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k{A)t (klA_rrl(klA^).
Recall that G/Cg(D) is a finite group. Hence Hom(G/Cg(D), k*) is finite.

Consequently, when Hom(G, k*) is infinite the proposition implies that

H1(G, k(A)*) ^ 1. It is quite plausible (under the assumption fc* n ,4 1)

that H1(G, k(A)*) vanishes if and only if G is finite.

The extra bothersome assumption is vacuous in the case of group

algebras. One can read off the following observation from Lemma 2'.

Proposition 6. Assume that D 1. Then

1 Hom(G, k*) x H\G, A) H1(G, k{A)*) is exact.

I have been unable to determine if the injection given by the proposition

always splits. Here is one situation where it does.

Proposition 7. Suppose that A can be fully ordered so that G acts

as a group of order automorphisms of A. Then the natural map

H\G, k* • A) -+ H1(G, k(A)*)

splits.

Proof Let V : /c[v4]\{0} -> /c* • A be the function which sends an element

to its "lowest term" with respect to the ordering. The usual degree argument
which shows that a polynomial ring is a domain, establishes that V is

multiplicative. Since elements of G act monotonically, V is a map of
(multiplicative) G-modules. It is not difficult to check that V extends to a

multiplicative G-map from k(A)* to k* • A.
y

Obviously k* • A -> k(A)* -+ k* - A provides the necessary splitting.
The hypothesis of Proposition 7 is very restrictive, even for an infinite

cyclic group G. We leave the following long exercise to the reader. A matrix
in GL(n, Z) is order preserving for some ordering on Z" and only if each

rational irreducible factor of its characteristic polynomial has a positive
real root.

§ 3. The Shephard-Todd-Chevalley Theorem

Recall that a matrix in GL(n, C) is a pseudo-reflection if it has finite
order and 1 is an eigenvalue of multiplicity n — 1. The remaining eigenvalue
for a pseudo-reflection must be a root of unity ; when it is — 1 we call
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the matrix a reflection. Notice that every pseudo-reflection in GL(n, Z) must
be a reflection. A pseudo-reflection group (resp. reflection group) is a finite

group generated by pseudo-reflections (resp. reflections). The classical result
is the

Shephard-Todd-Chevalley Theorem (cf. [11], Theorem 4.2.5). Suppose

that G is a finite group of automorphisms of C[AX,..., Xn] which acts

linearly. Then C\X 1,..., X„]G is a polynomial ring if and only if G is a

pseudo-reflection group.

The major theorem of this section is one direction of the STC Theorem
for multiplicative actions. Namely,

Theorem 8. Suppose that G cz GL(n, Z) is a finite group of
automorphisms of A ~ Z". If C[yl]G is a polynomial ring then G is a

reflection group.

This theorem is deduced from the STC Theorem via a connection
between abelian group algebras and polynomial rings which goes back to the

pioneers of infinite group theory. From now on A will be the free abelian

group on n generators. Let V be the n-dimensional complex vector space
C <g)z A. If x is in A we shall write x o 1 0 x in V. The symmetric algebra

on V will be denoted C[F]. (We warn the reader of our primitive tendencies;

C[K] is not the algebra of polynomial functions on V.) Both C[^4] and

C[F] have canonical augmentations. In the former case the augmentation
ideal co is the ideal generated by {x — 1 | x e A}. In the latter, a> is the

ideal generated by vectors in V. Let C[^4]A and C[F]A be the respective
co-adic completions. The exponential function from A into C[F]A given by

oo

exp(x) £
o

is well-defined. It extends by linearity and then continuity to a C-algebra

map E : C[^4]A - C[F]A. In fact, E is an isomorphism. (The map back

extends the logarithm.)
The effect of this identification on automorphisms was first exploited in [1].

A matrix g g GifA) induces an automorphism y on C[>4]A. What is the

automorphism after "translating" by EI The following calculation of EyE'1
on x can be checked in detail on the matrix level:

(EyE x) (x) EyE 1(logE(x)) E(\og9x)

E(g(logxj) g(logE(xj) g(x).
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Linearization Theorem. Let G be a group of automorphisms of A,

regarded in GL(n, Z). Exponentiation extends to an algebra isomorphism

E : C[A]A — C[L]A. Moreover, the multiplicative action of G (extended by

continuity) on C[A]A induces an action on C[F]A which is the extension

(by continuity) of the linear action of G on C[L].
With this tool in hand, the proof of Theorem 8 amounts to carefully

keeping track of a myriad of completions and then getting rid of them.

The calculations are somewhat clearer in the abstract. So let S be a

C-algebra and let G be a finite group of automorphisms of S. The averaging

or Reynolds operator which sends S to the fixed ring SG is given by

1

av(c) 7777 z c
.0\geG

The function av is an idempotent SG-module map.

Lemma 9. Suppose that S is a commutative noetherian C-algebra and

I is a G-stable maximal ideal Then there is a positive integer f such that

I* n SG a (InSGY c~ T nSG for t 1,2,...

Proof The second inclusion is obvious. Set J I n SG. We first prove
that I is the only prime ideal lying over JS.

