPOSITION. Soit K un entrelacs non orienté & r branches
K, K,, ., K, Alors:

a) K) > > | LK, Kj|.

1i<j<r

b) u(K) > hu(K) + 3 u(K).

i=1
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Notes. 1) L’entrelacs de Whitehead montre que I'inégalité b peut trés bien
étre stricte. '

2) Cette proposition est une version un peu plus forte de I'affirmation 2
que nous avons utilisée au § 4.

Preuve de la proposition. Pour a), c’est encore une fois une conséquence
du principe que « I’enlacement sur le bord est égal a I'intersection a 'intérieur ».

Pour b), nous utilisons le fait que 'on peut effectuer les échanges élé-
mentaires a l'instant ou I'on veut. Voir [BW].

Soit donc G: D, .»~ S x R, une immersion selon la définition 4. Nous
pouvons supposer :

1
1) > e R, n’est I'image par p d’aucun point double.

. : : : 1
i1) si Q est un point double de I'immersion G tel que p(Q) < > alors Q est un

point d’intersection entre deux disques différents, tandis que

1
11) si Q est un point double tel que p(Q) > > alors Q est un point double

faisant intervenir deux points d’'un méme disque.

1 1
Alors p~! (5) c S x {5} est un entrelacs homotopiquement trivial, et la

conclusion suit immédiatement.

L’étude du gordien homotopique semble une question intéressante. Voici
quelques premiers jalons.

1. Soit K un entrelacs a deux composantes K; et K,. Alors hu(K)
= | LK, K)) . |

Cette égalité est une petite généralisation d’un théoréme de J. Milnor, qui
affirme qu’un entrelacs a deux composantes et de coefficient d’enlacement nul
est homotopiquement trivial. Il est facile de s’y ramener, ou de la démontrer
directement.

Référence : J. Milnor [Mi;].
2. Pour les entrelacs avec r > 3 composantes, on peut trés bien avoir une
inégalité stricte: hu(K) > ) | L(K;, K))|.
i<j |
Par exemple, I’entrelacs des Borromées est tel que £(K;, K;) = 0sii # j,
et pourtant il n’est pas homotopiquement trivial. (Pour les Borromées

u=hu=2).
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3. Milnor montre que l'entrelacs des Borromées n’est pas homotopi-
quement trivial en utilisant son invariant p. (Ce n’est pas celui des singula-
rités, mais celui qui est défini dans [Mi;] et dans [Mi,]).

Question. Y a-t-il une connection entre les invariants que Milnor introduit
dans les articles en question et le gordien homotopique des entrelacs?

D. Genre de Murasugi et signature.

Le genre de Murasugi est un invariant tres difficile a calculer. En fait il y
a peu de nceuds ou entrelacs pour lesquels on connaisse sa valeur exacte. Dans
ce contexte, la signature donne une minoration utile, car calculable en principe.
Hélas, cette minoration n’est en général pas décisive.

Nous rappelons maintenant de quoi il s’agit, en signalant au lecteur que
nous reviendrons plus en détails sur cette question au § 6 dans le cadre des
signatures de J. Levine et A. Tristram.

Références: K. Murasugi [Mu]; L. Kauffman et L. Taylor [KT].

Soit K un entrelacs orienté dans S et soit V une surface de Murasugi
de K.

Considérons le revétement a 2 feuilles Y, de D*, ramifié sur V. Y, est une
variéte de dimension 4, compacte, connexe, orientée (par la projection sur D#).
Elle a un bord qui est le revétement a 2 feuilles de S3, ramifié sur K.

On considere alors la forme d’intersection sur H,(Y; ; Q). Cette forme est
Q-bilinéaire, symétrique. Elle peut trés bien étre dégénérée, car 4Y est non vide.
Elle a néanmoins une signature.

On montre (cf. Kauffman-Taylor [KT]) que cette signature ne dépend que
de K et pas du choix de la surface de Murasugi V. Notons la o(K).

Il y a plusieurs fagons de calculer explicitement o(K). Pour la théorie
générale, voir Gordon-Litherland [GoL]. Rappelons en particulier que si A
est la forme de Seifert associée a une surface de Seifert U de K, alors
(A+A%) ® Q est la forme d’intersection de Y. (4* désigne la transposée
de A).

On a alors le théoréme suivant, di a K. Murasugi [Mu]. Pour une démons-

tration plus moderne voir Kauffman-Taylor [KT]. Voir aussi le théoréme 2
du § 6.

THEOREME. Soit K un entrelacs orienté a r composantes dans S3.
Alors: | o(K)| < 2m(K) + r — nul(K).

Ici, nul(K) désigne la « nullit¢ de Murasugi » de K par opposition a la
nullité¢ d’Alexander, qui est un concept différent ; voir le livre de J. Hillman [Hi].
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Rappelons que par définition nul(K) = 1 + ¢;, ou g, est le premier nombre
- de Betti rationnel du revétement a 2 feuilles de S° ramifié sur K.
On a les renseignements suivants sur la nullité:

PROPOSITION.  Soit K un entrelacs orienté a r composantes dans S3.
Alors :
a) nul(K) <r

b) si A est la forme de Seifert associée a une surface de Seifert U de K:
nul(K) = dimg(radical de (4+A*)®Q) + bo(U), o bo(U) désigne le
nombre de composantes connexes de U.

COROLLAIRE. Pour un neud (r=1), | o(K)| < 2m(K).

Application de la formule de Murasugi.

Il y a une formule qui donne la signature des entrelacs du tore (cf. § 6).
Cette formule et la formule de Murasugi, appliquées aux entrelacs algé-
briques K associés aux singularités X* — Y® = 0, montrent que 'on a M(K) '
= O(K) lorsque: |
1) (a,b) = (2,n), n > 1 (résultat connu de Murasugi [Mu]);
‘ 1) (a, b) = (3,3) ou (3,4) ou (3,5) ou (3,6) ou (4,4).

