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LE PROBLÈME DE J. MILNOR
SUR LE NOMBRE GORDIEN DES NŒUDS ALGÉBRIQUES ')

par Michel Boileau et Claude Weber

Introduction

Cet article tente de faire le point sur deux conjectures célèbres et toujours
ouvertes, celles dites de R. Thom et J. Milnor. Elles sont attirantes, car elles

relient de façon spectaculaire la géométrie algébrique et la topologie en petites

dimensions.

En ce qui concerne la topologie, nous avons particulièrement mis l'accent

sur la théorie des entrelacs, plutôt que sur la théorie des nœuds (connexes). Il
y a à cela au moins deux raisons : tout d'abord ce sont les entrelacs qui sont
vraiment liés au sujet et d'autre part, selon le précepte de L. Siebenmann, la
théorie des entrelacs est indissociable de celle des nœuds. Ceci entraîne parfois
quelques complications.

Les trois premiers paragraphes de cet article sont essentiellement de la mise

en place de choses connues.
Au § 4 nous donnons une démonstration simple du théorème de H. Pinkham

qui majore le nombre gordien des entrelacs algébriques. Cette démonstration
a été obtenue en collaboration avec D. Bennequin.

Au § 5 nous donnons une preuve des inégalités de H. Wendt dans le cas
des entrelacs et discutons certaines minorations classiques du nombre gordien.
Pour cela nous introduisons le « grand genre » de Murasugi, concept commode

pour minorer le nombre gordien d'un entrelacs.

Au § 6 nous généralisons un peu les théorèmes de A. Tristam sur les signatures

des entrelacs. Ces théorèmes permettent de trouver des bornes pour la
conjecture de R. Thom qui sont exactement celles données par V. Rohlin d'une
part et par W. C. Hsiang et R. Szczarba d'autre part, en utilisant le théorème
de la G-signature d'Atiyah-Singer. Qu'une telle voie soit théoriquement possible
était connu de T. Matumoto et O. Viro. Voir aussi V. A. Nezhinskii [Ne] et
S. A. Popov [Po].

x) Cet article a déjà paru dans Nœuds, tresses et singularités, Monographie de
l'Enseignement Mathématique N° 31, Genève 1983, p. 49-98.
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Les détails de plusieurs démonstrations se trouvent dans le manuscrit multi-
copié [BW], du même titre que cet article.

Nous tenons à remercier Daniel Bennequin, Lê Dung Trang et Françoise
Michel des nombreuses discussions que nous avons eues sur les sujets traités
ici. L'enthousiasme de Lê pour la conjecture de J. Milnor est très contagieux!

Le plan de cet article est le suivant :

§ 1. Genre des courbes planes et conjecture de R. Thom.

§ 2. Genres de Murasugi et de Seifert des entrelacs.

§ 3. Nombre gordien des entrelacs.

§ 4. Le problème de Milnor.

§ 5. Relations entre le nombre gordien et d'autres invariants de la théorie des

entrelacs.

§ 6. Signatures.

§ 7. Quelques problèmes liés au nombre gordien.

§ 1. Genre des courbes planes et conjecture de R. Thom

Soit C une courbe algébrique dans CP2, irréductible. Il existe donc un
polynôme homogène F(X, Y, Z) irréductible, tel que C est constituée par les zéros

de F. Par définition le degré de C est le degré du polynome F.

Supposons C lisse. Alors, du point de vue différentiable, C est une surface

close, connexe, orientée. Elle a un genre topologique g et une version du
théorème de Riemann-Roch (connue aussi sous le nom de théorème de Pliicker)
affirme que: 2g (d—l)(d — 2).

Références: W. Fulton [Fu]; R. Walker [Wak].
En fait ce théorème se trouve dans quasiment tous les livres sur les courbes

planes.

Par le théorème de Bezout, le degré d peut être interprété topologiquement
en disant que la classe fondamentale [C] e H2(C ; Z) est homologue dans CP2

à d fois la classe représentée par le générateur canonique CP1 CP2. On a

toujours d > 0. Ceci justifie la définition qui suit.

Soit F une surface topologique dans CP2. Supposons F close, connexe,
orientée. On dira que F est de degré d si la classe fondamentale [F] est homologue

dans CP2 à d fois [CP1]. Quitte à changer l'orientation de F, nous

supposerons toujours d ^ 0.

Ceci étant précisé, nous pouvons énoncer la
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Conjecture de R. Thom. Soit F une surface différentiable, close, connexe,

orientée dans CP2. Supposons que F est de degré d > 0. Alors le genre

r f
(d-D(d-2)

de F est supérieur ou egal a

Commentaires. 1) Contrairement à la formule de Pliicker -Riemann-Roch,

on ne peut pas s'attendre à une égalité. En effet, si on change F en F 4 T2, où

T2 désigne le tore S1 x S1 et où # désigne une somme connexe, on voit que le

degré ne change pas tandis que le genre augmente d'une unité.

2) La conjecture est fausse si on demande seulement que F soit plongée

topologiquement (ou P.L.). En fait M. Kervaire et J. Milnor [KM] ont montré

que, pour tout d ^ 0, il existe une sphère P.L., localement plate sauf en un

point, qui est de degré d.

3) Bien sûr, pour tout d ^ 1, il existe une courbe algébrique lisse de degré
d. Par exemple celle correspondant au polynome xd + yd -F zd 0.

4) Un cas très particulier de la conjecture affirme qu'une sphère diffé-

rentiable S2 dans CP2 est de degré plus petit ou égal à 2. La question de savoir

quels éléments de H2{M ; Z) peuvent être représentés par une sphère diffé-

rentiable a été étudiée pour la première fois par Kervaire-Milnor. (M est une
variété différentiable de dimension 4, simplement connexe). Le cas particulier
de CP2 a été résolu par A. Tristam. (Voir le § 6; nous verrons que seules les

classes de degré ^ 2 peuvent être représentées par une S2 différentiable.)
Envisageons maintenant la situation où C n'est pas nécessairement lisse.

En ce cas, la théorie locale des singularités nous permet de décrire C de la
façon suivante :

a) L'ensemble Z des points singuliers de C est fini.
b) Pour chaque point singulier zel, il existe une petite boule Dz de

dimension réelle 4, centrée en z telle que :

i) dDz rencontre C transversalement

ii) Dz n Z {z}

iii) la paire (Dz, DznC) est homéomorphe au cône de centre z sur la paire
(ÔDZ, dDznC).

Comme l'intersection est transverse, dDz n C constitue un entrelacs orienté
dans ôDz. Notons rz le nombre de composantes connexes de cet entrelacs. Par
définition, le nœud ou entrelacs Lz est un entrelacs algébrique, à ne pas
confondre avec les entrelacs algébriques de F. Bonahon et L. Siebenmann pour
qui l'adjectif algébrique a une autre signification.

Soit C C n (CP2 — uÔJ.
zel
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C est une surface différentiable (en fait' C-analytique) connexe (car C est

irréductible), orientée (par l'orientation venant des complexes), à bord. Le
nombre de composantes connexes du bord dC est égal à £ rz.

zeI
Par définition, le genre topologique g de C est égal au genre de la surface

C obtenue en attachant un disque de dimension 2 à chaque composante de dC.

La formule de Riemann-Roch dans le cas d'une courbe avec singularités
dit alors que :

~ 9 + L£ zëï.

(nous rappellerons la définition de 5Z un peu plus loin).

Références: J. P. Serre [Ser] ; P. Samuel [Sam].

Quelques commentaires sur les objets topologiques.
Un entrelacs orienté est la donnée d'une famille finie de courbes differentiates

orientées, plongée dans S3 (ou R3). Un nœud est un entrelacs à une

composante.
Deux tels entrelacs sont équivalents s'il existe un homéomorphisme de S3,

de degré + 1, envoyant l'un des entrelacs sur l'autre, en conservant les orientations

de chaque composante.
Dans notre cas les entrelacs algébriques Lz sont orientés par l'orientation

complexe du morceau de courbe algébrique Dz n C, dont Lz est le bord.

Pour éviter chaque fois de longues périphrases, définissons le genre d'une
surface de la façon suivante :

Soit G une surface compacte orientable. Soient Gl9 G2,..., Gs les composantes

connexes de G. Soit Gh 1 ^ i ^ s, la surface close obtenue à partir de

G( en attachant un disque sur chaque composante connexe de dG,. Alors par

définition, le genre de G est la somme des genres des Gh 1 < i ^ s. C'est aussi

le genre de la somme connexe des Gt (ou des Gt).

Commentaires sur 5Z.

On définit 8Z en géométrie algébrique de la façon suivante : on considère

l'anneau local en z : (9Z et sa clôture intégrale (9'z 3 (9Z. Alors, par définition :

Nous allons nous intéresser maintenant à une interprétation topologique
de l'entier 8Z donnée par J. Milnor.
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A l'aide d'une carte affine contenant la boule Dz nous pouvons supposer

que nous avons une fonction polynomiale / : C2 C, avec /(0) 0, et que 0

est une singularité isolée de /.
Finalement, pour une petite boule D centrée en 0 g C2, nous pouvons

supposer que la paire (D, D n est isomorphe, via la carte, à la paire
(Dz, DznC).

Alors, pour t suffisamment proche de 0, f~1{t) n 3D est un entrelacs
équivalent à Lz. Cet entrelacs orienté K borde dans D le morceau de courbe lisse

f-\t)nD Xt X.
Rappelons que, pour t et t\ non nuls, suffisamment proches de 0, les paires

(D, Xt) et (D, Xt>) sont difféomorphes.

Référence: J. Milnor [Mix].
Comme J. Milnor, notons p l'entier dimz HfX ; Z). J. Milnor démontre

que l'on a nécessairement :

28 p + r — 1

Il est important pour la compréhension de cet article d'avoir une idée de

la démonstration de la formule de Milnor. Nous en donnons donc une esquisse.

Cas particulier : supposons que Z est réduit à un seul point, noté z.

Comme les entrelacs Lz et K ont même type, il est facile de construire une
surface differentiate F dans CP2 en recollant C avec X. F est une surface

close, connexe et orientée.

Alors, un calcul facile, qui utilise que C et X sont toutes deux connexes,
montre que :

genre de F genre de C + ^(p + r—1)

Milnor montre alors qu'il y a une courbe lisse C, isotope à F. Ceci est une
conséquence du fait que nous avons supposé Z réduit à un point.

Par construction, on a :

genre de F genre de C g'
et

degré de C degré de F — degré de C — d

Do- ni, (d-l)(d-2) f (d—1) (d — 2)Par Riemann-Roch : g' et g + 8.

Le calcul du genre de F montre alors que 8 ~ (p-fr— 1).
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Finalement, Milnor donne dans son livre un argument pour se ramener au
cas particulier (voir [MiJ, p. 88 à 91). Plus précisément, il montre que tout
germe est équivalent à droite à un germe satisfaisant les conditions du cas

particulier.
Nous donnerons au § 4 une interprétation (classique) de 5Z en termes de

« points doubles proches ».

Au § 5 nous donnerons une autre notion de genre d'une surface, que nous
appellerons le grand genre. Elle permet de bien voir pourquoi 5 est la

contribution locale au genre de C.

§ 2. Genres de Murasugi et de Seifert des entrelacs

Soit K un entrelacs orienté dans S3. Il est bien connu depuis H. Seifert qu'il
existe des surfaces compactes orientées U c= S3, dont le bord orienté est K.
Dans ce qui suit, nous supposerons toujours que U n'a aucune composante
connexe close. U est appelée une surface de Seifert de K.

Le genre de Seifert de K, noté s(K), est le minimum des genres des surfaces

de Seifert de K.
Nous allons maintenant nous intéresser aux entrelacs orientés qui sont

fibrés.

