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MULTIPLICATIVE INVARIANTS

by Daniel R. FARKAS ')

Classical invariant theory studies the action of a group G on a poly-
nomial algebra k[X,,.., X,] when G restricts to a linear action on the
span of X, .., X,. EQuivalently, one starts with a finite dimensional vector
space V and a group G = GL(V). Linear automorphisms of V extend in a
unique way to algebra automorphisms of the symmetric algebra on V.
Thus G is a group of especially well-behaved automorphisms of an affine
domain ([11]).

We will be concerned with multiplicative, rather than linear, actions.
(These are also called “lattice” or “exponential” actions in the literature.)
Suppose that A is a finitely generated free abelian group and G acts as a
group of automorphisms of 4. For ae A and g € G we shall write %a for the
image of a. If the action is faithful, we can identify 4 with Z" for some n
and G with a subgroup of GL(n, Z). As in the linear case, automorphisms
of A can be extended to algebra automorphisms of the group algebra k[ A]:

(TN,a) = I (a).

We call this a “multiplicative” action.
An example might be instructive. Suppose that k = C and 4 = Z2.
We can write the group algebra as C[X, X!, Y, Y™ '] where X and Y are

-1 2

Then g 1s identified with the algebra automorphism which sends X to
XY ! and Y to X~ 'Y? In contrast, g acts linearly on the polynomial
algebra C[X, Y] by sending X to X — Y and Y to — X +2Y. Notice that
the linear action respects the natural grading while the multiplicative action
appears more irregular. _

Multiplicative actions appear inevitably in the analysis of infinite solvable
groups. Suppose that a group G has a normal series with abelian factors.
(It may be helpful to think of each factor as Z" for some n.) If we study

algebraically independent. Suppose g € GL(2, Z) is the matrix ( ! _1>.

') Partially supported by an NSF grant.




142 D. R. FARKAS

three consecutive terms in the series, we can factor out the bottom one,
obtaining normal subgroups

lcKcHCcG.

The application of much sophisticated ring theory to group theoretical prob-
lems begins with the observation that K (when written additively) is a Z[H]-
module. For a = Za(h)h € Z[H] and x € K the action is given by

ax*x = Zah) ("x).

Here "x denotes the action by conjugation, hxh~!. Now suppose g€ G.
Obviously g acts on (i.e. normalizes) K. In what sense is this action
compatible with *? An easy calculation shows that

Haxx) = (Za(h)ghg ™) * (°x) .

Thus we are forced to consider the action of G on Z[H] given by
(Xa(h)h) = Za(h)’h. We obtain the pleasant formula

Yaxx) = Yax7x .

Notice that K is actually a Z[ H/K]-module: elements of K act trivially
on themselves because K is abelian. Now if it happens that H/K ~ Z"
 then G acts on Z[H/K] in the multiplicative fashion which is the subject
of this paper.

In various special problems, more may be known about the normal
series. When H is “small”, K might be a cyclic Z[ H/K]-module. By studying
the annihilator of K instead of K itself, one is reduced to studying G-stable
ideals of Z[H/K] (cf. [2]). Some of the invariant theory which arises here,
e.g. the determination of the full stabilizer in GL(n, Z) of an ideal, is
discussed in [6]. Similarly, one might hope to analyze how H sits inside G
by finding and describing many K which are irreducible as Z[ H/K]-modules.
This amounts to understanding the G-stable maximal ideals of Z[H/K]
(cf. Lemma 5 in [9]).