Ce sont les seuls entrelacs algébriques pour lesquels la conjecture anonyme
~ est connue. Par conséquent la conjecture de Milnor est vraie pour ces entrelacs
algébriques.

Rappelons finalement que la signature croit tres lentement par satellisation,
- de sorte que les formules précédentes donnent de mauvaises minorations pour
les branches a plusieurs paires de Puiseux.

Référence: Y. Shinohara [Shi].

E. Nombre gordien et revétements cycliques infinis.

Pour un entrelacs orienté K, on a: M(K) < u(K) et M(K) < S(K). 11 est
donc assez naturel de se demander s’il existe une relation entre le nombre
gordien K et le grand genre de Seifert de K. .

Au vu des exemples que nous présentons dans la partie F de ce paragraphe,
nous pensons qu’il n’y en a pas, méme pour les entrelacs fibrés.

Tout d’abord on a les théoremes suivants: Q
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TutorEME (H. Kondo). Soit P(t) un polynéme d coefficients entiers, de
degré 2h, tel que P(1) = + 1 et P(t) = t*"P(t™"). Alors il existe un
neud K, de nombre gordien 1, de genre de Seifert h, ayant P(t) pour
polynome d’ Alexander.

Référence : H. Kondo [Ko].

TutoreME (T. C. V. Quach). Soit P(t) un polynéme comme dans le
théoréme précédent et tel que, en plus, P(0) = + 1. Alors il existe un neud
fibré satisfaisant les mémes conditions que celles du théoréme précédent.

Référence: T. C. V. Quach [Qa].

Note. Ces théorémes montrent que la situation est plus complexe que le
probleme 1.4 de la liste de R. Kirby [Ki] ne laisse supposer.

Nous donnerons dans la partie F des exemples de nceuds rationnels fibrés
de gordien 1 et de genre arbitraire (voir aussi Y. Nakanishi [Na]).

Hélas il est plus difficile de trouver des nceuds de petit genre et de grand
nombre gordien, car on tombe & nouveau sur le probléme de la minoration
du nombre gordien.

Dans cette direction, la meilleure minoration connue est toujours celle de
H. Wendt que nous allons décrire maintenant d’une fagon un peu différente
de la sienne. Cette minoration se généralise facilement aux cas des entrelacs.
Pour cela nous avons besoin de rappeler quelques notions classiques.

Si K est un entrelacs orienté 4 r composantes dans S3, il existe un homo-
morphisme surjectif unique [: 7,(S*—K) — Z, qui envoie chaque méridien
orienté de K sur 1. (Un meéridien m; de K est orienté par £(m;, K;) = §;; ou
les K; sont les composantes de K).

Deésignons par E(K) l'espace total du revétement cyclique infini du
complément de K dans S*, associé au noyau de I. On peut identifier le groupe
de Galois du revétement avec le groupe cyclique infini 7, noté multiplicati-
vement T = {t'};.z.

Le groupe d’homologie H(E(K); Z) est de fagon naturelle un module sur
le groupe de Galois, donc un Z T-module.

THEOREME. Soit K un entrelacs orienté d r composantes dans S3, et
de nombre gordien u. Alors le ZT-module H,(E(K);Z) peut étre engendré
par u + r — 1 éléments.

Note. Danslecas d’unneeud (r=1), H,(E(K); Z) est le module d’Alexander
de K, et ce théoréme est alors implicite dans Iarticle de H. Wendt et également
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chez D. Rolfsen. Drailleurs, dans ce cas 1a, il a été remarqué par beaucoup de
monde, par exemple par Y. Nakanishi.

- Références: H. Wendt [We]; D. Rolfsen [Ro, ], [Ro,]; Y. Nakanishi [Na].

Désignons par e(K) le nombre minimum de générateurs du ZT-module
H,(E(K); Z). Nous avons donc:

COROLLAIRE 1. e(K) < u(K) +r — 1.

Nous appellerons cette inégalité, I'inégalité de Wendt. (Rappelons que e(K)
dépend de I'orientation de K, tandis que u(K) en est indépendant).

COROLLAIRE 2. Le module d’ Alexander d'un neud (r=1) de nombre
gordien 1 est monogene.

Commentaires. 1) On voit que la question de I’étude algébrique du module
d’Alexander des nceuds (et plus généralement des modules H,(E(K) ; Z) dans le
cas des entrelacs) a un certain intérét en ce qui concerne le nombre gordien.
Toute méthode permettant d’évaluer ¢(K) sera la bienvenue. La théorie des
idéaux élémentaires permet de trouver certaines minorations.

2) Une méthode classique, due originalement a H. Seifert, permet de trouver
une présentation du module d’Alexander & partir d’'une matrice de Seifert du
nceud. Un petit examen de cette méthode (cf. par exemple [Sei]) montre que
e(K) < 2s(K), lorsque K est un nceud. Par conséquent, la minoration de Wendt
ne peut dépasser deux fois le genre de Seifert dans le cas d’un nceeud.

Preuve du théoreme. Nous allons en donner une basée sur la notion de
description chirurgicale d’un entrelacs, due a D. Rolfsen [Ro;]. De fait, dans
le cas des nceuds (r=1), la démonstration qui suit est implicite dans I’article
de Rolfsen [Ro,].

Reprenons la définition 1 du nombre gordien. (La définition 2 ferait aussi
'affaire).

K est un entrelacs orienté a r composantes. Considérons une bonne pro-
jection de K et un processus de dénouement de K, basé sur cette projection.
Envisageons un point double de la projection, qui va changer de signe au cours
du processus. Sans tenir compte des signes, la projection est localement :




PROBLEME DE MILNOR 203

FIGURE 4

Les orientations des brins proviennent de I'orientation de I'entrelacs.