Références: J. Hillman [Hi]; D. Rolfsen [Rox].
Les faits suivants sur les entrelacs fibrés sont classiques :

a) Les entrelacs algébriques sont fibrés. (C'est le théorème de Milnor, voir
[Mû]).

b) Les surfaces de Seifert d'un entrelacs fibré sont toutes connexes. En voici
brièvement la raison : l'homologie en dimension 1 du revêtement cyclique
infini associé à l'orientation de l'entrelacs est de type fini sur Z, puisque ce

revêtement a le type d'homotopie de la fibre; s'il existe une surface de

Seifert non connexe, l'homologie en question n'est pas de type fini.

c) N'importe quelle surface de Seifert de K, de genre minimum, est isotope à

une fibre de la fibration. Cela résulte essentiellement de la démonstration
du théorème de fibration de J. Stallings (cf. [StJ). (Si on veut que l'isotopie
reste fixe sur le bord, il faut utiliser F. Waldhausen [Wad].)

d) Milnor démontre dans son théorème de fibration que, si L est un entrelacs

algébrique, la fibre de la fibration est difféomorphe au morceau de courbe

algébrique que nous avons appelé X au § 1. Par définition,
dimz HfX; Z) p
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et donc, en vertu de c), s(L) — [j-i — (r — 1 )] pour n'importe quel entrelacs

algébrique L.

Considérons maintenant S3 comme le bord de la boule B4. Bien sûr, il
existe des surfaces compactes orientées V a B4 telles que le bord orienté de

V soit égal à un entrelacs orienté donné. A nouveau on impose qu'aucune

composante connexe de V ne soit close. Pour faire joli, on peut toujours

supposer que V est plongée proprement dans £4, c'est-à-dire que ÔV V n S3.

Une surface telle que V est appelée surface de Murasugi de l'entrelacs orienté

donné. Par définition, le genre de Murasugi est le minimum du genre des

surfaces de Murasugi de l'entrelacs K. Nous le noterons m(K).

Evidemment, m(K) ^ s(K) puisque toute surface de Seifert est une surface

de Murasugi.

Référence originale: K. Murasugi [Mu].

Commentaires. 1) Si K est un nœud (r 1), les genres que nous avons
définis de dépendent pas de l'orientation. Plus généralement si on remplace
l'entrelacs orienté K par l'entrelacs K' obtenu en changeant les orientations
de toutes les composantes de K, alors K et K' ont mêmes genres de Seifert,

respectivement de Murasugi. Cependant si on fait d'autres modifications sur
les orientations, en général les genres changent.

2) Il est très facile de trouver des exemples où l'inégalité m{K) ^ s{K) est

stricte. Pensez, par exemple, aux nœuds cobordants à zéro.

Une première relation entre le genre de Murasugi des entrelacs algébriques
et la conjecture de Thom est donnée par la proposition suivante :

Proposition. Supposons qu'il existe un entrelacs algébrique K avec
m(K) < s(K). Alors la conjecture de Thom est fausse.

D'où la conjecture (anonyme à ce qu'il nous semble (cf. [Kir, pb. 1.40]):
« pour tous les entrelacs algébriques K, on a m(K) s(K) ».

Preuve de la proposition. Soit / : C2 C une fonction polynomiale avec

f(0) 0, possédant en 0 une singularité isolée, et dont l'entrelacs algébrique
correspondant est équivalent à K.

Soit C la courbe projective plane obtenue en homogénéisant f. D'après
l'argument donné par J. Milnor dans son livre [Mil5 p. 89] (et en utilisant le
théorème de J. Mather) on peut supposer que C est irréductible. Soit d son
degré.
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L'argument de Milnor que nous avons reproduit à la fin du § 1 montre que
la surface différentiable F c CP2, obtenue en ajoutant à C les morceaux de

surface « de type X » au voisinage de chaque point singulier a un genre g

donné par la formule: 2g (d — l)(d — 2).

Si K a, en vertu de l'hypothèse, un genre de Murasugi strictement plus petit

que son genre de Seifert, choisissons une surface de Murasugi V réalisant le

minimum du genre.
Construisons une surface différentiable F c= CP2 en remplaçant, au

voisinage de l'origine, le morceau de surface X par V Le degré de F est égal

au degré de F. Mais le genre de F' est strictement plus petit que le genre de

F. La surface F serait donc un contre-exemple à la conjecture de Thom.

Nous donnons maintenant une autre relation classique entre la conjecture
de Thom et le genre de Murasugi des entrelacs.

Soit un entier r ^ 1. Considérons le tore standard T dans S3, et une courbe
fermée simple y sur T de type (1, 1). Considérons l'entrelacs T obtenu en

dessinant sur T r courbes parallèles à y : y1? y2,..., yr. Orientons y arbitrairement
mais de façon définitive. Orientons chaque yt arbitrairement. Pour chaque
entier i, avec 1 < i ^ r, y(- est homologue sur T à et-y, où et- ±1. Posons

r
d Y sr Nous ne restreindrons pas la généralité de ce qui va suivre en

i 1

supposant d ^ 0.

Bien sûr, r d mod 2. Nous noterons T(r, d) l'un des entrelacs orientés

ainsi obtenu. Ce sont des entrelacs de Hopf généralisés.

Un cas particulier intéressant est l'entrelacs T(d, d). Il s'agit de l'entrelacs
orienté associé à la singularité xd — yd 0. (Point ù-uple ordinaire.)

Proposition. La conjecture de Thom est vraie si et seulement si le genre

de Murasugi des entrelacs de Hopf généralisés T(r, d) est égal à

(d- 1) (d-2)
2

pour tout r et pour tout d.

(d-l)(d-2)
Remarque. Il n'est pas difficile de montrer que m(r(r, d)) ^

et que m(r(r, d)) ^ m(F(d, dj).
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Il serait agréable de montrer que m{Y(r, d)) m(T(d, d)). Dans ces conditions

la proposition deviendrait : la conjecture de Thom est vraie si et seulement
si

m(V(d. d)) ————— pour tout d ^ 1.

Preuve de la proposition. C'est une conséquence facile de la topologie de

CP2. Rappelons que si F est une surface differentiate close, connexe, orientée

dans CP2, plus généralement un 2-cycle entier, son degré est obtenu en calculant

le nombre d'intersection F • CP1. A l'aide d'une petite isotopie on peut
toujours supposer que F rencontre CP1 transversalement.

Désignons par n : £ - CP1 le fibré en disques de dimension 2, normal à

CP1 dans CP2. L'intersection F n E se compose en général de r fibres orientées

(par l'orientation de F) : Bu B2,Br. Comme le fibré E est orienté, pour chaque
entier /. 1 ^ ^ r, posons nt -h 1 si l'orientation de Bt coïncide avec celle

r
de E et posons n-t — 1 sinon. On note alors £ nt d.

i= 1

D'autre part, (CP2 — £) est une boule de dimension 4, que nous notons B4.

Alors, S3 cB4 cE.

Posons F E n (CP2-Ê) E n B4. Le bord de F, ÔF' a ÔE S3, est

une entrelacs orienté à r composantes. La description usuelle de la fibration
de Hopf montre que c'est un entrelacs T(r, d).

A partir de ces observations la fin de la démonstration est immédiate, si

on remarque que F est une surface de Murasugi pour cet entrelacs.

Entrelacs

Figure 1

de Hopf généralisé (non orienté) à r 4 composantes connexes.
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Remarque. Les entrelacs T(r, d) sont bien faciles à dessiner. Plaçons nous
dans le groupe des tresses à r brins Bn et considérons l'élément

a cr1 • a2 *• ö"r_ t

puis l'élément ß ar. Sans les orientations, l'entrelacs de Hopf généralisé T

correspond à la tresse fermée ß. Pour r 1 on a un cercle non noué et pour
r 2 on a l'entrelacs de Hopf usuel. (Voir la figure 1 dans le cas r 4.)

Avec une description aussi explicite, il est frappant que m(r(r, d)) ne soit

pas connu. Le § 6 fait le point sur ce que l'on sait actuellement.

§ 3. Nombre gordien des entrelacs

Dans ce paragraphe, nous abandonnons la géométrie algébrique plane, pour
nous intéresser à un vieil invariant de la théorie des nœuds, aussi appelé

« Uberschneidungszahl » ou « unknotting number ». Commençons par la

définition originale, légèrement mise au goût du jour.
r

Soit Sr l'union disjointe de r cercles: Sr J_[ S}. Une immersion
i= 1

cp : Sr R2

sera dite générique, si ses seules singularités sont des points doubles où les

deux brins se coupent transversalement.
Une immersion générique sera dite signée si, en chaque point double, on

a choisi un brin positif et un brin négatif. Expliquons-nous : traditionnellement
le brin positif est dessiné par un trait plein et le brin négatif est dessiné par un
trait brisé.

Soit K un entrelacs dans R3. Soit R2 un plan dans R3 et choisissons une

orientation de la normale au plan. La projection orthogonale n : R3 -> R2 est

une bonne projection pour K, si n | K est une immersion générique. Une telle

immersion est signée de façon naturelle, le brin positif en un point double étant

celui qui se trouve le plus haut. Ceci a un sens puisque nous avons choisi une

orientation de la normale au plan.

Réciproquement, une immersion signée détermine un entrelacs dans R3,

dont la classe d'équivalence est bien définie. Nous dirons que cet entrelacs se

trouve au-dessus de l'immersion signée.

Lemme. Soit (p : Sr R2 une immersion générique. Alors, il existe un

choix des signes aux points doubles tel que l'entrelacs qui se trouve au-dessus de
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Vimmersion signée correspondante soit trivial, c'est-à-dire constitué de r cercles

situés dans r plans parallèles.

Preuve du lemme.

a) Décidons que la composante de l'entrelacs qui se trouvera au dessus de

cp(5j) sera au dessus de toutes les autres composantes. Pour cela, chaque fois

qu'un point double de cp fait intervenir un brin de S} et un brin de Sj, pour

j 1, donnons le signe + au brin de S{.

b) Rendons la composante de l'entrelacs qui se trouve au dessus de cp(Sj)

non nouée.

Pour cela, choisissons un point-base * sur S\, dont l'image par <p n'est pas

un point double. Orientons S{, et parcourons S\ à partir de *, dans le sens

donné par l'orientation.
Soit P1 e S}, le premier point double de cp | S[ que nous rencontrons. Il

existe donc P\ e S\, P\ i=- Pl9 tel que cp(.Px) cp(P'i). Attribuons à P1 le signe

-h et à P\ le signe —. Nous procédons de même avec le prochain point double
de cp | S}, sans signe, que nous rencontrons: nous lui attribuons le signe + et

le signe — va à son jumeau, et ainsi de suite.

Le nœud qui va se trouver au dessus de cp(Sj) est trivial! La raison est que
la restriction de la projection Te à ce nœud possède un seul minimum, au point
qui se trouve au dessus de cp(*). (Un nœud à 1 pont est trivial.)

Traditionnellement le nœud que nous venons de construire s'appelle le nœud

descendant au-dessus de cp(Sj).

c) Nous décidons que la composante qui se trouvera au-dessus de cp^)
sera dans R3, au-dessus de celles correspondant à <p(Sj\j ^ 3. Nous procédons
de façon analogue au point a).

d) Nous rendons triviale la composante qui se trouve au-dessus de (p(S\).
Nous procédons comme au point b).

e) Nous continuons de façon analogue avec chaque composante, l'une après
l'autre, de l'entrelacs.

Soient, à nouveau, K un entrelacs dans R3 et k une bonne projection de

K. Le lemme précédent montre qu'en faisant un nombre fini de changements
de signes aux points doubles, on peut transformer K en l'entrelacs trivial. Par
définition, le nombre gordien de la projection k est le minimum des changements
de signes nécessaires pour « trivialiser » K.

Définition 1. Le nombre gordien u{K) de est le minimum des nombres
gordiens de toutes les bonnes projections de K.



184 M. BOILEAU ET C. WEBER

Note. Pour faire bonne mesure, précisons que nous laissons K varier dans

sa classe d'équivalence. Ainsi, il est clair que le nombre gordien est un invariant
de la classe d'équivalence de K. Il est clair aussi que nous n'avons pas du tout
besoin d'orienter K, de sorte qu'il s'agit de la classe d'équivalence non orientée.

Remarque. Dans la démonstration du lemme que nous avons donnée, rien
ne nous obligeait à décider arbitrairement que la première composante devait
se trouver au-dessus des autres. De même, nous aurions pu choisir le nœud

montant plutôt que le nœud descendant. En procédant alors de façon plus
économique, on montre facilement que, si la bonne projection n possède l points
doubles, le nombre gordien de n est plus petit ou égal à 1/2.

Si r 1, on peut obtenir un petit peu mieux.