This paper has five sections. In the first, we review a basic theorem of
Bergman and Roseblade. It has the effect of reducing the calculation of
invariants to the case of finite group actions. In particular, we observe that
Hilbert’s 14th problem has an affirmative solution for multiplicative actions.
The second section considers Galois Theory: we look at the multiplicative
action on the field of fractions, a rational function field. Sections three
through five are the heart of the paper. Here we prove a Shephard-
Todd-Chevalley Theorem for multiplicative invariant theory.
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§ 1. THE BERGMAN-ROSEBLADE THEOREM

We introduce some notation. Let A denote a finitely generated free
abelian group. Let k be a field and have A designate an isomorphic copy
of A inside the multiplicative group of some field extension of k. We will
write k[A] for the k-algebra generated by .4 and k(4) for its field of
fractions. The reader is cautioned that k[A] is not the group algebra;
distinct elements of A need not be linearly independent over k. (It's even
possible for 4 to be contained in k*.)

We will reserve the notation k[A], without the underbar, for the group
algebra. There is an obvious relation between the free object k[A] and
k[A 7. Indeed, the given isomorphism 4 ~ A4 induces a k-algebra isomorphism
k[A]/P ~ k[A] where P is a prime ideal. The ideal P is “faithful with respect
to A.” .

Suppose that G is a group which acts on 4. Set

D = {aeA | a has a finite G-orbit} .

It is sometimes called the orbital subgroup or relative finite conjugate
subgroup.

We are primarily interested in a group G which acts as a group of
k-automorphisms of k[ A4 ]. (The slight awkwardness of language allows us to
include possibly nonfaithful actions.) We say that G acts multiplicatively on
k[A] if G stabilizes 4. Thus if k[A] = k[A]/P as described above, then P
1s a G-stable ideal under the corresponding action on k[A].

The fundamental theorem in multiplicative invariant theory is Roseblade’s
Theorem D ([10]). Roseblade based his arguments on profound insights of
G. Bergman ([3]).

BERGMAN-ROSEBLADE THEOREM. Assume that G acts multiplicatively on
k[A] = k[A]/P. Then P = (Pnk[DJ)k[A].

To understand the implications of this theorem, we take a closer look
at D. Obviously D is a finitely generated abelian group. Since each generator
has a finite G-orbit, D is centralized by a subgroup of finite index in G.
In other words, G acts like a finite group of automorphisms when restricted
to D.

It 1s easy to see that if a power of an element in A has a finite
orbit, then so does the original element. Hence there is a splitting 4 = D x B.
(Unfortunately, there may be no choice of B which is stabilized by G.) The
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conclusion of the Bergman-Roseblade Theorem can be rewritten—every
element in P has a unique representation X f(b)b where be B and f(b)
e P n k[D]. Thus k[A4] is the group ring (k[D]) [B] for a finitely generated
free abelian group B.

Roseblade proves that the fixed ring (k[4 )¢ lies in k[D ] ([10], Lemma 10).
This will also be a consequence of the first lemma in the next section. In
any event, it has a remarkable consequence.

THEOREM 1. Assume that G is an arbitrary group acting multiplicatively
on k[A]. Then k[A]® is finitely generated.

Proof. As we have remarked, (k[4])¢ = (k[D])¢. But G acts like a finite
group of automorphisms on the affine algebra k[D]. Noether’s Theorem
([11]), states that, in this case, the algebra of invariants is a finitely
generated algebra. | [

This is an unexpected surprise. In contrast to the situation for linear
actions, Hilbert’s 14th problem holds for multiplicative actions without any
restriction on the group! |

The theme of the paper has emerged. A theory of invariants for multi-
plicative actions is ultimately a theory for finite groups.

§ 2. GaLois THEORY

We begin this section by establishing an analogue to the “finiteness”
phenomenon of the previous section, for a multiplicative action of G on
k(A). Notation is taken from § 1.

LEMMA- 2. Suppose that G acts multiplicatively on k(A). Then k(ﬁ)G
< k(D).

Proof. The crucial fact is that k(D) [B] is a unique factorization domain.
If 9f = f for fek(4) then we can write f = o/f where o and P in
k(D) [B] have no common factors. The invariance of f/ becomes

() = (*B)a forall geG.