Considérons le segment de droite dessiné en pointillé sur la figure de droite.
« Au-dessus » de ce segment se trouve un plan dans R>. 11 est facile de des-
siner un disque A dans ce plan, ayant la propriété que A n K = A n K consiste
en exactement deux points, chacun d’eux étant donné par l'intersection d’un
des deux brins avec A.

Hlustration :

FIGURE 5




204 M. BOILEAU ET C. WEBER

Soit I' = OA. T est un cercle non noué dans S3, ne rencontrant pas K, et
le nombre d’enlacement de I" avec K est nul (grace a la position choisie du
plan par rapport aux brins orientés).

Soit N un voisinage tubulaire de I dans S>, suffisamment petit pour ne
pas rencontrer K. N est un tore plein et comme I” est non noué, S3 — N est
aussi un tore plein W. Un disque méridien de W est précisément le disque A,
un peu rétréci.

Effectuons un twist de Dehn t dans W, concentré au voisinage de A. Pour
cela, choisissons un petit voisinage A x [—1, +1] de A dans W. (Nous choi-
sissons une identification). Alors, par définition t(x, t) = (e“* V" x, 1), avec
(x,t)e A x [—1, 1], A étant identifié¢ au disque unité dans C. Le twist T se pro-
longe par l'identité en un automorphisme de W, mais, attention, il ne se
prolonge pas en un automorphisme de S°.

Comme K est dans W, on peut considérer 1(K). Alors, a isotopie pres, Y(K)
aura méme projection que K. Tous les points doubles auront méme signe, sauf
celui que nous considérons, qui, lui, a changé de signe.

Précaution : Cette derniére affirmation dépend de la fagon dont on identifie
A x [—1,1] a un voisinage de A dans W. Ce qui compte est la normale au
plan qui contient A, qu’il faut orienter convenablement. Sur I'illustration pré-
cédente, I'orientation de la normale part de I’eil du spectateur pour tra-
verser A.

Supposons mainterant que le processus de dénouement associ¢ a la bonne
projection, que nous avons choisie pour K, fasse intervenir u changements de
signes aux points doubles.

Nous choisissons u petits tores pleins N, ..., N, selon la méthode que nous
venons d’indiquer. La composition des twists T, T, o ... T,, ou T; est le twist

u u

sur W, est bien définie sur Y = n W, = S — U N;; notons la t. L’ordre

i
i=1 i=1

de la composition importe peu car les supports des t; sont disjoints. Posons

N=0UN,
i=1

Par définition d’'un processus de dénouement, t: Y — Y est un difféeomor-
phisme qui envoie K sur Pentrelacs trivial T, dans S>.

D’autre part, Y — K = S — (NUK) est diffeomorphe par ta 1(Y) — 1K)
= S — (NUT,).

On passe de S° — (NUK) 4 S? — K en ajoutant des 2-cellules et des 3-cel-
lules. (On remplit les tores pleins Ny, ..., N,).
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Sip: E(K) - S* — K estla projection du revétement infini cyclique, associé
4 I'homomorphisme d’enlacement total [, posons: Z = p~}(S*—(NUK))
=p 1(Y—K).

On passe de Z a E(K) en ajoutant des 2-cellules et des 3-cellules car la res-
triction p | : p~{(N) — N est un revétement trivial (produit), puisque le nombre
d’enlacement de chaque tore plein”N; avec K est nul. Donc le nombre de géne-
rateurs du ZT-module H,(Z; Z) majore celui de H,(E(K); Z). Nous allons
estimer le nombre de générateurs du ZT-module H,(Z; Z).

Pour cela observons que le revétement cyclique infini, E(7;) associé a 'homo-
morphisme d’enlacement total, de I'entrelacs trivial T,, est difffomorphe a la
somme connexe d'un nombre infini de copies de l'intérieur d’'un corps avec
(r— 1) anses. Chaque copie est indexée par un élément de Z, et le geénerateur
du groupe de Galois T est la transformation qui envoie la copie d’indice i sur
celle d’indice i + 1. En particulier, en tant que ZT-module, H,(E(T;); Z) est
de rang r — 1.

Soit ¢: E(T)) —» S* — t©(K) la projection de revétement et soit

Z' = ¢ ($*=(Nut(K)) = ¢~ '(x(Y—K)).

Pourun pull-backdet,Z = p~ (Y —K)etZ' = g~ *(t(Y —K)) sont Galois-"
équivalents. Les ZT-modules H,(Z; Z) et H,(Z'; Z) sont donc isomorphes.

Il est facile de voir que H(Z'; Z) est engendre par u + r — 1 ¢léments
comme module sur ZT, car Z' = E(T,) — g~ '(N), ou H(E(T;); Z) est de rang
r — 1 en tant que ZT-module, et la restriction g|:q '(N) - N est un
revétement trivial de « groupe de Galois » T, puisque le nombre d’enlacement
de chaque tore plein N; avec ©(K) = T, est nul.

Remarque. Nous n’avons utilisé que la partie la plus facile de la méthode
de D. Rolfsen. Dans le cas des nceuds (r=1), en poussant ’analyse plus loin il
montre comment on peut, en principe, trouver une présentation du module
d’Alexander.

En fait, les énoncés de H. Wendt portent sur ’homologie des revétements
ramifiés cycliques finis, plutdt que sur celle des revétements cycliques infinis.
Nous allons nous y ramener par une méthode dont le principe était déja connu
de H. Seifert dans le cas des nceuds.

Notations. Soit K un entrelacs orienté a r composantes dans S°. Nous
désignerons par E,(K) I'espace total du revétement cyclique a n feuilles de S3,

ramifié sur K. Rappelons que, s1 r > 2, le type topologique de E, (K) dépend
de 'orientation de K (deés que n>3).
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Le groupe d’homologie H,(E,(K); Z) est un module sur ZT. M. Sakuma
[Sak] a démontré le théoréme suivant, bien connu dans le cas des nceuds (r =1,
cf. [Gor)).