Cette remarque indique de façon (un peu vague) que dans la détermination
du nombre gordien, la principale difficulté consiste à trouver des minorations

historique. Sans doute, le nombre gordien a fait partie pendant
longtemps des invariants numériques un peu folkloriques de la théorie des

nœuds. Voir, par exemple, ce qu'en dit K. Reidemeister dans son livre [Re],
page 16-17. La première contribution non banale au sujet fut celle de H. Wendt

[We] qui donna une minoration du gordien dont nous parlerons plus tard

Pour pouvoir étudier convenablement les relations du nombre gordien avec
d'autres invariants de la théorie des entrelacs, nous donnons maintenant
d'autres définitions du gordien.

Vers la définition 2.

Soit B3 la boule standard de dimension 3. Soient V le diamètre de B3

passant par les pôles, E l'équateur de B3 que l'on découpe en deux arcs de grand
cercle. Poussons un peu ces arcs dans B3, de façon à ce qu'on obtienne deux

arcs L et P plongés proprement et d'extrémités communes A et B. Soit H le

diamètre passant par A et B (V Vertical, H Horizontal, L Lointain,
P Proche ; voir figure 2

Soit K un entrelacs dans S3. Soit \J/ : B3 -* S3 un plongement differentiate
ou P.L., tel que : \|/~ 1(K) V u L. Par définition, l'échange élémentaire associé

à \|/ consiste à remplacer l'arc i|/(L) de K par l'arc i|/(P).

Si \|fu \|/„ sont v plongements, disjoints deux à deux, de B3, on peut
effectuer v échanges élémentaires simultanés.

au § 5.
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La démonstration du lemme montre, qu'étant donné un entrelacs X dans

S\ il existe un certain nombre d'échanges élémentaires simultanés qui

permettent de transformer X en l'entrelacs trivial.

Définition 2. Le nombre gordien de X est le nombre minimum d'échanges

élémentaires simultanés nécessaires pour rendre X trivial.
Manifestement, il n'est pas indispensable cette fois de faire varier X dans

sa classe d'équivalence.

Vers la définition 3.

Soient (p0 et cpx deux plongements differentiates de Sr ]_[ Sf dans S3.
i

Une homotopie régulière générique reliant cp0 à cpx est une application
differentiate ® : Sr x [0, 1] -> S3 telle que, si <Dr(x) ®(x, t), alors:

1. O0 cpo et Oi cpi

2. Pour presque tout t e [0, 1] (c'est-à-dire pour tout t e [0, 1], sauf un nombre
fini de valeurs), ®f est un plongement.

3. Si n'est pas un plongement, alors est une immersion ayant pour
seules singularités des points doubles à tangentes distinctes.

Soit maintenant K un entrelacs dans S3. Choisissons une paramétrisation
de X, c'est-à-dire un plongement cp : Sr - S3 dont l'image est X. (Ce que nous
allons faire est indépendant du choix de la paramétrisation.)
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Un dénouement de K est une homotopie régulière générique ® reliant cp

au plongement trivial (paramétrant l'entrelacs trivial). Il existe toujours un
dénouement de K : encore une fois c'est une conséquence du lemme. Le nombre

gordien du dénouement ® est la somme du nombre des points doubles des Or,

pour tout t e [0, 1].

Définition 3. Le nombre gordien de K est le minimum des nombres

gordiens de tous les dénouements de K.

Remarque. Nous avons supposé l'application O différentiable. Ceci

implique que, si le nombre gordien de est nul, les entrelacs paramétrés par
O0 et Q>1 sont équivalents. Ceci est une conséquence du théorème d'extension
des isotopies de R. Thom.

Attention en général en théorie des entrelacs le terme d'isotopie désigne une
notion plus faible (voir par exemple D. Rolfsen [Ro3], J. Hillman [Hi]).

Vers la définition 4.

Posons Dr ]_]_ Df ; on a dDr Sr.
i= 1

Soit (p : Sr c+ S3 un plongement différentiable. Considérons les immersions

G : Dr S3 x R + où R+ [0, + oo[, telles que:

1. G~1(S3 x {0})

2. G | Sr cp

3. p ° G : Dr R+ est une fonction de Morse avec r maxima pour seuls points
critiques. L'application p : S3 x R+ ->R+ désigne la projection canonique.

4. les seules singularités de l'immersion G sont des points doubles génériques,

en nombre fini.

Une paramétrisation cp de l'entrelacs K étant donnée, il est facile de vérifier

(cf. [BW]) qu'une telle immersion G existe toujours. Le nombre gordien de G

est alors le nombre de points doubles de G.

Définition 4. Le nombre gordien de l'entrelacs K est le minimum des

nombres gordiens de toutes les immersions G possibles.

Théorème. Les quatre définitions données sont équivalentes.

Pour une démonstration, voir [BW].
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§ 4. Le problème de Milnor

Dans son livre sur les singularités [Mils p. 92] J. Milnor pose la question

suivante (voir aussi [Kir, pb. 1.14]):

Soit / : (C2, 0) - (C, 0) une fonction polynomiale ayant une singularité

isolée en 0. Soit K le nœud algébrique associé au polynôme / et soit 5 le

nombre associé à la singularité qui intervient dans la formule de Riemann-

Roch (cf. § 1). Est-ce que 5 u(K)l
La « conjecture de Milnor » affirme que oui. Nous verrons dans ce

paragraphe que 5 et u(K) ont tous deux une interprétation en termes de points

doubles, ce qui rend la conjecture très plausible.

Il est connu (mais pas évident) que u(K) < 8. La première démonstration

de cette inégalité est due à H. Pinkham, et L. Rudolph en a donné une autre.

Nous présentons ici une preuve très élémentaire de cette inégalité. Elle est le

résultat de discussions passionnantes que nous avons eues avec D. Bennequin,
et nous le remercions de son aide.

Références: H. Pinkham [Pi]; L. Rudolph [Ru].

Finalement nous achèverons ce paragraphe en observant que si la conjecture
de Milnor est vraie pour les singularités à une branche, alors elle est toujours
vraie. Nous remercions F. Michel pour d'utiles conversations sur cette question.

Interprétation du nombre 5 en termes de points doubles proches.
Dans [A], N. A'Campo démontre que la fonction / possède une

déformation analytique réelle /T, telle que, pour x ^ 0, f ~ x(0) possède 8 points
doubles ordinaires (« nodes »). En fait A'Campo démontre bien plus : les nodes

sont tous réels.

Interprétons ce résultat. Soit Df une boule de Milnor pour / f0. Pour
x suffisamment petit, dDE sera aussi transverse à ffl(0) et l'entrelacs XT
déterminé par l'intersection ôDE n 0) dans ôDE sera équivalent (différen-
tiablement et de façon orientée) à K. Pour le vérifier, on observe que « être
transverse » est une condition ouverte, puis on applique le théorème d'extension
des isotopies.

Du point de vue différentiable, le morceau de courbe algébrique / ~ *(0) n DE

r
est l'image d'une immersion de Dr _[_]_ Df avec 8 points doubles génériques.

i 1

De plus ce nombre de points doubles est, en un certain sens, rigide. De façon
plus précise: si pour une certaine déformation fs de / f0, dès que s est
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suffisamment proche de 0, f~ *(()) est l'irfiage d'une immersion de Dr avec des

points doubles génériques pour seules singularités, alors ce nombre de points
doubles est nécessairement égal à 5.

Pour démontrer ces dernières affirmations, on répète l'argument de Milnor
que nous avons rappelé à la fin du § 1 : on homogénise / et on regarde la
courbe projective plane correspondante. On applique le théorème de Riemann-
Roch à cette courbe et à celle correspondant à une petite déformation. Un
calcul facile des genres donne la solution.

D'autre part, souvenons-nous que la définition 4 donne aussi une interprétation

du nombre gordien en termes de nombre minimum de points doubles
r

d'une immersion differentiate de Dr ]_[ Df dans D4.
;= î

La différence entre les deux concepts vient de ce que les deux types
d'immersions considérées ont des propriétés supplémentaires qui sont différentes

dans les deux cas. En effet :

a) Dans le cas du nombre gordien, l'immersion est (seulement) differentiate.
Mais elle se comporte très bien quand on la compose avec la projection
sur R+ : elle est de Morse avec le minimum de points critiques compatibles

avec la topologie de Dr.

b) En ce qui concerne /T-1(0), x petit, x ^ 0, l'immersion est C-analytique.
(C'est beaucoup plus fort que differentiate!) Mais elle se comporte moins

bien quand on projette sur R + : l'application est génériquement de Morse

et n'a pas de minimum.

Références: L. Rudolph [Ru]; J. Milnor [Mi2].
Le mot « ribbon » est souvent employé dans ce dernier contexte. Voir

l'article de L. Rudolph [Ru] cité ci-dessus.

En résumé : Interprétés comme nous venons de la faire, 8 et u(K) ont
indéniablement une certaine ressemblance. Il est tentant d'essayer d'utiliser cette

ressemblance dans les deux interprétations pour montrer qu'ils sont égaux.

Nous allons maintenant démontrer que, pour un entrelacs algébrique

K : u(K) ^ 8. (C'est le théorème de H. Pinkham.) En fait cette inégalité sera

une conséquence d'une proposition plus générale sur les tresses fermées.

Soit donc Bn le groupe des tresses à n brins, de générateurs canoniques

{g1? a2, çj„_i}. Soit ß un mot en les af. Nous désignons par:
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b la longueur du mot.

ß la tresse fermée associée à ß.

r le nombre de composantes de l'entrelacs ß.

Référence générale sur les tresses: J. Birman [Bi].

Proposition. u(ß) ^ —n + r).

Commentaire. Cette majoration n'est pas extraordinaire en principe. Par

exemple, si n r, elle affirme seulement que u(ß) ^ - b, et b n'est rien d'autre

que le nombre de croisements de ß. Un argument analogue à celui donné dans

la preuve du lemme du § 3 donne immédiatement la démonstration dans ce

cas. La majoration est un peu meilleure quand r est petit par rapport à n.

Nous indiquons maintenant comment le théorème de Pinkham se déduit
de la proposition. Nous allons le faire en plusieurs étapes.

a) Il est bien connu qu'un entrelacs algébrique K est équivalent à une tresse

fermée ß, où ß est une tresse positive. Par là on entend que ß peut se représenter

en un mot en les crf, où tous les exposants sont égaux à + 1. Remarquons qu'il
s'agit d'une équivalence entre entrelacs orientés: K est orienté comme nous
l'avons indiqué au § 1 et ß est muni de l'orientation naturelle des tresses fermées.

Ceci est une conséquence du théorème de préparation de Weierstrass.

b) Une tresse positive est, en particulier, une tresse homogène au sens de

J. Staffings [St2]. Dans l'article en question Staffings démontre, généralisant
un concept dû à K. Murasugi, que ß est un entrelacs fibré, et que la fibre est

la surface de Seifert U donnée par la construction de Seifert, effectuée sur la
présentation ß.

c) Un calcul élémentaire donne alors pour la caractéristique d'Euler de

U : x(U) - b0(U) - bfU) — n — b

où bt désigne le i-ème nombre de Betti. Or, b0(U) 1 puisqu'on a un entrelacs
fibré, et bfU) p. D'où \i b — n + 1. D'autre part, la formule de Milnor,
25 p + r — 1, donne 2b b — n+l + r— 1 b — n r.

Remarque. Si on veut démontrer la conjecture de Milnor par des voies
« purement topologiques » par exemple en utilisant essentiellement la théorie
des nœuds et entrelacs, il est difficile de tenir compte assez exactement de

l'hypothèse que l'on part d'un entrelacs algébrique, car les entrelacs algébriques
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constituent une classe assez particulière d'entrelacs toriques itérés. C'est

pourquoi, si on travaille selon ces lignes, il est naturel de généraliser la

conjecture de Milnor en :

Conjecture, (cf. [Ru]). Soit ß une tresse positive. Alors w((3) ^ {b — n + r).

La preuve de la proposition sera faite en plusieurs pas.
1er pas. En supprimant (n — r) croisements, on transforme ß en un entrelacs

à n composantes. Plus précisément, en supprimant (n — r) lettres du mot ß,

convenablement choisies, on obtient un mot y tel que y soit un entrelacs à n

composantes. Bien sûr la longueur de y est b — {n — r).

2e pas. Numérotons les brins de ß (et de y) de droite à gauche:
1, 2,..., n. Désignons par yf la composante de y qui correspond au z-ème brin.