Indeed, suppose P is a prime ideal of S containing J. If a e I then

Y[ 9a g / n SG cz P. By primality there is some g e G with ae9P n /. Conse-
geG

quently, I u (9PnI), a union of complex subspaces. At least one of these
geG

subspaces is not proper : there is an h e G such that I hP n /. Therefore
/ h~f cz P. Maximality implies I P, as required.

The prime radical of S/JS is the image of I. But the prime radical is
nil and nil ideals in a noetherian ring are nilpotent. Hence there is a positive
integer / such that If c: JS.

We have established, so far, that Ift <= J*S for all t. Intersect each
side of the inclusion SG and apply the averaging operator.

n SG a\{IftnSG) av(TSnSG) c av(J^) Jfav(S)

We have obtained the necessary inclusion:

Ifî nSG a T (InSGY

Lemma 10. Suppose that S has a filtration S S0 => Sx => S2
such that each Sj is G-stable and n Sj 0. Then (SA)G - (SG)A. (Here
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SA denotes the completion of S with respect to the given filtration and

(Sg)a means the completion of SG for the "relative" filtration Sj n SG.)

Proof. There is an obvious injection (S°)A SA, where the topology on
(Sg)a coincides with the relative topology on its image. Notice that the

action of G on S extends continuously to an action on SA : if am -> a

then 9am -> 9a. It follows that (SG)A c= (S'A)G.

Suppose be(SA)G. Choose a sequence bmeS such that bm^>b. Then

av(^J av(^) and av(^) =» b. Hence b e (SG)A.

Lemma 11. Suppose that k is a field and O: fe[T1#..., TJ -> k is a

k-algebra homomorphism. Then there is a change of variables,

k[T\,..., TJ
so that ker O (T\,..., T'n).

Proof. Consider the automorphism induced by sending each T to

T'j Tj- 0(7j).

The next lemma is undoubtedly routine for the expert in commutative

algebra. Rather than interrupt the flow of the narrative, we will state it now
and then relegate a sketchy proof to the appendix.

Decompletion Lemma. Let k be a field and suppose R R(0)

© jR(1) © is a graded k-algebra with R{0) k. If R (its completion with

respect to the grade filtration) is algebra isomorphic to a power series ring

klLTi,TJ] then R is isomorphic to a polynomial ring in n homogeneous

variables.

Proof of Theorem 8 that if C[^4]G is a polynomial ring then G is a

reflection group: According to Lemma 10, (C[A]A)G (C['A]G)A. Here

(C[A]G)A is the completion of C[A]G with respect to the filtration cof n C\_Ä]G.

A straightforward Cauchy sequence argument in conjunction with Lemma 9

shows that (C[A]G)A is also the (conC[A]G)-adic completion. Now C[A]G
is a polynomial ring in n rankA variables and co n C[A]G is a codimension

one ideal. By Lemma 11, the (conC[A]G)-adic completion of C[A]G is

isomorphic to the power series ring C[[Tl5..., TJ].
In summary, (C[A,]A)G ~ C[[Tl5..., TJ]. Next, apply the isomorphism E

and use Lemma 10 for the symmetric algebra. We find that (C[K]G)A

— C[[Tl5..., TJ]. This time, C[L]G is a graded algebra under the grading
inherited from C[K] and its completion is with respect to the grade filtration.
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We are in the situation of the Decompletion Lemma for C[L]G R. Thus

C[K]G is a polynomial ring in n homogeneous variables. Our theorem now
follows from the STC Theorem.

It is possible to object to the appropriateness of proving a theorem

which determines when the invariants for a group algebra comprise a

polynomial algebra. After all, the most well-behaved group is the group of
order one and its fixed ring is the group algebra we began with. Let's say
that a C-algebra is an extended polynomial ring if it contains algebraically
independent elements'!/!,..., Um, 7j Tn such that the algebra is isomorphic
to C[Ul9 Uï \ Um, U'1, Tl9..., 7^]. Equivalently, an extended polynomial
ring has the form C[L/] (g)c C[T1?..., TJ where U is a finitely generated free

abelian group. Once the generators and 7} are distinguished, its augmentation

ideal co is the ideal generated by — 1,..., Um — 1, Tx,..., Tn.

The theorem we have proved can be adapted to prove the "correct"
result.

Theorem 8 + Suppose G is a finite group acting faithfully and multi-
plicatively on C[A]. If C[A]G is an extended polynomial ring then G

is a reflection group.

Proof We follow the argument a few lines up. It is still true that
(C[T]a)g is the (conC[T]G)-adic completion of C[A]G. This time co n C[A]G
is a codimension one ideal in the extended polynomial ring C[A]G. We need
Lemma 11+ : if

is an algebra homomorphism then there is a change of variables so that
ker3> becomes the augmentation ideal. (Indeed, define U) 0( t/j ~1C/ and
T'j Tj- 0(7}).)

What is the completion of an extended polynomial ring with respect to
powers of its augmentation ideal? Topological abstract nonsense shows that
it coincides with C[l/]A[[7},..., Tj] where C[l/]A is the completion of the
group algebra with respect to the (t/j-l,..., l)-adic topology. But the
linearizing E-isomorphism exhibits C[l/]A as a power series ring in rank!/
variables. In summary, the augmentation-adic completion of an extended
polynomial ring is also a power series ring.

From here on, the previous argument can be carried over verbatim.
It is much more difficult to decide when C(A)° is a rational function

field. The little that is known is surveyed in [7],
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