THEOREME. H(E(K);Z) est isomorphe comme ZT-module a
Coker {1 + t + .. + t""': H,(E(K); Z) - H,(E(K); Z)} .

Références: M. Sakuma [Sak].
Nous obtenons alors ’énoncé traditionnel du théoréme de H. Wendt, ou
e,(K) désigne le nombre minimum de générateurs du groupe abélien

H\(EKK,);Z).

THEOREME (H. Wendt). Soit K un entrelacs orienté d r composantes
dans S Alors: e (K) < (n—1)(u(K)+r—1).

COROLLAIRE. &,(K) < u(K) +r — 1.

Commentaires.

1) Souvenons-nous que, pour un neeud K(r=1), e,(K) < 2s(K).

La méthode de Wendt permet de trouver (ce qu’il a fait, cf. [ We]) des nceuds
de nombre gordien w(K) = 2s(K). Nous en donnons des exemples dans la
partie G de ce paragraphe. Bien que les candidats abondent, il semble bien
que pour l'instant, il n’existe aucun nceud pour lequel on sache montrer que
u(K) > 2s(K).

2) Les majorations plus fines de e,(K), obtenues par S. Kinoshita dans le
cas des nceuds, montrent que le théoreme de Wendt fournit souvent une mino-
ration trés faible du nombre gordien u(K).

Références: S. Kinoshita [Kin, ], [Kin,].

F. Exemples: nombre gordien et grand genre de Seifert d’'un entrelacs.

Considérons les entrelacs algébriques ou, plus généralement les tresses posi-
tives fermées orientées, munies de l'orientation naturelle. Ces entrelacs sont
tous fibrés. Nous avons vu au § 4 que leur grand genre de Seifert est supé-
rieur ou égal au nombre gordien. Cette remarque a conduit A. Durfee a poser
la question suivante: « a-t-on u(K) < s(K) pour tout nceud fibré K? »

Le but des exemples que nous présentons ici est de donner une réponse
négative a la premiére question de A. Durfee. En fait, nous conjecturons qu’en
général il n’y a aucun rapport entre ces deux invariants, et qu’étant donnés
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deux entiers positifs u et s arbitraires (s> 2), il existe un nceud fibré de nombre
gordien u et de genre s.

Par exemple, il est facile de construire des nceuds fibrés de gordien 1 et de
genre de Seifert s arbitrairement grand (cf. [Na]): il suffit de considérer le
nceud & 2 ponts associé au plombage de 2s bandes paires, suivant:

2 2 2 -2 -2 —2

o—©0 ... 0 ® e ... 0.

(Voir aussi les nceuds construits par T. C. V. Quach [Qa]).

Par contre nous ne connaissons aucun exemple de nceuds (fibrés ou non)
de genre 1 et de gordien arbitrairement grand. Les candidats ne manquent pas
(cf. § 7, B-5); manquent les invariants pour minorer le nombre gordien.

Voici des exemples qui répondent négativement a la question de A. Durfee:

Soit I'entrelacs de bretzel K, = K(—1, 3, ..., 3), qui est le bord de la surface
constituée de deux disques reliés par (n+ 1) bandes tordues, et orienté comme
sur la figure 6.

////////////// Y
- 73 /3

@///// 77/7777 ' //////77)

FIGURE 6

Cet entrelacs fibre pour l'orientation donnée, et la surface fibre F, est la
surface plate hachurée, car cet entrelacs orienté s’obtient 4 partir de entrelacs
fibré torique (2, n+ 1) par n twists de Stallings [St,] (cf. T. C. V. Quach [Qa];
voir aussi T. Kanenobu [Ka] pour une preuve algébrique).

1
OnaS(K,) = [’Hz_

montre que u(K,) > n — 2. Pour des détails, voir [BW].

} et une application immédiate de 'inégalité de Wendt

Commentaires. 1) Dans le cas ou n est pair, n = 2p, K,, est un nceud
fibre. Alors S(K,,) = s(K,,) = pet w(K,,) = 2p — 1. Ceci donne une réponse
neégative & la premiére question de Durfee dés que p > 2.

2) Dans le cas ou n est impair,n = 2p + 1, K,,+ . est un entrelacs orienté
a 2 composantes, et pour l'orientation donnée S(K 2p+1) = p + 1. En utilisant
le § 5-c, on montre que uK,,+1) = 3p + 1
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G. Les exemples de H. Wend:t.

L’idée de comparer le nombre gordien d’un nceud avec son genre de Seifert
est dé¢ja dans larticle original de H. Wendt [We]. En fait Wendt avait exhibé
des neeuds K (non fibrés!) de genre de Seifert s(K) et de gordien u(K)
> 2s(K) (par exemple le nceud 9,5 dans la tabulation de Reidemester [Re]).

Nous donnons ici une généralisation des exemples de Wendt. Notons
K,,+1,9 = 1,le nceud de bretzel K(3, 3, ..., 3), qui est le bord de la surface cons-
tituee de deux disques reliés par 2q + 1 bandes tordues, et qui est représenté

‘sur la figure 7.

[ 111 [[1]]// 11117/
L/%___ ° Y (/-)/ f}
i J7 ////////////5

FIGURE 7

D’apreés T. Kanenobu [Ka] (voir aussi [Qa]), ce neud n’est jamais fibre.
On a:u(Ky4q) = 2q = 28(K 24+ 1)-

§ 6. SIGNATURES

Historiquement, a notre connaissance, deux voies ont été suivies par les
topologues pour essayer de démontrer la conjecture de Thom.

La premiére consiste a utiliser ce que nous avons explique aux § 1 et 2:
minorer le mieux possible le genre de Murasugi des entrelacs de Hopf géné-
ralisés. Nous avons vu au § 5 que la signature de 'entrelacs donne une pre-
miére minoration. Une difficulté de cette approche est que la signature dépend
en principe aussi bien de d que de r. L’introduction des signatures « tordues »
et le théoréme 3 ci-apres, dus a A. Tristram, permettent d’obtenir des mino-
rations qui ne dépendent que de d.