A chaque point d'intersection de la projection de yf avec la projection de

y/i<j) attribuons le signe + si y, passe dessus jj et le signe — sinon. Soit

N{yh yJ) la somme des signes ainsi obtenus. Finalement,

«i Z N(yh Yj)
j>i + i

Nous allons transformer la tresse y en une tresse X en changeant les signes
de certains croisements, de façon à ce que X soit l'entrelacs trivial à n

composantes. Nous allons le faire de façon économique.
Soient Xl9..., Xn les n composantes de X. Si a1 ^ 0, décidons que X1 sera

au-dessus de toutes les autres composantes X2,Xn. Par contre, si ax < 0,

décidons que X1 sera au-dessous de toutes les autres composantes. De même,
si a2 ^ 0, décidons que X2 sera au-dessus de X3, X4,..., Xn ; sinon décidons qu'elle
sera au-dessous. Par récurrence, si at > 0, décidons que Xt sera au-dessus de

Xi + l,..., Xn; sinon décidons qu'elle sera au-dessous.

En vertu de la définition des N(yh y7), toute cette opération pourra se faire

en effectuant au plus ^-(b — {n — r)) changements de signes aux croisements.

3e pas. Rétablissons les {n — r) croisements que nous avions supprimés dans

le 1er pas. Nous obtenons une tresse s. Nous affirmons que ê est un entrelacs

trivial à r composantes. Bien évidemment ceci achèvera la preuve de la

proposition.
Tout d'abord, il est clair que le nombre de composantes de ê est r, car ß

et ê ont même projection (sans les signes).
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Pour voir que ê est trivial, revenons à X. Par construction, chaque

composante Xt est dans un plan horizontal. Si i ^ j, le plan contenant Xt est

distinct du plan contenant Xj. Toujours par construction, le plan horizontal

contenant X1 est soit au-dessus soit au-dessous de tous les autres.

Considérons alors la permutation w de {1, 2,..., n} associée à la tresse s. Si

w laisse fixe 1, la composante Xl se retrouve inchangée dans s. Il est clair qu'elle
est non nouée et non enlacée avec les autres composantes de ê, car on peut

l'isotoper en un tout petit cercle dans son plan horizontal sans rencontrer
d'obstacle, car le plan horizontal contenant X1 est extrémal.

Si la permutation w ne laisse pas fixe 1, il y a un croisement et un seul qui
relie X1 à une autre composante de X, disons Xk(k^i). On peut considérer ce

croisement comme le bord d'une mini bande verticale (effectuant un demi-tour)
et reliant le plan horizontal contenant Xk à celui contenant Xv

Comme le plan horizontal contenant Xx est extrémal, on peut isotoper la
boucle correspondant à Xl dans ce plan jusqu'à ce qu'on arrive aux extrémités
de la bande verticale, ceci sans rencontrer d'obstacles. Ensuite on isotope les

côtés de la boucle verticale jusqu'à ce qu'on se trouve dans le plan horizontal
contenant Xk.

Un facile raisonnement par récurrence (sur le nombre de brins) achève alors
la démonstration.

Remarque. Notons rc(ß) la projection associée à la présentation en tresse
fermée ß. La démonstration de la proposition 1 donne aussi une minoration
du nombre gordien de la projection ru(ß). Elle montre en effet que :

"Wß)) > j(lcl

où cdésigne la longueur algébrique de la tresse ß (c'est la somme exponentielle
du mot ß).

Pour vérifier cela, remarquons tout d'abord que d'après la démonstration
précédente : u(n(ß)) inf{«(y) ; où y décrit tous les mots possibles, obtenus à

partir du mot ß en supprimant (n-r) lettres pour que y ait composantes}.
Par construction, la longueur algébrique d'une telle tresse y vérifie:

| c'| > [ cI- (n-r).
D'autre part, d'après l'affirmation 2 de la seconde proposition de ce même

paragraphe, u(y)> | X ^(h,Yj) I, où y.) désigne le coefficient d'enlace-
i<j

ment de la composante y f de y avec la composante yj de y.
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La minoration annoncée découle alors de l'égalité: | £ ^{yb Jj) I - I c' I-

i< j 2

Cette égalité se vérifie aisément pour toutes les tresses pures, en utilisant le

disque bordé par chaque composante yf et donné par la présentation en tresse
fermée de y.

Nous conseillons au lecteur d'illustrer la preuve ci-dessus par quelques
exemples de son choix; voir aussi [BW].

Nous montrons maintenant qu'il suffit de démontrer la conjecture de Milnor
dans le cas des entrelacs algébriques à une branche.

Proposition. Soit L un entrelacs algébriques à r branches :

Lis L2,..., Lr.

Si la conjecture de Milnor est vraie pour chacune des branches, alors elle est

vraie pour L.

Preuve de la proposition. Remarquons que, grâce au théorème de Pinkham,
la conjecture de Milnor est équivalente à 8 ^ u(L). (Les notations sont celles

du début du paragraphe.)
La proposition découle immédiatement des deux affirmations ci-dessous.

Affirmation 1. Soit St-, l'invariant « 8 » pour la z-ème branche. Soit

£?(Lb Lj le coefficient d'enlacement de Lt avec Lj (z ^j On a :

s £ s, + I yi/., Lj)
i 1 i < j

Rappelons que pour un entrelacs algébrique, P£{Lb Lj) > 0.

Affirmation 2. Soit K un entrelacs quelconque à r composantes : Ku Kr.
On a:

u(K) > £ u(Kt) + X I Se(K„ \.
i — 1 i < j

Donnons quelques indications sur la démonstration de ces deux affirmations.

Pour l'affirmation 1, la formule est donnée par Milnor dans son livre [Mi1?

p. 93]. Elle résulte d'un calcul classique en géométrie algébrique, à partir de

la définition de 8 que nous avons donnée en utilisant la clôture intégrale de

l'anneau local.

Pour un topologue, c'est une conséquence facile de la formule de Milnor
28 p + r — 1, de l'interprétation de p comme le rang de l'homologie en
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dimension 1 d'une surface de Seifert de genre minimal, et de la représentation

en tresses fermées positives des entrelacs algébriques.

Pour l'affirmation 2, c'est une conséquence facile de la définition 4 du

nombre gordien et du fait que: l'enlacement de deux cercles dans S3 est égal

à l'intersection de deux chaînes qu'ils bordent dans D4.

Application. Nous verrons au § 6 que la conjecture de Milnor est vraie

pour les nœuds du tore de type (2, ri), (3, 4) et (3, 5). La proposition précédente

entraîne, par exemple, que la conjecture de Milnor est vraie pour 1 entrelacs

d'A'Campo, dont le nombre gordien est donc u 6.

Plus facilement encore, la conjecture de Milnor est vraie pour l'entrelacs

de Hopf généralisé T{d, d), associé au point ù-uple ordinaire (cf. § 1). Dans ce

(T<A M-l)
cas u(r(d, d)) —j—

§ 5. Relation entre le nombre gordien
ET D'AUTRES INVARIANTS DE LA THEORIE DES ENTRELACS

A. Nombre gordien et genre de Murasugi

Au § 1, nous avons défini le genre g d'une surface compacte orientable G

comme: g(G) £ giGf où les Gt désignent la surface close obtenue en collant
i

un disque de dimension 2 sur chaque composante de dGt. Le nombre g{Gi)

désigne alors le genre usuel. Ceci est la façon traditionnelle de procéder dans

ce type de situations et amène aux genres de Seifert et de Murasugi pour les

entrelacs dont nous avons parlé au § 2.

Références classiques: K. Murasugi [Mu]; A. Tristam [Tri].
Cependant dans le cas des entrelacs à plusieurs composantes, cette définition

n'est pas toujours la plus pratique. Par exemple un entrelacs de genre zéro

n'est pas nécessairement trivial.
De même, le genre de Murasugi traditionnel des entrelacs se compare mal

avec le nombre gordien. C'est pourquoi nous introduisons un nouvel invariant

que nous proposons d'appeler le grand genre (car il majore le genre habituel).
Soit donc, à nouveau, G une surface compacte, orientable. G n'est pas

nécessairement connexe et son bord a, disons, r composantes connexes.

Désignons par Pr la surface plane connexe, dont le bord a r composantes
connexes. Il y a une façon essentiellement unique d'identifier le bord de G et
le bord de Pr pour obtenir une surface close, orientable G. La surface G est
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connexe si et seulement si G n'a pas de composante connexe close. Alors, par
définition, le grand genre de G, noté t(G) est : t(G) genre usuel de G.

Remarques. 1) Le grand genre d'un anneau est 1, alors que son genre
traditionnel est zéro. Plus généralement t(Pr) r — 1.

2) Une surface est de grand genre nul si et seulement si c'est une union
disjointe de sphères et de disques.

Le lien entre genre et grand genre est donné par le lemme facile suivant,
où b0{G) désigne le nombre de composantes connexes de G.

Lemme. t(G) g(G) + (r - b0(G)).

Le grand genre est un invariant utile dans certaines circonstances. Par

exemple, revenons à la situation du § 1 :

Soit / : (C2, 0) - (C, 0) une application polynomiale ayant 0 pour singularité

isolée. Pour t non nul, suffisamment petit, considérons X /" 1(t) n D,

où D est une boule de Milnor. Abstraitement X est la « fibre de Milnor » de

l'entrelacs algébrique associé à fi

Lemme. Le nombre 5 attaché à la singularité est égal au grand genre de

la fibre de Milnor.

La démonstration résulte d'un calcul immédiat sur l'homologie des surfaces

en question.
Soit maintenant K un entrelacs orienté dans S3. On peut définir son grand

genre de Seifert et son grand genre de Murasugi, en prenant le minimum des

grands genres des surfaces de Seifert pour K (respectivement des surfaces de

Murasugi pour K).
L'économie de vocabulaire qui résulte de ces définitions nous paraît assez

importante. Par exemple un entrelacs est trivial si et seulement si son grand

genre de Seifert est nul. Un entrelacs est fortement cobordant à zéro (au sens

de A. Tristam ou K. Murasugi) si et seulement si son grand genre de Murasugi
est nul.

Notations : S(K) pour le grand genre de Seifert de K.

M(K) pour le grand genre de Murasugi de K.

Avec cette notation, la conjecture anonyme du § 2 (voir aussi [Kir, pb. 1.40])

s'énonce : pour tout entrelacs algébrique K, on a M(K) b(K).
Bien sûr, dans le cas des nœuds (entrelacs connexes) il n'y a pas de différence

entre genre et grand genre.
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La proposition suivante donne un lien entre le grand genre de Murasugi

et le nombre gordien.

Proposition. Soit K un entrelacs non orienté dans S3 de nombre

gordien u. Alors, quelle que soit l'orientation de K, on a: M{K) ^ u(K).

Preuve de la proposition. Nous allons utiliser la définition 4 du nombre

gordien. Par hypothèse, il existe une immersion différentiable

G : Dr _\±Df ^D4,
i 1

propre, telle que G_1(S3) Sr et G | Sr est une paramétrisation orientée de K.

De plus les seules singularités de G sont des points doubles génériques en

quantité u. (Nous n'avons pas besoin du comportement de Morse de p ° G.)

Plaçons-nous en un point double de G. Par définition de « générique », il
existe une petite boule B4 au voisinage du point double telle que B4 nlm G

soit difféomorphe à l'intersection de la boule unité dans R4 avec deux plans

réels en position générale.

Par conséquent, cB4 n Im G est un entrelacs de Hopf à deux composantes,
orienté. Cet entrelacs borde dans cB4, de façon orientée, un anneau.

Enlevons de Im G, l'intersection B4 nlm G et mettons à sa place l'anneau

dont nous venons de parler. Effectuons cette opération à chaque point double.

Nous obtenons ainsi une surface V qui est une surface de Murasugi pour K.
Abstraitement, V est obtenue à partir de Dr en enlevant 2u petits disques

dans Dr et en collant u anneaux. Quelle que soit la façon dont on procède le

grand genre de V est toujours le même et est égal à u. (Tandis que le genre
usuel dépend de la façon dont on procède.)

