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152 D. R. FARKAS

§4. APPENDIX

R = R @ Ry, @ ... is a graded k-algebra with R, = k. Let m be the
0.0
maximal ideal ) R;. We assume that R is a power series ring in finitely
: i=1 . .
many variables. Obviously v corresponds to the unique maximal ideal of
the power series ring, whence R/ is always finite dimensional. Since ﬁjd is

o 0]
homogeneous, some tail [] R; must then lie in ’ It follows that the
9

graded algebra of R for the m-adic filtration is isomorphic to the graded
algebra of R for the rir-adic filtration. The power series assumption implies
that the latter is simply a polynomial ring with the standard grading.

(e 0}
Clearly m* < ) R;,. Hence R, injects into m/m? Choose a basis for
j=2
R;, over k and extend it to a list of homogeneous elements x,, ..., X, in m

whose images constitute a basis for m/m? It is generally true for any
commutative k-algebra R that when R/m = k and when the associated
graded ring for the m-adic filtration is the symmetric algebra on m/m?, that
any basis for m/m? pulls back to a set of algebraically independent elements
in R. In particular, x,, ..., x, are algebraically independent. ,

We use the given grading on R to prove that R = k[x,, .., x,].
Vacuously, R, < k[x;, .., x,]. We have chosen the x; so that R, lies in
their span, so R, < k[xy, .., x,]. Assume, inductively, that d > 1 and R
< k[xy,..,x,]foralls <d If ye Ry, then

for some A; ek and u;, v;e m. Without loss of generality u; and v; are

homogeneous and all the x; and u;v; which appear in the formula lie in
d+1

U Ryy. This can only happen when u; and v; are in R, for some s < d.
t=1 .

By induction, u; and v; are elements of k[x,, .., x,]. Therefore y € k[x,, ..., x,].

§5. WEYL GROUPS

It seems to be-part of the folklore for Lie theory that the converse
of Theorem 8 fails to be true (cf. [4] VI§3 Ex. 2). Rather than being
dead-ends, these examples serve as inspiration: the machinery of root systems
will allow us to determine the correct necessary and sufficient conditions
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