Référence : A. Tristram [Tri].
Ces signatures ont aussi €té introduites par J. Levine dans le cas des nceuds,

a la fin de son artlcle sur le cobordisme, dans un but différent de celui de

Tristram.
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Référence: J. Levine [Lev]. :

La deuxiéme voie consiste a utiliser le théoréme de la G-signature d’Atiyah-
Singer, en I'appliquant a certains revétements cycliques de CP?, ramifiés sur
une surface différentiable de degré d. Ce fut le chemin suivi par W. C. Hsiang-
R. H. Szczarba et par V. Rohlin.

Références: W. C. Hsiang-R:. H. Szczarba [HS]; V. Rohlin [Rh].

Or, dans les deux cas (Tristram et Rohlin) les calculs que I'on effectue sont
essentiellement les mémes et donnent les mémes bornes. La raison de ce phé-
nomeéne est donnée par O. Viro qui a montré que, dans les deux cas, on calcule
en fait le méme invariant.

Référence: O. Viro [Vi].

Dans ce paragraphe, nous allons suivre 'approche par la théorie des entre-
lacs. Les bornes obtenues sont environ la moitié du nombre escompté dans la
conjecture. Une excellente référence générale sur les signatures « tordues » des
nceuds (i.e. r=1) est donnée par I'article de C. Mc. Gordon [Gor]. Le cas des
entrelacs présente quelques difficultés supplémentaires, liées a Papparition de
la dégénérescence. C’est pourquoi nous avons choisi une présentation plus
proche de K. Murasugi et A. Tristram.

Nous commengons par quelques manipulations matricielles.

Référence: T. Matumoto [Ma].

Soit W un espace vectoriel de dimension finie sur C. Soit [: W x W —» C
une forme sesquilinéaire. Aucune hypothése de « symétrie » ou de non dégé-
nerescence n’est faite sur I Ceci sera utile pour les applications topologiques
que nous avons en vue.

. 1 =
Soit £eC, £ # 1. Posons: [, = 3 {1=8) + (1-§)I*}, ou * désigne la

conjuguee-transposée.

LEMME 1.
a) I, est une forme hermitienne, c’est-a-dire [If = L.

b) Soit © = LTS s I, = 1= Ret,
1—E [1—&)7 "
La preuve découle de calculs faciles.

Nous serons intéressés dans la suite a la dégénérescence et a la signature
des formes [;. (Par a) ceci a bien un sens). La partie b) du lemme 1 montre que
nous ne perdons rien en ne considérant que les formes [, avec | OJ] 1, ce
que nous ferons désormais.
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Rappelons qu’il y a plusieurs fagons de calculer la signature et la dégéné-
rescence d’une forme hermitienne:

1. On diagonalise la forme en appliquant la méthode de la « completion
du carré ». Si r, désigne le nombre de zéros qui se trouvent dans la diagonale,
r. le nombre de reels positifs qui s’y trouvent et r_ celui des réels négatifs,
alors : ry est la degeénerescence et r, — r_ est la signature.

(Théoreme de Sylvester des cours d’Algebre linéaire)

Notations : deg(l,) et sign(l,).

2. On calcule le polyndéme caractéristique det(id +t,). Alors r, = nombre
de racines nulles, ¥, = nombre de racines positives, et ¥ _ = nombre de racines
négatives.

3. Les topologues citent souvent la méthode du § 3 du livre de B. Jones,
qui n’est pas nécessairement la plus rapide dans les applications.

Référence: B. Jones [Jo].
LEmMME 2. . S8i |o| =1, 0# 1, ona:

L = ~(1—a) {I— ol

2
La preuve découle d’un calcul immédiat utilisant que si |w| = 1, on a:
1 — o
— = —®.
1 —®

Ce lemme montre que les formes «a la J. Levine » fournissent la méme
famille d’invariants que les formes « a la A. Tristram ». Nous en aurons besoin
parfois dans la suite, pour certains calculs. ; ,

Appliquons ce qui précede a la theéorie des entrelacs. Soit K un entrelacs
orienté dans S°. Soit U une surface de Seifert pour K, et soit A la forme de
Seifert associée a U.' Comme U n’est pas unique, 4 n’est pas un invariant
de K. Mais on peut montrer que:

ProrosITION 1. Si A et A’ sont deux formes de Seifert pour K, on
peut passer de Pune da Pautre par un nombre fini d’opérations du type suivant :

i) Isomeétrie. ‘
ii) Nous utilisons une.notation matricielle, qui est plus succincte. o
iia) Passer de 4 4 A avec: | J
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010 *10
A . A
= oud =
*10
e ¥ 0 :
0....0 110 0....0 010
iib) Passer de 4 a A.
iiia) Passer de A a A, avec:
B ]
0
A
A4 =
0. 0
L —

iiib) Passer de 4 a A.

De plus, si on ne considére que des surfaces de Seifert connexes, les ope-
rations 1) et i) suffisent.

Référence: C. Mc. Gordon-R. Litherland [GoL].
(Le passage-clé est dans la partie II du théoreme 11).

Note. Dans cet article, nous ne nous intéressons qu'aux entrelacs fibrés.
Nous pourrions alors nous dispenser de la proposition 1 et du lemme 3 en
utilisant que la fibre plongée est essentiellement unique. On définirait tout a
partir de la forme de Seifert associée a la fibre.

LEMME 3. Soit K un entrelacs orienté dans S3. Soient A et A deux

formes de Seifert pour K, associées d deux surfaces de Seifert connexes
de K. Soit weC, avec |o| =1 et o # 1. Alors:

deg(A4,) = deg(4,), et sign(4,) = sign(4,).

