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KA)S = (KLAT%) HK[ATS).

Recall that G/Cg(D) is a finite group. Hence Hom(G/Cg4(D), k*) is finite.
Consequently, when Hom(G, k*) is infinite the proposition implies that
HY(G, k(A)*) # 1. It is quite plausible (under the assumption k* N4 = 1)
that HY(G, k(4)*) vanishes if and only if G is finite.

The extra bothersome assumption is vacuous in the case of group
algebras. One can read off the following observation from Lemma 2"

PROPOSITION 6. Assume that D = 1. Then

1 - Hom(G, k*) x HYG, A) - H(G, k(A)*) is exact . 0

I have been unable to determine if the injection given by the proposition
always splits. Here is one situation where it does.

PROPOSITION 7. Suppose that A can be fully ordered so that G acts
as a group of order automorphisms of A. Then the natural map

HY(G, k* - A) - HY(G, k(A)*)
splits.

Proof. Let V:k[A]\{0} — k* - A be the function which sends an element
to its “lowest term” with respect to the ordering. The usual degree argument
which shows that a polynomial ring is a domain, establishes that V is
multiplicative. Since elements of G act monotonically, V is a map of (multi-
plicative) G-modules. It is not difficult to check that V' extends to a multi-
plicative G-map from k(A4)* to k* - A.

Obviously k* - A — k(A)* Lokx. A provides the necessary splitting. O

The hypothesis of Proposition 7 is very restrictive, even for an infinite
cyclic group G. We leave the following long exercise to the reader. A matrix
in GL(n, Z) is order preserving for some ordering on Z" and only if each

rational irreducible factor of its characteristic polynomial has a positive
real root.

§ 3. THE SHEPHARD-TODD-CHEVALLEY THEOREM

Recall that a matrix in GL(n, C) is a pseudo-reflection if it has finite
order and 1 is an eigenvalue of multiplicity n — 1. The remaining eigenvalue
for a pseudo-reflection must be a root of unity; when it is — 1 we call




148 D. R. FARKAS

the matrix a reflection. Notice that every pseudo-reflection in GL(n, Z) must
be a reflection. A pseudo-reflection group (resp. reflection group) is a finite
group generated by pseudo-reflections (resp. reflections). The classical result
is the '

SHEPHARD-TODD-CHEVALLEY THEOREM (cf. [11], Theorem 4.2.5). Suppose
that G is a finite group of automorphisms of C[X,, .., X,] which acts
linearly. Then C[X,, .., X,]¢ is a polynomial ring if and only if G is a
pseudo-reflection group. '

The major theorem of this section is one direction of the STC Theorem
for multiplicative actions. Namely,

THEOREM 8. Suppose that G < GL(n,Z) is a finite group of auto-
morphisms of A ~Z" If C[A]® is a polynomial ring then G is a
reflection group.

This theorem is deduced from the STC Theorem via a connection
between abelian group algebras and polynomial rings which goes back to the
pioneers of infinite group theory. From now on A will be the free abelian
group on n generators. Let V' be the n-dimensional complex vector space
C®,z A If xis in A we shall write X = 1 ® x in V. The symmetric algebra
on V will be denoted C[V]. (We warn the reader of our primitive tendencies;
C[V] is not the algebra of polynomial functions on V.) Both C[A] and
C[V] have canonical augmentations. In the former case the augmentation
ideal o is the ideal generated by {x — 1| x € A}. In the latter, ® is the
ideal generated by vectors in V. Let C[A4]" and C[V]" be the respective
w-adic completions. The exponential function from A4 into C[V]" given by

exp(x) = 3, ()]

is well-defined. It extends by linearity and then continuity to a C-algebra
map E: C[A]" - C[V]". In fact, E is an isomorphism. (The map back
extends the logarithm.)

The effect of this identification on automorphisms was first exploited in [1].
A matrix g € GL(A) induces an automorphism y on C[A]". What is the
automorphism after “translating” by E? The following calculation of EYE ™!
on x can be checked in detail on the matrix level:

(EYE~ 1) (X) = EyE™'(logE(x)) = E(log’x)
= E(g(logx)) = g(logE(x)) = g(X) .

I
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LINEARIZATION THEOREM. Let G be a group of automorphisms of A,
regarded in GL(n, Z). Exponentiation extends to an algebra isomorphism
E:C[A]" - C[V]". Moreover, the multiplicative action of G (extended by
continuity) on C[A]" induces an action on C[V]" which is the extension
(by continuity) of the linear action of G on C[V1]. ]

With this tool in hand, the proof of Theorem 8 amounts to carefully
keeping track of a myriad of completions and then getting rid -of them.
The calculations are somewhat clearer in the abstract. So let S be a
C-algebra and let G be a finite group of automorphisms of S. The averaging
or Reynolds operator which sends S to the fixed ring S¢ is given by

1

av(c) = Ic
| G| gezc

The function av is an idempotent S¢-module map.

LEMMA 9. Suppose that S is a commutative noetherian C-algebra and
1 is a G-stable maximal ideal. Then there is a positive integer f such that

""nSSc(InSSY cI'nSS for t=1,2,...

Proof. The second inclusion is obvious. Set J = I n S°. We first prove
that I 1s the only prime ideal lying over JS.
Indeed, suppose P is a prime ideal of S containing J. If ael then

[[%eln S° < P. By primality there is some g € G with a € P n I. Conse-
geG

quently, I = U (!PnI), a union of complex subspaces. At least one of these
geG

subspaces is not proper: there is an h e G such that I = "P ~ I. Therefore
I = "'I ¢ P. Maximality implies I = P, as required.