Hence o | %0 and % | o; we have (Yo)o.” ' a unit in k(D) [B]. A similar result
holds for B. . )
‘o = u(gle and ‘B = wig)B

for u(g), wig) € k(D)* - B.
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It is easy to check that u: G — k(D)*- B is a crossed homomorphism.
Define a “crossed” action of G on the set k(D)*- B by gox = u(g)” '(°x).
This extends additively to an action of G on k(D) [B]. The defining equation
for u now says goa = o Consequently, when we write out o as a non-
redundant sum of elements in k(D )* - B,

r.b.

J7J

M=

o = (b; distinct)

I

j=1

G permutes these terms (under the crossed action). There is a subgroup H
of finite index in G which fixes each term.

As we observed in the previous section, C4(D) is a subgroup of finite
index in G which centralizes k(D) under the ordinary action. Thus

%. = u(g)b; forall geCyD) and i=1.,N.

It follows that Ubb; ') = bb; ! for all g e Cy(D). Since | G: Cy(D) | { o, we
find that bb; ' € D. Thus o = ryb,.

A parallel result holds for . We conclude that f = &b where & € k(D )*
and b e B. Now 9E&b) = &b for all g € Cyx(D). Therefore b = b for all such g,
whence be D n B = 1. We have f = &, as desired. O

The argument we have just completed proves a bit more. We shall record
the exact statement now and return to discuss it at the end of the section.

LEMMA 2. Suppose that G acts multiplicatively on k(A). If U
denotes the group of units for k(D) [B] then the sequence

1 - HYG, U) » HY(G, k(A)*)

is exact. []

THEOREM 3. k(A)® is the field of fractions of k[A]C.

Proof. According to Lemma 2, it suffices to check that k(D) lies in the
field of fractions of k[D]% The improvement lies in the fact that G acts
like a finite group of automorphisms on k(D). For finite group actions, the
theorem is always true ([11], Lemma 2.5.12). (Briefly, every a € k[ A ] divides

its norm N(a) = [] (%a), so every element in k(4) can be written as a
geG T

fraction with an invariant denominator. If such a fraction is invariant, then
its numerator must be invariant as well.) ' 0
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THEOREM 4. tr. deg. (k(A) | k(4)%) = rank A/D .

Proof. Once again, Lemma 2 tells us that k(4)° = k(D)®. Elementary
Galois Theory tells us that k(D) is a finite field extension of k(D ). Hence the
transcendancy degrees of k(A)| k(A)¢ and k(A) | k(D) are the same.

On the other hand, the Bergman-Roseblade Theorem implies that k(A4 ) is
the field of fractions of k(D) [B]. Since B is a free abelian group, k(4) is
the rational function field in rank B variables over the base field k(D).

Thus
tr. deg. (k(4) | k(D)) = rank B = rank A/D . H

As promised, we complete this portion of the paper with some remarks
about Lemma 2. In one sense, it measures an obstruction to the truth of
Hilbert’s Theorem 90 for multiplicative actions. Of course there is an intimate
connection between invariant theory and crossed homomorphisms. Suppose
that A 1s any k-algebra and G acts as a group of k-algebra automorphisms
of A. If A e Hom(G, k*) then a semi-invariant with weight A is a nonzero
element f in A such that 9f = AMg)f for all ge G. The vanishing of
H'(G, k(4)*) is a statement about the triviality of semi-invariants. To be
more precise, we add a condition which separates k and 4.

PROPOSITION 5.  Assume that k* " A = 1. Then

1 - Hom(G/C4(D), k*) » Hom(G, k*) —» H*(G, k(A4)¥)

IS exact.

Proof. Let M = ker(Hom(G, k*) —» H'(G, k(A)*)). The problem is to
prove:that M = {k € Hom(G, k*) | M(C4(D)) = 1}.

First suppose that A € M. Then there is a nonzero f € k(4) such that
if = Mg)f for all ge G. By Lemma 2/, we can write f = Eb for some
Eek(D)* and be B. If ge CgD) then % = Ag)b which, in turn, implies
that Mg) = (%b)b~! € k* n A. We conclude that A vanishes on Cg(D).