Bien siir, un entrelacs posséde toujours des surfaces de Seifert connexes.
Par le lemme 3, nous pouvons définir la dégénérescence et la signature de K
en o, que nous noterons: deg (K) et sign (K).
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Preuve du lemme 3. 1l suffit d’examiﬁer le passage de 4, a A, Or:

(1 —w)a, 0 .
i, = A,
(1 —w)a, 0
(I—-®)a, ... (1—-wa, 0 (1—w)
0....0 (1—®) 0
L o ]

Un calcul immédiat montre que le polyndme caractéristique de 4, est le produit
de celui de 4, par [x*—2(1 —Rew)]. Ce dernier a une racine positive et une
racine négative, ce qui acheve la preuve.

Remarque. Si® = —1, la signature que nous venons de définir n’est rien
d’autre que la signature de Murasugi dont nous avons parlé au § 5. Nous avons
vu que dans ce cas, la nullité et la dégénérescence sont reliées par 'égalite:

nul(K) = deg_ (K) + 1

(Ne pas oublier que nos surfaces de Seifert sont maintenant connexes).
Essentiellement pour ne pas rompre avec la tradition, introduisons un

nouvel invariant, la nullit¢ de K en o, définie par: nul (K) = deg,(K) + 1.
Les deux théorémes suivants sont essentiellement dus a A. Tristram [Tri].

THEOREME 1. Soit ® une racine p'-éme de 1, avec p premier. Soient
K et K’ deux entrelacs orientés concordants. Alors:

nul (K) = nul (K') et sign,(K) = sign,(K').

Attention! Le théoréme est faux si o n’est pas une racine p'-éme de 1 avec
p premier. Cest la raison pour laquelle A. Tristram n’envisage que des ® qui
sont des racines p-émes de 1, la généralisation & p' étant facile.

La définition d’une concordance (on dit aussi cobordisme) entre deux
entrelacs orienteés est la suivante:
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Définition. Soient K° et K! deux entrelacs orientés, 4 r composantes.
Désignons par (— K?) I'entrelacs obtenu a partir de K 1 en changeant I'orien-
tation de chacune de ses composantes. Nous dirons que K O et K! sont concor-
dants, s’il existe un plongement différentiable ®: S, x [0, 1] — S3 x [0, 1], tel

que: (on rappelle que S, = | | S})
i=1

a) @ 1(S*x{0}) = S, x {0}

oY S*x {1}) = 8, x {1}
b) @[S, x {0} (resp.®|S, x {1})soitune paramétrisation de K° (resp.de K%).
c) le bord orienté de Im(®) soit K° x {0} | | (—K*') x {1}.

THEOREME 2. Soit V une surface de Murasugi pour lentrelacs orienté K.
Soit ® une racine p'-éme de 1, avec p premier. Alors:

| sign,(K) | + | nuly(K) — b,(V) | < 7 — b(V) + 29(V)

(Conformément a nos notations, introduites précédemment, r désigne le nombre
de composantes de K, et b, (V) désigne le nombre de composantes connexes
de V).

Remarque. Comme nul (K) — b, (V) < | nul(K) — b,(V) |, le théoréme 2
a pour conséquence l'inégalité | sign (K) | < r — nul (K) + 2g(V), quelle que
soit V.
Par conséquent, on obtient la formule plus commode:

ISlgnm(K)‘ ST — nulm(K) + zm(K) )

ou m(K) désigne le genre de Murasugi de K.

Notre but est d’utiliser cette derniére formule pour minorer le genre de
Murasugi des entrelacs de Hopf généralisés, que nous avons notés I'(r, d). Pour
obtenir des minorations qui ne dépendent que de d, nous allons utiliser un
autre résultat de Tristram que nous présentons maintenant.

Soit K un entrelacs orienté dans S, 4 r composantes: K |, ..., K,. Donnons-
nous également un plongement ¢:S' x [0,1] - S* d’un anneau tel que:
o(S'x {0}) = K, et 9" 1K) = S* x {0}.

Considérons 'anneau R = ¢(S* x [1/2, 1]). Orientons R et considérons le
bord orienté OR. Définissons K, comme étant I’entrelacs orienté K U 0R. Bien
sir, K, a (r+2) composantes. Soit K, ,, = ¢(S* x {1}).

SOlt h = I Z g(Kr+25 Kl)l = lg(Kr+27 K)‘
i=1
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| THEOREME 3. Soit ® une racine .s-éme de 1, avec s divisant n.
- Alors:
sign,(K) = sign,(K,) et nul,(K) = nul(K,) — 2.

Note. Dans le théoreme 3, s n’est pas nécessairement puissance d’un
 premier.

On peut donner une démonstration de ces trois théorémes en suivant les
indications données par A. Tristram lorsque ®” = 1. Voir [BW].

Nous allons maintenant appliquer les théorémes précédents aux entrelacs
de Hopf généralisés. Pour cela, nous avons besoin de savoir ce qui se passe
pour les entrelacs du tore. Le théoréme qui suit est cité tres souvent dans la
littérature, surtout en ce qui concerne la signature classique. Pour ce qui nous
intéresse, les références utiles sont: R. Litherland [Lit]; T. Matumoto [Ma].

THEOREME 4. Soit K(p,q) Ulentrelacs (orienté) du tore de type (p, q).
Soit x un nombreréel, 0 < x < 1, etsoit ® = exp(2./ —1nx). Notons:

ro: le nombre de couples d’entiers (i,j), avec 0 <i <p, 0<j<gq, ettels
j .
que — + d o x (mod 1);
P 4
; .
r_: le nombre de ces couples (i,j), telsque x — 1 < ; + J; < xmod 2;

. j .
r,: le nombre de ces couples (i,j) tels que x < 5 + é < x + 1 mod 2.
| Alors, nul (K(p, q)) = ro + 1 et sign(K(p,q) =r, —r_.