Pour vérifier ce dernier point, on peut remarquer que V est, par
construction, obtenue à partir de Dru Pr S2 en recollant u anneaux orientés.

e

Ceci achève la démonstration de la proposition.
Nous insérons maintenant une petite parenthèse. En prenant un peu de

soin en recollant l'anneau, on peut s'arranger pour que la surface V que l'on
obtient soit « ribbon », c'est-à-dire telle que p | V - R+ ne possède pas de

minimum local.
Si on désigne alors par M'(K) le grand genre de Murasugi pour les surfaces

qui sont « ribbon », on a donc en fait : M'(K) ^ u(K).
D'autre part, l'interprétation de 8 en termes de points doubles proches que

nous avons donnée au § 4 montre que pour un entrelacs algébrique, on a aussi :

M\K) ^ 5(K). Voir [Ru].
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Malheureusement il est très difficile d'utiliser cette information
supplémentaire de façon pertinente. Peut-être un lecteur avisé le pourra-t-il? Nous
achevons là la parenthèse.

Pour comparer le nombre gordien avec le genre de Murasugi traditionnel,
on peut utiliser le lemme du début du paragraphe. Cependant, il y a en principe
une ambiguïté, car on ignore a priori le nombre de composantes connexes de

la surface V que l'on a construite. Il y a toutefois un cas où l'on peut s'en tirer
facilement :

Soit K un entrelacs à r composantes. Associons à K un graphe T(K) de la

façon suivante :

i) Les sommets de F(K) sont en bijection avec les composantes de K.

ii) Une arête relie le sommet Kt au sommet Kp i ± j, si et seulement si

&(Ki9 Kj) * 0.

Il est clair que, si F(K) est connexe, la surface V de Murasugi associée à

une immersion de dénouement G, comme dans la preuve de la proposition
précédente, est toujours connexe. (On utilise le principe du calcul des enlacements

dans S3 par des intersections dans D4). Par conséquent :

Proposition. Soit K un entrelacs à r composantes, tel que F(K) soit

connexe. Alors, quelle que soit l'orientation de K \ m(K) + (r—1) < u(K).

Rappelons que pour un entrelacs algébrique, le coefficient d'enlacement

entre deux composantes n'est jamais nul. De sorte que la proposition précédente

s'applique aux entrelacs algébriques.

B. La conjecture de Thom implique la conjecture de Milnor.

Théorème (classique). Si la conjecture de Thom est vraie, alors la conjecture
de Milnor est vraie.

Preuve. Nous venons de montrer que l'on a toujours: M(K) ^ u(K).
Le théorème de Pinkham dit que, pour un entrelacs algébrique: u(K)

^ 8(K).

Finalement, la conjecture de Thom implique que, pour les entrelacs

algébriques : M(K) b(K). D'où le résultat.

C. Nombre gordien et homotopies d'entrelacs.

Pour ce qui nous concerne, nous prendrons pour définition d'une homo-

topie entre deux entrelacs ce qui suit.
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Soient K et L deux entrelacs non orientés dans S3. On dira que K et L
sont homotopes si on peut passer de K à L en effectuant sur K un nombre

fini d'échanges élémentaires de telle façon que, lors de chaque échange, les deux

brins appartiennent à la même composante.
Il n'est pas difficile de voir que cette définition est équivalente à la

définition traditionnelle. Mais il est clair qu'elle se prête mieux à l'étude du nombre

gordien.

Références (pour la définition traditionnelle) : J. Hillman [Hi] ; J. Milnor

Un entrelacs est, par définition, homotopiquement trivial, s'il est homotope
à un entrelacs trivial.

L'exemple standard d'un entrelacs non trivial et pourtant homotopiquement

trivial est l'entrelacs de J. H. C. Whitehead (Fig. 3).

Ceci suggère la définition suivante (F. Michel) :

Soit L un entrelacs non orienté dans S3. Le nombre gordien homotopique
de L est le nombre minimum d'échanges élémentaires simultanés qu'il faut
effectuer pour transformer L en un entrelacs homotopiquement trivial. On exige
que lors de chaque échange, les deux brins appartiennent à deux composantes
distinctes.

Nous noterons le nombre gordien homotopique de K (homotopy
unknotting number of K) par hu(K).

La proposition suivante n'est pas difficile.

Proposition. Soit K un entrelacs non orienté à r branches :

Ku K2,..., Kr. Alors:

[Mi3].

Figure 3

a) hu(K) > £ | J?(Kn

b) u{K) > hu(K) + £ "(K;).
i= 1
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Notes. 1) L'entrelacs de Whitehead montre que l'inégalité b peut très bien
être stricte.

2) Cette proposition est une version un peu plus forte de l'affirmation 2

que nous avons utilisée au § 4.

Preuve de la proposition. Pour a), c'est encore une fois une conséquence
du principe que « l'enlacement sur le bord est égal à l'intersection à l'intérieur ».

Pour b), nous utilisons le fait que l'on peut effectuer les échanges
élémentaires à l'instant où l'on veut. Voir [BW].

Soit donc G: Dr S3 x R + une immersion selon la définition 4. Nous

pouvons supposer:

i) - g R + n'est l'image par p d'aucun point double.

ii) si Q est un point double de l'immersion G tel que p(Q) < alors Q est un

point d'intersection entre deux disques différents, tandis que

iii) si Q est un point double tel que p(Q) > alors Q est un point double

faisant intervenir deux points d'un même disque.

Alors p_1 c- S3 x |^| est un entrelacs homotopiquement trivial, et la

conclusion suit immédiatement.
L'étude du gordien homotopique semble une question intéressante. Voici

quelques premiers jalons.
1. Soit K un entrelacs à deux composantes et X2. Alors hu{K)

| X(Kl9 K2) I.
Cette égalité est une petite généralisation d'un théorème de J. Milnor, qui

affirme qu'un entrelacs à deux composantes et de coefficient d'enlacement nul
est homotopiquement trivial. Il est facile de s'y ramener, ou de la démontrer
directement.

Référence: J. Milnor [Mi3X
2. Pour les entrelacs avec r ^ 3 composantes, on peut très bien avoir une

inégalité stricte : hu(K) > £ | &(Kh Kj) |.
i<j

Par exemple, l'entrelacs des Borromées est tel que £?{Kh Kj) 0 si i j,
et pourtant il n'est pas homotopiquement trivial. (Pour les Borromées

u hu 2).
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3. Milnor montre que l'entrelacs des Borromées n'est pas homotopi-

quement trivial en utilisant son invariant p. (Ce n'est pas celui des singularités,

mais celui qui est défini dans [Mi3] et dans [Mi4]).

Question. Y a-t-il une connection entre les invariants que Milnor introduit
dans les articles en question et le gordien homotopique des entrelacs?

D. Genre de Murasugi et signature.

Le genre de Murasugi est un invariant très difficile à calculer. En fait il y

a peu de nœuds ou entrelacs pour lesquels on connaisse sa valeur exacte. Dans

ce contexte, la signature donne une minoration utile, car calculable en principe.
Hélas, cette minoration n'est en général pas décisive.

Nous rappelons maintenant de quoi il s'agit, en signalant au lecteur que
nous reviendrons plus en détails sur cette question au § 6 dans le cadre des

signatures de J. Levine et A. Tristram.

Références: K. Murasugi [Mu]; L. Kauffman et L. Taylor [KT].
Soit K un entrelacs orienté dans S3 et soit V une surface de Murasugi

de K.
Considérons le revêtement à 2 feuilles Yv de D4, ramifié sur V. Yv est une

variété de dimension 4, compacte, connexe, orientée (par la projection sur D4).
Elle a un bord qui est le revêtement à 2 feuilles de S3, ramifié sur K.

On considère alors la forme d'intersection sur H2(YV; Q). Cette forme est

Q-bilinéaire, symétrique. Elle peut très bien être dégénérée, car dY est non vide.
Elle a néanmoins une signature.

On montre (cf. Kauffman-Taylor [KT]) que cette signature ne dépend que
de K et pas du choix de la surface de Murasugi V. Notons la <j{K).

Il y a plusieurs façons de calculer explicitement a(K). Pour la théorie
générale, voir Gordon-Litherland [GoL]. Rappelons en particulier que si A
est la forme de Seifert associée à une surface de Seifert U de K, alors
(A + A#) (g) Q est la forme d'intersection de Yv. (A* désigne la transposée
de A).

On a alors le théorème suivant, dû à K. Murasugi [Mu]. Pour une démonstration

plus moderne voir Kauffman-Taylor [KT]. Voir aussi le théorème 2

du § 6.

Théorème. Soit K un entrelacs orienté à r composantes dans S3.

Alors: \ o(K) | ^ 2m(K) + r — nul(K).

Ici, nul(K) désigne la « nullité de Murasugi » de K par opposition à la
nullité d'Alexander, qui est un concept différent ; voir le livre de J. Hillman [Hi].
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Rappelons que par définition nul(K) 1 + qu où q1 est le premier nombre
de Betti rationnel du revêtement à 2 feuilles de S3 ramifié sur K.

On a les renseignements suivants sur la nullité :

Proposition. Soit K un entrelacs orienté à r composantes dans S3.

Alors:

a) nul(K) ^ r

b) si A est la forme de Seifert associée à une surface de Seifert U de K :

nul(K) dimQ(radical de (A + T#)(g)Q) + b0(U), où b0(U) désigne le

nombre de composantes connexes de U.

Corollaire. Pour un nœud (r=l), | <j(K) | ^ 2m(K).

Application de la formule de Murasugi.
Il y a une formule qui donne la signature des entrelacs du tore (cf. § 6).

Cette formule et la formule de Murasugi, appliquées aux entrelacs
algébriques K associés aux singularités Xa — Yb 0, montrent que l'on a M(K)

b(K) lorsque :

i) (a, b) (2, ri), n ^ l (résultat connu de Murasugi [Mu]) ;

ii) (a, b) (3,3) ou (3,4) ou (3,5) ou (3,6) ou (4,4).

Ce sont les seuls entrelacs algébriques pour lesquels la conjecture anonyme
est connue. Par conséquent la conjecture de Milnor est vraie pour ces entrelacs

algébriques.

Rappelons finalement que la signature croit très lentement par satellisation,
de sorte que les formules précédentes donnent de mauvaises minorations pour
les branches à plusieurs paires de Puiseux.

Référence: Y. Shinohara [Shi].

E. Nombre gordien et revêtements cycliques infinis.

Pour un entrelacs orienté K, on a: M(K) ^ u(K) et M(K) ^ S(K). Il est

donc assez naturel de se demander s'il existe une relation entre le nombre

gordien K et le grand genre de Seifert de K.
Au vu des exemples que nous présentons dans la partie F de ce paragraphe,

nous pensons qu'il n'y en a pas, même pour les entrelacs fibrés.

Tout d'abord on a les théorèmes suivants:
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Théorème (H. Kondo). Soit P{t) un polynôme à coefficients entiers, de

degré 2h tel que P( 1) ± 1 et P(t) t^Pit'1). Alors il existe un

nœud K, de nombre gordien 1, de genre de Seifert h, ayant P(t) pour

polynôme dé Alexander.

Référence: H. Kondo [Ko].

Théorème (T. C. V. Quach). Soit P(t) un polynôme comme dans le

théorème précédent et tel que, en plus, P(0) ±1. Alors il existe un nœud

fibré satisfaisant les mêmes conditions que celles du théorème précédent.

Référence: T. C. V. Quach [Qa].

Note. Ces théorèmes montrent que la situation est plus complexe que le

problème 1.4 de la liste de R. Kirby [Ki] ne laisse supposer.
Nous donnerons dans la partie F des exemples de nœuds rationnels fibrés

de gordien 1 et de genre arbitraire (voir aussi Y. Nakanishi [Na]).
Hélas il est plus difficile de trouver des nœuds de petit genre et de grand

nombre gordien, car on tombe à nouveau sur le problème de la minoration
du nombre gordien.

Dans cette direction, la meilleure minoration connue est toujours celle de

H. Wendt que nous allons décrire maintenant d'une façon un peu différente
de la sienne. Cette minoration se généralise facilement aux cas des entrelacs.

Pour cela nous avons besoin de rappeler quelques notions classiques.
Si K est un entrelacs orienté à r composantes dans S3, il existe un homo-

morphisme surjectif unique /: rc1(5'3 — K) -» Z, qui envoie chaque méridien
orienté de K sur 1. (Un méridien m{ de K est orienté par Jf(mh Kf bij où
les Kj sont les composantes de K).