For the opposite inclusion, assume that M(Cg(D)) = 1. Then A € Hom(¥%, k*)
where ¥4 = G/Cg(D) is a finite group of automorphisms of k(D). Hilbert’s
Theorem 90 now applies: H'(%, k(D)*) = 1. Certainly the image of Hom(%, k*)
in HY(%, k(D)*) is trivial. In other words, there is an m € k(D)* such that
'n = Mt)n for te¥9. Clearly n = Mg)n for ge G. Thus A vanishes in
H(G, KA)"). 0

A similar application of Lemma 2’ will yield the analogue of Theorem 3
for semi-invariants: if k* N 4 = 1 then
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KA)S = (KLAT%) HK[ATS).

Recall that G/Cg(D) is a finite group. Hence Hom(G/Cg4(D), k*) is finite.
Consequently, when Hom(G, k*) is infinite the proposition implies that
HY(G, k(A)*) # 1. It is quite plausible (under the assumption k* N4 = 1)
that HY(G, k(4)*) vanishes if and only if G is finite.

The extra bothersome assumption is vacuous in the case of group
algebras. One can read off the following observation from Lemma 2"

PROPOSITION 6. Assume that D = 1. Then

1 - Hom(G, k*) x HYG, A) - H(G, k(A)*) is exact . 0

I have been unable to determine if the injection given by the proposition
always splits. Here is one situation where it does.

PROPOSITION 7. Suppose that A can be fully ordered so that G acts
as a group of order automorphisms of A. Then the natural map

HY(G, k* - A) - HY(G, k(A)*)
splits.

Proof. Let V:k[A]\{0} — k* - A be the function which sends an element
to its “lowest term” with respect to the ordering. The usual degree argument
which shows that a polynomial ring is a domain, establishes that V is
multiplicative. Since elements of G act monotonically, V is a map of (multi-
plicative) G-modules. It is not difficult to check that V' extends to a multi-
plicative G-map from k(A4)* to k* - A.

Obviously k* - A — k(A)* Lokx. A provides the necessary splitting. O

The hypothesis of Proposition 7 is very restrictive, even for an infinite
cyclic group G. We leave the following long exercise to the reader. A matrix
in GL(n, Z) is order preserving for some ordering on Z" and only if each

rational irreducible factor of its characteristic polynomial has a positive
real root.

§ 3. THE SHEPHARD-TODD-CHEVALLEY THEOREM

Recall that a matrix in GL(n, C) is a pseudo-reflection if it has finite
order and 1 is an eigenvalue of multiplicity n — 1. The remaining eigenvalue
for a pseudo-reflection must be a root of unity; when it is — 1 we call
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the matrix a reflection. Notice that every pseudo-reflection in GL(n, Z) must
be a reflection. A pseudo-reflection group (resp. reflection group) is a finite
group generated by pseudo-reflections (resp. reflections). The classical result
is the '

SHEPHARD-TODD-CHEVALLEY THEOREM (cf. [11], Theorem 4.2.5). Suppose
that G is a finite group of automorphisms of C[X,, .., X,] which acts
linearly. Then C[X,, .., X,]¢ is a polynomial ring if and only if G is a
pseudo-reflection group. '

The major theorem of this section is one direction of the STC Theorem
for multiplicative actions. Namely,

THEOREM 8. Suppose that G < GL(n,Z) is a finite group of auto-
morphisms of A ~Z" If C[A]® is a polynomial ring then G is a
reflection group.