- Nous allons esquisser une preuve de ce théoréme en suivant T. Matu-
- moto [Ma]. La clé de la preuve est dans la proposition suivante.

| PROPOSITION. Soit K un entrelacs du tore, de fibre U et de forme de
- Seifert A. Alors, il existe une base de H,(U;Z) ® C telle que I'extension
- sesquilinéaire | de A a HU;Z)® C soit diagonale dans cette base.

‘ Voici quelques points de repéres.

1 Soit a un entier positif. On montre tout d’abord que I'extension sesqui-
linéaire de la forme de Seifert associée a la singularité z* = 0 se diagonalise.
| La matrice diagonale est: i

| o
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e

1—¢° 1!
1— (2 0
N, =a |
0
1.._ C—(a—l)
- —

ou{ = exp(2\/—1n/a).

On applique ensuite le théoréme de K. Sakamoto [Saa], pour en déduire
qu'une diagonalisation de A sera: N, @ N,. Pour plus de détails voir l'article
de Matumoto [Ma].

Dans la base correspondante, 4, aura pour élément diagonaux:

2 Re{(1—w) (1-(7H (1-C59)},
ou

G = exp2y/—1n/p), ;= exp2/—1njg) 1 Si<p—L1<j<q-1.
Pour calculer le signe de la partie réelle, on utilise ’égalité:
(1-x) = — 2\/—:'1(exp(\/——1nt)) sinmt ,
oux = exp(2./—1nt),0 <t < 1.

La suite des calculs est alors sans surprise.

Nous pouvons maintenant démontrer:

THEOREME 5. Soit I'(r,d) un entrelacs de Hopf généralisé. Alors, on a

m(T(r, d)) > d* 4_ 4

si d est pair. Si d est impair, soit d = p'd avec

2 N\ 2
p premier, alors: m(I(r, d)) > d 2 * (%) ,

Remarque. Tres grossierement, la borne ainsi obtenue, est la moitié de
celle donnée par la conjecture anonyme du § 2.
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Le théoreme 5 découle d’un calcul un peu long mais sans aucune difficulté
qui donne les signatures tordues des entrelacs I'(d, d), grace au théoréme 4.

On choisit ® = — 1 si d est pair, et © = exp[2\/—-ln(pi— 1)/2p'] si d est
impair et d = p'd’ avec p premier.

On applique ensuite les théorémes 2 et 3 pour étendre la minoration aux
entrelacs I'(r, d).

En appliquant 'argument classique de transversalité développé au § 2 nous

obtenons ainsi une preuve du théoréme de Rohlin et Hsiang-Szczarba, dans le
cas de CP?,

THEOREME ([Rh], [HS]). Soit F une surface différentiable, close, connexe,
orientable dans CP?. Supposons que F est de degré d. Alorsle genrede F

o dt =4 N e A
est au moins égal a: 5 si d est pair et d i 3 si d est

impair, d = p'd, avec p premier.
Note. Comme nous n’avons pas pris de précaution quant a 'orientation

globale des entrelacs, les calculs précédents montrent plutdot que la valeur
absolue des signatures est €gale au nombre indiqué.

§ 7. QUELQUES PROBLEMES LIES AU NOMBRE GORDIEN

Le but de ce paragraphe est de mentionner et de commenter quelques pro-
blémes liés au nombre gordien d’un entrelacs mais qui ne sont pas directement
rattachés aux problémes de R. Thom et de J. Milnor.

A-1) Dés quon définit un invariant des entrelacs, il est important de
connaitre son comportement par rapport a la somme connexe. Il est alors
naturel de posér la question suivante (cf. Knot theory, Proceedings Plans-sur-
Bex [Hau]): «le nombre gordien est-il additif pour la somme connexe:
c’est-a-dire a-t-on (K, # K,) = w(K;) + u(K,)? »

On vérifie aisément que: u(K,; # K,) < u(K,) + u(K,).

L’exemple de la figure 8, ou 'on considere la somme connexe du nceud de
tréfle droit avec le nceud de tréfle gauche, montre que le nombre gordien de
ce nceud, qui est 2 par I'inégalité de Wendt (cf. [QV]), peut-€tre atteint aussi
bien en dénouant chaque facteur de la somme connexe qu’en ne respectant pas
cette somme connexe.

2) Un cas particulier du probléme précédent a regu beaucoup d’attention
(cf. [Lic;], [GLa,]). Il reste toujours ouvert: «les entrelacs de nombre
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FIGURE 8

(La trace d’une boule dans laquelle s’effectue une operation de dénouement
est marquée en pointiliés sur le plan de projection du nceud).

gordien 1 sont-ils premiers? »
J. C. Gomez Larranaga ([GLa,], [GLa,]) a su montrer que, dans certains
cas, les neeuds de nombre gordien 1 sont premiers.

B — Une question-importante, et semble-t-il difficile est le calcul pratique
du nombre gordien d’un entrelacs. En particulier: 1) « Existe-t-il un procédé
algorithmique, méme théorique, pour calculer effectivement le nombre gordien
d’un entrelacs? »

Note. Un tel proceéde existe d’aprées W. Haken [Hak], pour calculer le
genre de Seifert d’'un nceud.

2) Si on veut utiliser une bonne projection, c’est-a-dire la définition 1, pour
calculer le nombre gordien d’un entrelacs, le probléme principal est de trouver
sur quelle projection effectuer le calcul.

Il est certain que le nombre gordien d’un entrelacs n’est pas le nombre

Projection
a 7 croisements,
de nombre gordien 2

Projection minimale
a 6 croisements,
de nombre gordien 1

FIGURE 9
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gordien de n’'importe quelle bonne projection de cet entrelacs, comme le montre
Iexemple du nceud 6,, qui a une projection minimale a 6 croisements de nombre
gordien 1, et une projection a 7 croisements de nombre gordien 2 (voir figure 9).
Les cercles en pointillés entourent les croisements que I'on peut changer pour
dénouer la projection. Le brin, tracé en trait fort, est le brin que 'on bouge
pour passer d’'une projection a une autre.