Désignons par E{K) l'espace total du revêtement cyclique infini du
complément de K dans S3, associé au noyau de l. On peut identifier le groupe
de Galois du revêtement avec le groupe cyclique infini T, noté multiplicati-
vement T {tl}ieZ-

Le groupe d'homologie HfE(K); Z) est de façon naturelle un module sur
le groupe de Galois, donc un ZT-module.

Théorème. Soit K un entrelacs orienté à r composantes dans S3, et
de nombre gordien u. Alors le ZT-module HfE{K); Z) peut être engendré
par u + r — 1 éléments.

Note. Dans le cas d'un nœud (r= 1), HfE(K) ; Z) est le module d'Alexander
de K, et ce théorème est alors implicite dans l'article de H. Wendt et également
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chez D. Rolfsen. D'ailleurs, dans ce cas là, il a été remarqué par beaucoup de

monde, par exemple par Y. Nakanishi.

Références: H. Wendt [We] ; D. Rolfsen [Rox], [Ro2] ; Y. Nakanishi [Na].

Désignons par e(K) le nombre minimum de générateurs du ZT-module

HfE{K); Z). Nous avons donc:

Corollaire 1. e(K) ^ u(K) + r — 1

Nous appellerons cette inégalité, l'inégalité de Wendt. (Rappelons que e(K)

dépend de l'orientation de K, tandis que u(K) en est indépendant).

Corollaire 2. Le module d'Alexander d'un nœud (r=l) de nombre

gordien 1 est monogène.

Commentaires. 1) On voit que la question de l'étude algébrique du module
d'Alexander des nœuds (et plus généralement des modules HfE(K) ; Z) dans le

cas des entrelacs) a un certain intérêt en ce qui concerne le nombre gordien.
Toute méthode permettant d'évaluer e(K) sera la bienvenue. La théorie des

idéaux élémentaires permet de trouver certaines minorations.

2) Une méthode classique, due originalement à H. Seifert, permet de trouver
une présentation du module d'Alexander à partir d'une matrice de Seifert du

nœud. Un petit examen de cette méthode (cf. par exemple [Sei]) montre que

e(K) ^ 2s(K\ lorsque K est un nœud. Par conséquent, la minoration de Wendt

ne peut dépasser deux fois le genre de Seifert dans le cas d'un nœud.

Preuve du théorème. Nous allons en donner une basée sur la notion de

description chirurgicale d'un entrelacs, due à D. Rolfsen [Ro:]. De fait, dans

le cas des nœuds (r 1), la démonstration qui suit est implicite dans l'article
de Rolfsen [Ro2].

Reprenons la définition 1 du nombre gordien. (La définition 2 ferait aussi

l'affaire).
K est un entrelacs orienté à r composantes. Considérons une bonne

projection de K et un processus de dénouement de K, basé sur cette projection.
Envisageons un point double de la projection, qui va changer de signe au cours
du processus. Sans tenir compte des signes, la projection est localement:



PROBLÈME DE MILNOR 203

Figure 4

Les orientations des brins proviennent de l'orientation de l'entrelacs.

Considérons le segment de droite dessiné en pointillé sur la figure de droite.
« Au-dessus » de ce segment se trouve un plan dans R3. Il est facile de
dessiner un disque A dans ce plan, ayant la propriété que A n K Â n K consiste

en exactement deux points, chacun d'eux étant donné par l'intersection d'un
des deux brins avec A.

Illustration :

Figure 5
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Soit T dA. F est un cercle non noué dans S3, ne rencontrant pas K, et

le nombre d'enlacement de F avec K est nul (grâce à la position choisie du

plan par rapport aux brins orientés).
Soit N un voisinage tubulaire de F dans S3, suffisamment petit pour ne

pas rencontrer K. N est un tore plein et comme F est non noué, S3 — N est

aussi un tore plein W. Un disque méridien de W est précisément le disque A,

un peu rétréci.

Effectuons un twist de Dehn x dans W, concentré au voisinage de À. Pour
cela, choisissons un petit voisinage À x [—1, +1] de À dans W. (Nous
choisissons une identification). Alors, par définition x(x, t) (el(t+ 1)Tt • x, t\ avec

{x, t) e A x [—1, 1], À étant identifié au disque unité dans C. Le twist x se

prolonge par l'identité en un automorphisme de W, mais, attention, il ne se

prolonge pas en un automorphisme de S3.

Comme K est dans W, on peut considérer x(X). Alors, à isotopie près, x(K)
aura même projection que K. Tous les points doubles auront même signe, sauf

celui que nous considérons, qui, lui, a changé de signe.

Précaution : Cette dernière affirmation dépend de la façon dont on identifie
À x [—1, 1] à un voisinage de À dans W. Ce qui compte est la normale au

plan qui contient À, qu'il faut orienter convenablement. Sur l'illustration
précédente, l'orientation de la normale part de l'œil du spectateur pour
traverser A.

Supposons maintenant que le processus de dénouement associé à la bonne

projection, que nous avons choisie pour X, fasse intervenir u changements de

signes aux points doubles.

Nous choisissons u petits tores pleins Nu Nu selon la méthode que nous

venons d'indiquer. La composition des twists x1 o x2 o... c où xt- est le twist
u u

sur Wb est bien définie sur Y n S3 — u Nt; notons la x. L'ordre
i= 1 i= 1

de la composition importe peu car les supports des xt- sont disjoints. Posons

N u Nb
i= 1

Par définition d'un processus de dénouement, x : Y -> Y est un diffeomor-

phisme qui envoie K sur l'entrelacs trivial Tr dans S3.

D'autre part, Y — K S3 — (NuK) est diffeomorphe par x à x( Y) — x(K)
S3 - (NuTr).
On passe de S3 — (NuK) à S3 — K en ajoutant des 2-cellules et des 3-cel-

lules. (On remplit les tores pleins Nlf..., Nu).
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Si p : E{K) -+ S3 — K est la projection du revêtement infini cyclique, associé

à l'homomorphisme d'enlacement total /, posons: Z — p 1(S3 — (NkjK))

P'KY-K).
On passe de Z à E(K) en ajoutant des 2-cellules et des 3-cellules car la

restriction p | : p~ 1(N) — N est un revêtement trivial (produit), puisque le nombre

d'enlacement de chaque tore plein' Nt avec K est nul. Donc le nombre de

générateurs du ZT-module HX(Z\T) majore celui de H^EiK); Z). Nous allons

estimer le nombre de générateurs du ZT-module if1(Z ; Z).

Pour cela observons que le revêtement cyclique infini, E(Tr) associé à

l'homomorphisme d'enlacement total, de l'entrelacs trivial Tn est difféomorphe à la

somme connexe d'un nombre infini de copies de l'intérieur d'un corps avec

(r — 1) anses. Chaque copie est indexée par un élément de Z, et le générateur

du groupe de Galois T est la transformation qui envoie la copie d'indice i sur

celle d'indice i + 1. En particulier, en tant que ZT-module, Z) est

de rang r — 1.

Soit q \ E(Tr) - S3 - i(K) la projection de revêtement et soit

Z' ç-1(S3-(Afux(K))) q-^Y-K)).

Pour un pull-back de t, Z p~1(Y — K)etZ' q~ 1(x(7 — K)) sont Galois-

équivalents. Les ZT-modules H^Z ; Z) et ELX{Z' ; Z) sont donc isomorphes.

Il est facile de voir que H^Z' ; Z) est engendré par u + r — 1 éléments

comme module sur ZT car Z' E(Tr) — q~1{N), où H^EiX); Z) est de rang
r - 1 en tant que ZT-module, et la restriction q | : <2-1(N) N est un
revêtement trivial de « groupe de Galois » T puisque le nombre d'enlacement

de chaque tore plein Nt avec x(K) — Tr est nul.

Remarque. Nous n'avons utilisé que la partie la plus facile de la méthode

de D. Rolfsen. Dans le cas des nœuds (r= 1), en poussant l'analyse plus loin il
montre comment on peut, en principe, trouver une présentation du module
d'Alexander.

En fait, les énoncés de H. Wendt portent sur l'homologie des revêtements

ramifiés cycliques finis, plutôt que sur celle des revêtements cycliques infinis.
Nous allons nous y ramener par une méthode dont le principe était déjà connu
de H. Seifert dans le cas des nœuds.

Notations. Soit K un entrelacs orienté à r composantes dans S3. Nous
désignerons par En(K) l'espace total du revêtement cyclique à n feuilles de S3,

ramifié sur K. Rappelons que, si r ^ 2, le type topologique de En{K) dépend
de l'orientation de K (dès que 3).
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Le groupe d'homologie H^F^K); Z) est un module sur ZT. M. Sakuma

[Sak] a démontré le théorème suivant, bien connu dans le cas des nœuds (r 1,

cf. [Gor]).

Théorème. HfEJ^K); Z) est isomorphe comme ZT-module à

Coker {1 + t + + tn~1 : H^K); Z) -> H^EiK); Z)}

Références: M. Sakuma [Sak].
Nous obtenons alors l'énoncé traditionnel du théorème de H. Wendt, où

en(K) désigne le nombre minimum de générateurs du groupe abélien

Z).

Théorème (H. Wendt). Soit K un entrelacs orienté à r composantes
dans S3. Alors: en(K) ^ (n— l)(u(X) + r— 1).

Corollaire. e2(K) ^ u(K) + r — 1

Commentaires.

1) Souvenons-nous que, pour un nœud K(r= 1), e2{K) ^ 2s(K).
La méthode de Wendt permet de trouver (ce qu'il a fait, cf. [We]) des nœuds

de nombre gordien u(K) > 2s(K). Nous en donnons des exemples dans la

partie G de ce paragraphe. Bien que les candidats abondent, il semble bien

que pour l'instant, il n'existe aucun nœud pour lequel on sache montrer que
u(K) > 2s{K).

2) Les majorations plus fines,de en(K\ obtenues par S. Kinoshita dans le

cas des nœuds, montrent que le théorème de Wendt fournit souvent une
minoration très faible du nombre gordien u(K).

Références: S. Kinoshita [KinJ, [Kin2].

F. Exemples: nombre gordien et grand genre de Seifert d'un entrelacs.

Considérons les entrelacs algébriques ou, plus généralement les tresses positives

fermées orientées, munies de l'orientation naturelle. Ces entrelacs sont

tous fibrés. Nous avons vu au § 4 que leur grand genre de Seifert est supérieur

ou égal au nombre gordien. Cette remarque a conduit A. Durfee à poser
la question suivante : « a-t-on u(K) ^ s(K) pour tout nœud fibré Kl »

Le but des exemples que nous présentons ici est de donner une réponse

négative à la première question de A. Durfee. En fait, nous conjecturons qu'en

général il n'y a aucun rapport entre ces deux invariants, et qu'étant donnés
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deux entiers positifs u et s arbitraires (s ^2), il existe un nœud fibré de nombre

gordien u et de genre s.

Par exemple, il est facile de construire des nœuds fibrés de gordien 1 et de

genre de Seifert 5 arbitrairement grand (cf. [Na]): il suffit de considérer le

nœud à 2 ponts associé au plombage de 2s bandes paires, suivant :

2 2 2 -2 -2 -2• • • • • • • • • • • •
(Voir aussi les nœuds construits par T. C. V. Quach [Qa]).

Par contre nous ne connaissons aucun exemple de nœuds (fibrés ou non)
de genre 1 et de gordien arbitrairement grand. Les candidats ne manquent pas
(cf. § 7, B-5) ; manquent les invariants pour minorer le nombre gordien.

Voici des exemples qui répondent négativement à la question de A. Durfee:
Soit l'entrelacs de bretzel Kn K{ — 1, 3,..., 3), qui est le bord de la surface

constituée de deux disques reliés par (n+ 1) bandes tordues, et orienté comme
sur la figure 6.

P////fflTTh

Figure 6

Cet entrelacs fibre pour l'orientation donnée, et la surface fibre Fn est la
surface plate hachurée, car cet entrelacs orienté s'obtient à partir de l'entrelacs
fibré torique (2, n+ 1) par n twists de Staffings [St2] (cf. T. C. V. Quach [Qa] ;

Ka] pour une preuve algébrique).

et une application immédiate de l'inégalité de Wendt

2. Pour des détails, voir [BW].

voir aussi T. Kanenobu

n +1
On a S{Kn)

montre que u(Kn)

2

^ n

Commentaires. 1) Dans le cas où n est pair, n 2p, K2p est un nœud
fibré. Alors S(K2p) s(K2p) p et u(K2p) ^ 2p — 1. Ceci donne une réponse
négative à la première question de Durfee dès que p ^ 2.