This theorem is deduced from the STC Theorem via a connection
between abelian group algebras and polynomial rings which goes back to the
pioneers of infinite group theory. From now on A will be the free abelian
group on n generators. Let V' be the n-dimensional complex vector space
C®,z A If xis in A we shall write X = 1 ® x in V. The symmetric algebra
on V will be denoted C[V]. (We warn the reader of our primitive tendencies;
C[V] is not the algebra of polynomial functions on V.) Both C[A] and
C[V] have canonical augmentations. In the former case the augmentation
ideal o is the ideal generated by {x — 1| x € A}. In the latter, ® is the
ideal generated by vectors in V. Let C[A4]" and C[V]" be the respective
w-adic completions. The exponential function from A4 into C[V]" given by

exp(x) = 3, ()]

is well-defined. It extends by linearity and then continuity to a C-algebra
map E: C[A]" - C[V]". In fact, E is an isomorphism. (The map back
extends the logarithm.)

The effect of this identification on automorphisms was first exploited in [1].
A matrix g € GL(A) induces an automorphism y on C[A]". What is the
automorphism after “translating” by E? The following calculation of EYE ™!
on x can be checked in detail on the matrix level:

(EYE~ 1) (X) = EyE™'(logE(x)) = E(log’x)
= E(g(logx)) = g(logE(x)) = g(X) .

I
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LINEARIZATION THEOREM. Let G be a group of automorphisms of A,
regarded in GL(n, Z). Exponentiation extends to an algebra isomorphism
E:C[A]" - C[V]". Moreover, the multiplicative action of G (extended by
continuity) on C[A]" induces an action on C[V]" which is the extension
(by continuity) of the linear action of G on C[V1]. ]

With this tool in hand, the proof of Theorem 8 amounts to carefully
keeping track of a myriad of completions and then getting rid -of them.
The calculations are somewhat clearer in the abstract. So let S be a
C-algebra and let G be a finite group of automorphisms of S. The averaging
or Reynolds operator which sends S to the fixed ring S¢ is given by

1

av(c) = Ic
| G| gezc

The function av is an idempotent S¢-module map.

LEMMA 9. Suppose that S is a commutative noetherian C-algebra and
1 is a G-stable maximal ideal. Then there is a positive integer f such that

""nSSc(InSSY cI'nSS for t=1,2,...

Proof. The second inclusion is obvious. Set J = I n S°. We first prove
that I 1s the only prime ideal lying over JS.
Indeed, suppose P is a prime ideal of S containing J. If ael then

[[%eln S° < P. By primality there is some g € G with a € P n I. Conse-
geG

quently, I = U (!PnI), a union of complex subspaces. At least one of these
geG

subspaces is not proper: there is an h e G such that I = "P ~ I. Therefore
I = "'I ¢ P. Maximality implies I = P, as required.

The prime radical of S/JS is the image of I. But the prime radical is
nil and nil ideals in a noetherian ring are nilpotent. Hence there is a positive
integer f such that I/ < JS.

We have established, so far, that I'* < J'S for all t. Intersect each
side of the inclusion S¢ and apply the averaging operator.

'S¢ = av(I”'nS%) = av(J'SNS%) < av(J'S) = J'av(s)
We have obtained the necessary inclusion:
" SS < Jt = (InS% . : O

LemMA 10. Suppose that S has a filtration S =S, > 8,58, > ..
such that each S; is G-stable and ~ S; = 0. Then (S*)¢ = (S%)~. (Here
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S” denotes the completion -of S with respect to the given filtration and
(S°)" means the completion of S¢ for the “relative” filtration S; N S€.)

Proof. There is an obvious injection (S€)* .— S*, where the topology on
(S°)" coincides with the relative topology on its image. Notice that the
action of G on S extends continuously to an action on S": if a, — a
then Ya,, — Ya. It follows that (S%)* < (S*)C.

Suppose b e (S")%. Choose a- sequence b,, € S such that b, — b. Then
av(b,,) — av(b) and av(b) = b. Hence b € (S%)". O

LeEMMA 11. Suppose that k is a field and ®:k[T,,..,T,] >k is a
k-algebra homomorphism. Then there is a change of variables,

k[T,,..,T,] = k[T,,..,T,],
so that ker® = (T, .., T,).