3) Une conjecture du folklore affirme « qu’il existe une bonne projection
minimale de I'entrelacs telle que le nombre gordien de cette projection soit le
nombre gordien de I’entrelacs ».

Cette conjecture a son origine dans le fait que le nombre gordien d’une
bonne projection d’un entrelacs est majoré par la moitié du nombre de croi-
sements de cette projection (cf. la remarque apres la définition 1 au § 3); elle
n’est pour l'instant infirmée par aucun des exemples connus dans la tabulation
des nceuds jusqu’a 9 croisements (sur 84 nceuds ayant au plus 9 croisements,
on a pu calculer le gordien de 71 nceuds; voir Nakanishi [Na] et Lickorish-
Rickard [Lic,].

Une conjecture encore plus optimiste semble étre : « le nombre gordien d’un
entrelacs est le nombre gordien de n’importe quelle projection minimale ». Il
pourrait etre intéressant pour cette derniere conjecture d’étudier les projections
minimales d’un nceud double, qui est toujours un nceud de nombre gordien 1.

4) Lorsqu’on se restreint au cas particulier des entrelacs alternés, on peut
se demander « si le nombre gordien d’un entrelacs alterné est égal au nombre
gordien d’une projection alternée réduite » (c’est-a-dire sans croisements tri-
viaux du type >~ ) ou \/> ).

Une réponse affirmative a cette question entrainerait une réponse affir-
mative a ’additivité du nombre gordien par rapport 4 la somme connexe des
entrelacs alternés, d’apres la caractérisation géométrique des entrelacs alternés
non premiers, donnée par W. Menasco [Me].

5) Comme illustration de ce qui précéde, nous conjecturons que « le nombre
gordien du nceud alterné a deux ponts associé au plombage & —2,
a > 0,b > 0 (noté 2a2b chez J. C. Conway [Co]) est égal a inf(a, b) ».

C’est en fait le nombre gérdien de la projection alternée (peut-étre mini-
male?) donnée sur la figure 10.

FIGURE 10
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Cette conjecture est vraiesia = 1 oub = 1. Elle peut étre démontrée dans
le cas ¢ = b = 2 en utilisant la forme d’enlacement du revétement double
ramifié comme cela a été fait par Lickorish et Rickard (cf. [Lic,]).

Une réponse positive a cette conjecture fournirait une famille de nceuds de
genre 1 et de nombre gordien arbitrairement grand (cf. § 5, E et F), mais qui
ne seraient pas fibrés.

C — Soit B une tresse fermée & n brins, munie de I’orientation naturelle
des tresses fermées. Comme au §4, notons r le nombre de composantes
connexes de P et ¢ la longueur algébrique de B (c’est-d-dire la somme expo-
nentielle du mot B).

1) D. Bennequin [Be] a posé la question: « a-t-on la minoration suivante
pour le nombre gordien de B:

%(Icl—n—{—r) < uPB)?»

Nous avons montré au § 4 que cette minoration est vraie pour le nombre
gordien de la projection associée a la présentation en tresse fermee.

Si cette inégalité était vérifiée, cela impliquerait une réponse positive a la
conjecture de J. Milnor et, plus généralement, a la conjecture du §4 sur le
nombre gordien des tresses fermées positives (dans ce cas-1a |c|=b).

Cette inégalité semble donc étre la géneralisation naturelle de la conjecture
de J. Milnor au cas des tresses fermées quelconques. On peut cependant
remarquer que, lorsque le nombre de brins n est grand par rapport’ a r, cette
minoration n’a que peu d’intérét.

Note. L. Rudolph a observé que le nombre gordien d’un entrelacs est
toujours égal au nombre gordien d’une projection associée a une présentation
en tresse fermée de cet entrelacs.

En effet, dans la démonstration d’Alexander qu'un entrelacs admet toujours
une présentation en tresse fermée, on peut orienter convenablement les arétes
des croisements que l'on change pour dénouer I'entrelacs, pour qu’elles ne
soient pas touchées par le processus d’Alexander.

D — Il pourrait sembler logique de comparer le nombre gordien u(K) d’un
neud K et le nombre de ponts p(K) de ce nceud (pour une définition de p(K)
voir [Sch] ou [Ro,, ch. 4-D]), puisque ces deux invariants sont liés aux pro-
jections du nceud.

De plus: 1) u(K) et p(K) sont grossierement majorés tous les deux par le
nombre minimal de croisements de K.

i1) On a les inégalités: e(K) < u(K) (inégalité de Wendt, cf. § 5-E), et e(K)
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< p(K) — 1, ou ¢(K) désigne le rang du module d’Alexander de K. En effet le
groupe d’un nceud a p ponts admet une présentation avec p générateurs méri-
diens, et le calcul différentiel libre de Fox [Fo,] montre alors qu’on obtient
une presentation du module d’Alexander avec p — 1 générateurs.

Cependant ces deux invariants n’ont aucun rapport entre eux. D’une part
il existe des nceuds a 2 ponts de nombre gordien arbitrairement grand, par
exemple les nceuds toriques (2, 2n+1), n > 1, qui sont de nombre gordien n
(cf-§ 5 et [Mu]).

D’autre part, le double d’un nceud est toujours de nombre gordien 1, mais
peut avoir un nombre de ponts arbitrairement grand: le double itéré n fois du
nceud de trefle a un nombre de ponts p = 2"*! d’aprés Schubert [Sch].

E — Il existe dans la littérature bien d’autres invariants géométriques d’un
entrelacs qui sont liés au nombre gordien et qui donnent lieu a des inégalités
(cf. par exemple T. Shibuya [Shb]). Cependant ces invariants semblent aussi
difficiles a calculer que le nombre gordien et n’ont donné lieu jusqu’a présent
a aucune meéthode explicite de calcul.
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