2) Dans le cas où n est impair, n 2p+ 1, K2p+1 est un entrelacs orienté
à 2 composantes, et pour l'orientation donnée 1. En utilisant
le § 5-c, on montre que u(K2p+1)3p + 1.
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G. Les exemples de H. Wendt.

L'idée de comparer le nombre gordien d'un nœud avec son genre de Seifert

est déjà dans l'article original de H. Wendt [We]. En fait Wendt avait exhibé
des nœuds K (non fibrés!) de genre de Seifert s(K) et de gordien u(K)
& 2s(K) (par exemple le nœud 935 dans la tabulation de Reidemester [Re]).

Nous donnons ici une généralisation des exemples de Wendt. Notons

Kiq+u 4 ^ 1, le nœud de bretzel K(3, 3,..., 3), qui est le bord de la surface
constituée de deux disques reliés par 2q + 1 bandes tordues, et qui est représenté

sur la figure 7.

D'après T. Kanenobu [Ka] (voir aussi [Qa]), ce nœud n'est jamais fibré.

Historiquement, à notre connaissance, deux voies ont été suivies par les

topologues pour essayer de démontrer la conjecture de Thom.
La première consiste à utiliser ce que nous avons expliqué aux § 1 et 2 :

minorer le mieux possible le genre de Murasugi des entrelacs de Hopf
généralisés. Nous avons vu au § 5 que la signature de l'entrelacs donne une
première minoration. Une difficulté de cette approche est que la signature dépend

en principe aussi bien de d que de r. L'introduction des signatures « tordues »

et le théorème 3 ci-après, dus à A. Tristram, permettent d'obtenir des

minorations qui ne dépendent que de d.

Référence: A. Tristram [Tri].
Ces signatures ont aussi été introduites par J. Levine dans le cas des nœuds,

à la fin de son article sur le cobordisme, dans un but différent de celui de

Tristram.

Figure 7

On a. u(K2q +1) ^ 2q — 2s(K2q + ±).

§ 6. Signatures
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Référence: J. Levine [Lev].
La deuxième voie consiste à utiliser le théorème de la G-signature d'Atiyah-

Singer, en l'appliquant à certains revêtements cycliques de CP2, ramifiés sur

une surface différentiable de degré d. Ce fut le chemin suivi par W. C. Hsiang-
R. H. Szczarba et par V. Rohlin.

Références: W. C. Hsiang-R. H. Szczarba [HS]; V. Rohlin [Rh].
Or, dans les deux cas (Tristram et Rohlin) les calculs que l'on effectue sont

essentiellement les mêmes et donnent les mêmes bornes. La raison de ce

phénomène est donnée par O. Viro qui a montré que, dans les deux cas, on calcule

en fait le même invariant.

Référence: O. Viro [Vi].
Dans ce paragraphe, nous allons suivre l'approche par la théorie des entrelacs.

Les bornes obtenues sont environ la moitié du nombre escompté dans la

conjecture. Une excellente référence générale sur les signatures « tordues » des

nœuds (i.e. r= 1) est donnée par l'article de C. Me. Gordon [Gor]. Le cas des

entrelacs présente quelques difficultés supplémentaires, liées à l'apparition de

la dégénérescence. C'est pourquoi nous avons choisi une présentation plus
proche de K. Murasugi et A. Tristram.

Nous commençons par quelques manipulations matricielles.

Référence: T. Matumoto [Ma].
Soit W un espace vectoriel de dimension finie sur C. Soit l:W x W - C

une forme sesquilinéaire. Aucune hypothèse de « symétrie » ou de non
dégénérescence n'est faite sur /. Ceci sera utile pour les applications topologiques
que nous avons en vue.

Soit £ g C, Ç ^ L Posons: f - {(1 — £)/ + (1 —£)/*}, où * désigne la

conjuguée-transposée.

Lemme 1.

a) f est une forme hermitienne, c'est-à-dire f.

^ o •
1 - S 1 - Reê

b) Soitco - Alors la —
1 - t, I 1 ~ 11

La preuve découle de calculs faciles.

Nous serons intéressés dans la suite à la dégénérescence et à la signature
des formes f. (Par a) ceci a bien un sens). La partie b) du lemme 1 montre que
nous ne perdons rien en ne considérant que les formes lm avec. | co | 1, ce
que nous ferons désormais.
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Rappelons qu'il y a plusieurs façons' de calculer la signature et la
dégénérescence d'une forme hermitienne :

1. On diagonalise la forme en appliquant la méthode de la « completion
du carré ». Si r0 désigne le nombre de zéros qui se trouvent dans la diagonale,

r+ le nombre de réels positifs qui s'y trouvent et r_ celui des réels négatifs,
alors : r0 est la dégénérescence et r+ — r_ est la signature.
(Théorème de Sylvester des cours d'Algèbre linéaire)

Notations : deg(/J et sign(/J.

2. On calcule le polynôme caractéristique det(id + tlJ. Alors r0 nombre
de racines nulles, r + nombre de racines positives, et r_ — nombre de racines

négatives.

3. Les topologues citent souvent la méthode du § 3 du livre de B. Jones,

qui n'est pas nécessairement la plus rapide dans les applications.

Référence: B. Jones [Jo].

Lemme 2. Si | co | 1, co ^ 1, on a:

L ^(1-®) {i-o)i*}

La preuve découle d'un calcul immédiat utilisant que si | co | 1, on a:

1 — co

Ce lemme montre que les formes « à la J. Levine » fournissent la même

famille d'invariants que les formes « à la A. Tristram ». Nous en aurons besoin

parfois dans la suite, pour certains calculs. j

Appliquons ce qui précède à la théorie des entrelacs. Soit K un entrelacs

orienté dans S3. Soit U une surface de Seifert pour K, et soit A la forme de

Seifert associée à U.' Comme U n'est pas unique, A n'est pas un invariant
de K. Mais on peut montrer que :

Proposition 1. Si A et A' sont deux formes de Seifert pour K, on

peut passer de l'une à l'autre par un nombre fini d'opérations du type suivant:

i) Isométrie.

ii) Nous utilisons une .notation matricielle, qui est plus succincte,

lia) Passer de A à Ä avec :
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0 0 * 0

A A

ou A

0 0 * 0

* * 0 0 0 0 0 1

0 0 1 0 0 0 0 0

iib) Passer de A à A.

iiia) Passer de A à Ä, avec :

0

A

0

0 0 0

iiib) Passer de A à A.

De plus, si on ne considère que des surfaces de Seifert connexes, les

opérations i) et ii) suffisent.

Référence: C. Me. Gordon-R. Litherland [GoL].
(Le passage-clé est dans la partie II du théorème 11).

Note. Dans cet article, nous ne nous intéressons qu'aux entrelacs fibrés.

Nous pourrions alors nous dispenser de la proposition 1 et du lemme 3 en

utilisant que la fibre plongée est essentiellement unique. On définirait tout à

partir de la forme de Seifert associée à la fibre.

Lemme 3. Soit K un entrelacs orienté dans S3. Soient A et A deux

formes de Seifert pour K, associées à deux surfaces de Seifert connexes
de K. Soit co g C, avec | co | 1 et co ^ 1. Alors :

deg(/4J deg(AJ, et sign(/lj sign(/lj.

Bien sûr, un entrelacs possède toujours des surfaces de Seifert connexes.
Par le lemme 3, nous pouvons définir la dégénérescence et la signature de K
en co, que nous noterons : degJK) et signJK).
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Preuve du lemme 3. Il suffit d'examiner le passage de Am à Äa. Or:

S?31 0

e II K
(1 — co)a„ 0

(1 —00)0"! (l-rô)a„ 0 (1-œ)

0 0 (1-cô) 0

Un calcul immédiat montre que le polynôme caractéristique de Äw est le produit
de celui de Aw par [x2 — 2(1 — Reco)]. Ce dernier a une racine positive et une
racine négative/ ce qui achève la preuve.

Remarque. Si co — 1, la signature que nous venons de définir n'est rien
d'autre que la signature de Murasugi dont nous avons parlé au § 5. Nous avons

vu que dans ce cas, la nullité et la dégénérescence sont reliées par l'égalité:

nul(K) deg_ ^K) + 1

(Ne pas oublier que nos surfaces de Seifert sont maintenant connexes).

Essentiellement pour ne pas rompre avec la tradition, introduisons un
nouvel invariant, la nullité de K en co, définie par: nulm(K) degJK) -f 1.

Les deux théorèmes suivants sont essentiellement dus à A. Tristram [Tri].

Théorème 1. Soit co une racine pl-ème de 1, avec p premier. Soient

K et K' deux entrelacs orientés concordants. Alors :

nulJK) nulJ/C') et signJK) signJK').

Attention Le théorème est faux si co n'est pas une racine p'-ème de 1 avec

p premier. C'est la raison pour laquelle A. Tristram n'envisage que des co qui
sont des racines p-èmes de 1, la généralisation à p1 étant facile.

La définition d'une concordance (on dit aussi cobordisme) entre deux

entrelacs orientés est la suivante :
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Définition. Soient X° et X1 deux entrelacs orientés, à r composantes.

Désignons par (-K1) l'entrelacs obtenu à partir de X1 en changeant l'orientation

de chacune de ses composantes. Nous dirons que X° et X1 sont concordants,

s'il existe un plongement différentiable ®: Sr x [0, 1] -> S3 x [0, 1], tel
r

que: (on rappelle que Sr | | Sf)
i= î

a) O_1(S3x{0}) Sr x {0}
0_1(53x{l}) Sr x {1}

b) O | Sr x {0} (resp. O | Sr x {l})soituneparamétrisationdeX°(resp. deX1).

c) le bord orienté de Im(O) soit X° x {OjJJ^ — X1) x {1}

Théorème 2. Soit V une surface de Murasugi pour l'entrelacs orienté K.

Soit co une racine pl-ème de 1, avec p premier. Alors:

| sign„(X) | + | nulJX) - b0(V) \^r- b0(V) + 2g(V)

(Conformément à nos notations, introduites précédemment, r désigne le nombre

de composantes de X, et b0(V) désigne le nombre de composantes connexes

de V).

Remarque. Comme nulw(K) — b0(V) ^ | nul^X) — b0(V) |, le théorème 2

a pour conséquence l'inégalité | signJK) | ^ r — nulJX) + 2g(V), quelle que
soit V.

Par conséquent, on obtient la formule plus commode :

| sign„(K) K r - nulJX) + 2m(X),

où m(X) désigne le genre de Murasugi de X.
Notre but est d'utiliser cette dernière formule pour minorer le genre de

Murasugi des entrelacs de Hopf généralisés, que nous avons notés T(r, d). Pour
obtenir des minorations qui ne dépendent que de d, nous allons utiliser un
autre résultat de Tristram que nous présentons maintenant.

Soit X un entrelacs orienté dans S3, à r composantes: Ku Xr. Donnons-
nous également un plongement (p: S1 x [0, 1] -> S3 d'un anneau tel que:
cpiS1 x {0}) Xr et (p_1(K) S1 x {0}.

Considérons l'anneau R cp^S1 x [1/2, 1]). Orientons R et considérons le

bord orienté dR. Définissons X* comme étant l'entrelacs orienté X u ÔR. Bien
sûr, X^ a (r + 2) composantes. Soit Xr + 2 tyiS1 x {1}).

Soit n| t i?(Kr + 2, Kf)|| 2(Kr + 2, K) |.
i= 1
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Théorème 3. Soit co une racine ,s-ème de 1, avec s divisant n.

Alors :

signJK) signJKJ et nulJK) nulJXJ - 2

Note. Dans le théorème 3, s n'est pas nécessairement puissance d'un
premier.

On peut donner une démonstration de ces trois théorèmes en suivant les

indications données par A. Tristram lorsque cop 1. Voir [BW].
Nous allons maintenant appliquer les théorèmes précédents aux entrelacs

de Hopf généralisés. Pour cela, nous avons besoin de savoir ce qui se passe

pour les entrelacs du tore. Le théorème qui suit est cité très souvent dans la

littérature, surtout en ce qui concerne la signature classique. Pour ce qui nous
intéresse, les références utiles sont : R. Litherland [Lit] ; T. Matumoto [Ma].