The prime radical of S/JS is the image of I. But the prime radical is
nil and nil ideals in a noetherian ring are nilpotent. Hence there is a positive
integer f such that I/ < JS.

We have established, so far, that I'* < J'S for all t. Intersect each
side of the inclusion S¢ and apply the averaging operator.

'S¢ = av(I”'nS%) = av(J'SNS%) < av(J'S) = J'av(s)
We have obtained the necessary inclusion:
" SS < Jt = (InS% . : O

LemMA 10. Suppose that S has a filtration S =S, > 8,58, > ..
such that each S; is G-stable and ~ S; = 0. Then (S*)¢ = (S%)~. (Here
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S” denotes the completion -of S with respect to the given filtration and
(S°)" means the completion of S¢ for the “relative” filtration S; N S€.)

Proof. There is an obvious injection (S€)* .— S*, where the topology on
(S°)" coincides with the relative topology on its image. Notice that the
action of G on S extends continuously to an action on S": if a, — a
then Ya,, — Ya. It follows that (S%)* < (S*)C.

Suppose b e (S")%. Choose a- sequence b,, € S such that b, — b. Then
av(b,,) — av(b) and av(b) = b. Hence b € (S%)". O

LeEMMA 11. Suppose that k is a field and ®:k[T,,..,T,] >k is a
k-algebra homomorphism. Then there is a change of variables,

k[T,,..,T,] = k[T,,..,T,],
so that ker® = (T, .., T,).

Proof. Consider the automorphism induced by sending each T, to
T, = T, — ®(T). | : ]

The next lemma is undoubtedly routine for the expert in commutative
algebra. Rather than interrupt the flow of the narrative, we will state it now
and then relegate a sketchy proof to the appendix.

DECOMPLETION LEMMA. Let k be a field and suppose R = Ry,
@ Ry D ... isagraded k-algebra with R, = k. If R (its completion with
reépect to the grade filtration) is algebra isomorphic to a power series ring
k[[T;, .., T,]] then R isisomorphic to a polynomial ring in n homogeneous
variables.

Proof of Theorem 8 that if C[A]® is a polynomial ring then G is a
reflection group: According to Lemma 10, (C[4]")¢ = (C[A]%)". Here
(C[A]%)" is the completion of C[A]¢ with respect to the filtration o' n C[A]°.
A straightforward Cauchy sequence argument in conjunction with Lemma 9
shows that (C[A4]%)" is also the (nnC[A]°)-adic completion. Now C[A]¢
is a polynomial ring in n = rankA variables and ® n C[4]° is a codimension
one ideal. By Lemma 11, the (oanC[A]%-adic completion of C[A]® is
isomorphic to the power series ring C[ [Ty, ..., T,1]-

In summary, (C[4]")¢ ~ C[[Ty, .., T,]]. Next, apply the isomorphis_m E
and use Lemma 10 for the symmetric algebra. We find that (C[V]%)"

~ C[[T;, .., T,]]. This time, C[V]¢ is a graded algebra under the grading .

inherited from C[V] and its completion is with respect to the grade filtration.

O

\
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We are in the situation of the Decompletion Lemma for C[V]% = R. Thus
C[V]€ is a polynomial ring in n homogeneous variables. Our theorem now
follows from the STC Theorem. ]

It is possible to object to the appropriateness of proving a theorem
which determines when the invariants for a group algebra comprise a
polynomial algebra. After all, the most well-behaved group is the group of
order one and its fixed ring is the group algebra we began with. Let’s say
that a C-algebra is an extended polynomial ring if it contains algebraically
independent elementsU,, ..., U,,, Ty, ..., T, such that the algebra is isomorphic
toC[U,,U{*% .,U,, U, T, .., T.]. Equivalently, an extended polynomial
ring has the form C[U] ® C[T;, .., T,] where U is a finitely generated free
abelian group. Once the generators U; and T; are distinguished, its augmen-
tation ideal ® is the ideal generated by U, — 1,..,U,, — 1, Ty, .., T,.

The theorem we have proved can be adapted to prove the “correct”
result.

THEOREM 8. Suppose G is a finite group acting faithfully and multi-
plicatively on C[A]. If C[A]® is an extended polynomial ring then G
is a reflection group.

Proof. We follow the argument a few lines up. It is still true that
(C[A]1")¢ is the (0N C[A4]%)-adic completion of C[4]¢. This time ® ~ C[A]¢
is a codimension one ideal in the extended polynomial ring C[4A]¢. We need
Lemma 117 : if

O:k[UEL UL T, .., T] - k

is an algebra homomorphism then there is a change of variables so that
ker® becomes the augmentation ideal. (Indeed, define U; = ®U;)"'U; and
T} = T, - ®(T)))

What is the completion of an extended polynomial ring with respect to
powers of its augmentation ideal ? Topological abstract nonsense shows that
it coincides with CLU]"[[T;, .., T,]] where C[U]" is the completion of the
group algebra with respect to the (U,—1, ..., U, —1)-adic topology. But the
linearizing E-isomorphism exhibits C[U]" as a power series ring in rankU
variables. In summary, the augmentation-adic completion of an extended
polynomial ring is also a power series ring.

From here on, the previous argument can be carried over verbatim. O

It i1s much more difficult to decide when C(A)¢ is a rational function
field. The little that is known is surveyed in [7].
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