Théorème 4. Soit K(p,q) l'entrelacs (orienté) du tore de type (p, q).

Soit x un nombre réel, 0 < x < 1, et soit co exp(2^/ — 1 tix). Notons:

r0 : le nombre de couples d'entiers (i,j), avec 0 < i < p, 0 < j < q, et tels

que - + - x (mod 1);
P 4

r_ : le nombre de ces couples (i,j), tels que x — 1 < —h — < x mod 2;
P P

r+ : le nombre de ces couples (i,j) tels que x < —h - < x + 1 mod 2.
*

P Q

Alors, nu\„(K(p, qj) r0 + 1 et signw{K(p, q)) r+ - r_.

Nous allons esquisser une preuve de ce théorème en suivant T. Matumoto

[Ma]. La clé de la preuve est dans la proposition suivante.

Proposition. Soit K un entrelacs du tore, de fibre U et de forme de

Seifert A. Alors, il existe une base de HfiU ; Z) (g) C telle que l'extension

sesquilinéaire l de A à HfiU ; Z) (g) C soit diagonale dans cette base.

Voici quelques points de repères.

Soit a un entier positif. On montre tout d'abord que l'extension
sesquilinéaire de la forme de Seifert associée à la singularité za 0 se diagonalise.
La matrice diagonale est :
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i -r1
i - c2 o

Na a

0

l _ £-(a- 1)

où Ç exp(2v/— lrc/a).

On applique ensuite le théorème de K. Sakamoto [Saa], pour en déduire

qu'une diagonalisation de A sera : Np ® Nq. Pour plus de détails voir l'article
de Matumoto [Ma].

Dans la base correspondante, Aw aura pour élément diagonaux :

Ci exppy"- It i/p),(,2 Ç\p{2^/^în/q), 1 s: < ~ 1, 1 < ; =$ g - 1

Pour calculer le signe de la partie réelle, on utilise l'égalité :

où x exp(2v/—lTut), 0 < t < 1

La suite des calculs est alors sans surprise.

Nous pouvons maintenant démontrer:

Théorème 5. Soit T(r, d) un entrelacs de Hopf généralisé. Alors, on a

Remarque. Très grossièrement, la borne ainsi obtenue, est la moitié de
celle donnée par la conjecture anonyme du § 2.

2 Re{(l — co) (1 — ÇJ" ') (1 — ^2j)} »

ou

(1 — x) — 2y/—l(exp(y/—l7tt)) sinnt,

m(r(r, d)) ^ —-— si d est pair. Si d est impair, soit d pid' avec

p premier, alors : m(T(r, d)) ^
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Le théorème 5 découle d'un calcul un peu long mais sans aucune difficulté
qui donne les signatures tordues des entrelacs T(d, d), grâce au théorème 4.

On choisit co — 1 si d est pair, et oo exp[2-v/^7t(pI — l)/2pl] si d est

impair et d pld! avec p premier.
On applique ensuite les théorèmes 2 et 3 pour étendre la minoration aux

entrelacs T(r, d).

En appliquant l'argument classique de transversalité développé au § 2 nous
obtenons ainsi une preuve du théorème de Rohlin et Hsiang-Szczarba, dans le

cas de CP2.

Théorème ([Rh], [HS]). Soit F une surface différentiable, close, connexe,
orientable dans CP2. Supposons que F est de degré d. Alors le genre de F

d2 — 4 d2 — 4 (d'\ 2

est au moins égal à : —-— si d est pair et à — I — jj si d est

impair, d pld\ avec p premier.

Note. Comme nous n'avons pas pris de précaution quant à l'orientation
globale des entrelacs, les calculs précédents montrent plutôt que la valeur
absolue des signatures est égale au nombre indiqué.

§ 7. Quelques problèmes liés au nombre gordien

Le but de ce paragraphe est de mentionner et de commenter quelques
problèmes liés au nombre gordien d'un entrelacs mais qui ne sont pas directement
rattachés aux problèmes de R. Thom et de J. Milnor.

A-l) Dès qu'on définit un invariant des entrelacs, il est important de

connaître son comportement par rapport à la somme connexe. Il est alors
naturel de posér la question suivante (cf. Knot theory, Proceedings Plans-sur-

Bex [Hau]) : « le nombre gordien est-il additif pour la somme connexe :

c'est-à-dire a-t-on u(K1$K2) u(X] + u(K2)l »

On vérifie aisément que: u{K1 =#= ^2) ^ u(Ki) + ti(K2).

L'exemple de la figure 8, où l'on considère la somme connexe du nœud de

trèfle droit avec le nœud de trèfle gauche, montre que le nombre gordien de

ce nœud, qui est 2 par l'inégalité de Wendt (cf. [QV]), peut-être atteint aussi

bien en dénouant chaque facteur de la somme connexe qu'en ne respectant pas

cette somme connexe.

2) Un cas particulier du problème précédent a reçu beaucoup d'attention
(cf. [LicJ, [GLaJ). Il reste toujours ouvert: «les entrelacs de nombre
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Figure 8

(La trace d'une boule dans laquelle s'effectue une opération de dénouement
est marquée en pointillés sur le plan de projection du nœud).

gordien 1 sont-ils premiers? »

J. C. Gomez Larranaga ([GLaJ, [GLa2]) a su montrer que, dans certains

cas, les nœuds de nombre gordien 1 sont premiers.

B — Une question importante, et semble-t-il difficile est le calcul pratique
du nombre gordien d'un entrelacs. En particulier : 1) « Existe-t-il un procédé

algorithmique, même théorique, pour calculer effectivement le nombre gordien
d'un entrelacs? »

Note. Un tel procédé existe d'après W. Haken [Hak], pour calculer le

genre de Seifert d'un nœud.

2) Si on veut utiliser une bonne projection, c'est-à-dire la définition 1, pour
calculer le nombre gordien d'un entrelacs, le problème principal est de trouver
sur quelle projection effectuer le calcul.

Il est certain que le nombre gordien d'un entrelacs n'est pas le nombre

Projection minimale
à 6 croisements,

de nombre gordien 1

Figure 9
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gordien de n'importe quelle bonne projection de cet entrelacs, comme le montre
l'exemple du nœud 62, qui a une projection minimale à 6 croisements de nombre
gordien 1, et une projection à 7 croisements de nombre gordien 2 (voir figure 9).

Les cercles en pointillés entourent les croisements que l'on peut changer pour
dénouer la projection. Le brin, tracé en trait fort, est le brin que l'on bouge

pour passer d'une projection à une autre.

3) Une conjecture du folklore affirme « qu'il existe une bonne projection
minimale de l'entrelacs telle que le nombre gordien de cette projection soit le

nombre gordien de l'entrelacs ».

Cette conjecture a son origine dans le fait que le nombre gordien d'une
bonne projection d'un entrelacs est majoré par la moitié du nombre de

croisements de cette projection (cf. la remarque après la définition 1 au § 3) ; elle

n'est pour l'instant infirmée par aucun des exemples connus dans la tabulation
des nœuds jusqu'à 9 croisements (sur 84 nœuds ayant au plus 9 croisements,

on a pu calculer le gordien de 71 nœuds; voir Nakanishi [Na] et Lickorish-
Rickard [Lic2].

Une conjecture encore plus optimiste semble être : « le nombre gordien d'un
entrelacs est le nombre gordien de n'importe quelle projection minimale ». Il
pourrait être intéressant pour cette dernière conjecture d'étudier les projections
minimales d'un nœud double, qui est toujours un nœud de nombre gordien 1.

4) Lorsqu'on se restreint au cas particulier des entrelacs alternés, on peut
se demander « si le nombre gordien d'un entrelacs alterné est égal au nombre

gordien d'une projection alternée réduite » (c'est-à-dire sans croisements
triviaux du type Xf~^) ou

Une réponse affirmative à cette question entraînerait une réponse
affirmative à l'additivité du nombre gordien par rapport à la somme connexe des

entrelacs alternés,/ d'après la caractérisation géométrique des entrelacs alternés

non premiers, donnée par W. Menasco [Me].
5) Comme illustration de ce qui précède, nous conjecturons que « le nombre

gordien du nœud alterné à deux ponts associé au plombage lï
a > 0, b > 0 (noté 2a2b chez J. C. Conway [Co]) est égal à inf (a, b) ».

C'est en fait le nombre gordien de la projection alternée (peut-être
minimale?) donnée sur la figure 10.

2b

Figure 10
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Cette conjecture est vraie si a 1 ou b - 1. Elle peut être démontrée dans

le cas a b 2 en utilisant la forme d'enlacement du revêtement double

ramifié comme cela a été fait par Lickorish et Rickard (cf. [Lic2]).
Une réponse positive à cette conjecture fournirait une famille de nœuds de

genre 1 et de nombre gordien arbitrairement grand (cf. § 5, E et F), mais qui

ne seraient pas fibrés.

C — Soit ß une tresse fermée à n brins, munie de l'orientation naturelle

des tresses fermées. Comme au § 4, notons r le nombre de composantes

connexes de ß et c la longueur algébrique de ß (c'est-à-dire la somme
exponentielle du mot ß).

1) D. Bennequin [Be] a posé la question: « a-t-on la minoration suivante

pour le nombre gordien de ß :

1

- (|c| —n-hr) ^ w(ß »

Nous avons montré au § 4 que cette minoration est vraie pour le nombre

gordien de la projection associée à la présentation en tresse fermée.

Si cette inégalité était vérifiée, cela impliquerait une réponse positive à la

conjecture de J. Milnor et, plus généralement, à la conjecture du § 4 sur le

nombre gordien des tresses fermées positives (dans ce cas-là \c\ b).

Cette inégalité semble donc être la généralisation naturelle de la conjecture
de J. Milnor au cas des tresses fermées quelconques. On peut cependant

remarquer que, lorsque le nombre de brins n est grand par rapport à r, cette

minoration n'a que peu d'intérêt.

Note. L. Rudolph a observé que le nombre gordien d'un entrelacs est

toujours égal au nombre gordien d'une projection associée à une présentation
en tresse fermée de cet entrelacs.

En effet, dans la démonstration d'Alexander qu'un entrelacs admet toujours
une présentation en tresse fermée, on peut orienter convenablement les arêtes
des croisements que l'on change pour dénouer l'entrelacs, pour qu'elles ne
soient pas touchées par le processus d'Alexander.

D — Il pourrait sembler logique de comparer le nombre gordien u(K) d'un
nœud K et le nombre de ponts p(K) de ce nœud (pour une définition de p(K)
voir [Sch] ou [Rols ch. 4-D]), puisque ces deux invariants sont liés aux
projections du nœud.

De plus : i) u(K) et p(K) sont grossièrement majorés tous les deux par le

nombre minimal de croisements de K.
ii) On a les inégalités : e(K) ^ u(K) (inégalité de Wendt, cf. § 5-E), et e(K)
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^ p{K) — 1, où e{K) désigne le rang du module d'Alexander de K. En effet le

groupe d'un nœud à p ponts admet une présentation avec p générateurs
méridiens, et le calcul différentiel libre de Fox [Fox] montre alors qu'on obtient
une présentation du module d'Alexander avec p — 1 générateurs.

Cependant ces deux invariants n'ont aucun rapport entre eux. D'une part
il existe des nœuds à 2 ponts de nombre gordien arbitrairement grand, par
exemple les nœuds toriques (2, 2w + l), n ^ 1, qui sont de nombre gordien n

(cf. § 5 et [Mu]).
D'autre part, le double d'un nœud est toujours de nombre gordien 1, mais

peut avoir un nombre de ponts arbitrairement grand : le double itéré n fois du
nœud de trèfle a un nombre de ponts p 2n + 1 d'après Schubert [Sch].

E — Il existe dans la littérature bien d'autres invariants géométriques d'un
entrelacs qui sont liés au nombre gordien et qui donnent lieu à des inégalités
(cf. par exemple T. Shibuya [Shb]). Cependant ces invariants semblent aussi

difficiles à calculer que le nombre gordien et n'ont donné lieu jusqu'à présent
à aucune méthode explicite de calcul.
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