Proof. Consider the automorphism induced by sending each T, to
T, = T, — ®(T). | : ]

The next lemma is undoubtedly routine for the expert in commutative
algebra. Rather than interrupt the flow of the narrative, we will state it now
and then relegate a sketchy proof to the appendix.

DECOMPLETION LEMMA. Let k be a field and suppose R = Ry,
@ Ry D ... isagraded k-algebra with R, = k. If R (its completion with
reépect to the grade filtration) is algebra isomorphic to a power series ring
k[[T;, .., T,]] then R isisomorphic to a polynomial ring in n homogeneous
variables.

Proof of Theorem 8 that if C[A]® is a polynomial ring then G is a
reflection group: According to Lemma 10, (C[4]")¢ = (C[A]%)". Here
(C[A]%)" is the completion of C[A]¢ with respect to the filtration o' n C[A]°.
A straightforward Cauchy sequence argument in conjunction with Lemma 9
shows that (C[A4]%)" is also the (nnC[A]°)-adic completion. Now C[A]¢
is a polynomial ring in n = rankA variables and ® n C[4]° is a codimension
one ideal. By Lemma 11, the (oanC[A]%-adic completion of C[A]® is
isomorphic to the power series ring C[ [Ty, ..., T,1]-

In summary, (C[4]")¢ ~ C[[Ty, .., T,]]. Next, apply the isomorphis_m E
and use Lemma 10 for the symmetric algebra. We find that (C[V]%)"

~ C[[T;, .., T,]]. This time, C[V]¢ is a graded algebra under the grading .

inherited from C[V] and its completion is with respect to the grade filtration.

O

\
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We are in the situation of the Decompletion Lemma for C[V]% = R. Thus
C[V]€ is a polynomial ring in n homogeneous variables. Our theorem now
follows from the STC Theorem. ]

It is possible to object to the appropriateness of proving a theorem
which determines when the invariants for a group algebra comprise a
polynomial algebra. After all, the most well-behaved group is the group of
order one and its fixed ring is the group algebra we began with. Let’s say
that a C-algebra is an extended polynomial ring if it contains algebraically
independent elementsU,, ..., U,,, Ty, ..., T, such that the algebra is isomorphic
toC[U,,U{*% .,U,, U, T, .., T.]. Equivalently, an extended polynomial
ring has the form C[U] ® C[T;, .., T,] where U is a finitely generated free
abelian group. Once the generators U; and T; are distinguished, its augmen-
tation ideal ® is the ideal generated by U, — 1,..,U,, — 1, Ty, .., T,.

The theorem we have proved can be adapted to prove the “correct”
result.

THEOREM 8. Suppose G is a finite group acting faithfully and multi-
plicatively on C[A]. If C[A]® is an extended polynomial ring then G
is a reflection group.

Proof. We follow the argument a few lines up. It is still true that
(C[A]1")¢ is the (0N C[A4]%)-adic completion of C[4]¢. This time ® ~ C[A]¢
is a codimension one ideal in the extended polynomial ring C[4A]¢. We need
Lemma 117 : if

O:k[UEL UL T, .., T] - k

is an algebra homomorphism then there is a change of variables so that
ker® becomes the augmentation ideal. (Indeed, define U; = ®U;)"'U; and
T} = T, - ®(T)))

What is the completion of an extended polynomial ring with respect to
powers of its augmentation ideal ? Topological abstract nonsense shows that
it coincides with CLU]"[[T;, .., T,]] where C[U]" is the completion of the
group algebra with respect to the (U,—1, ..., U, —1)-adic topology. But the
linearizing E-isomorphism exhibits C[U]" as a power series ring in rankU
variables. In summary, the augmentation-adic completion of an extended
polynomial ring is also a power series ring.

From here on, the previous argument can be carried over verbatim. O

It i1s much more difficult to decide when C(A)¢ is a rational function
field. The little that is known is surveyed in [7].
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§4. APPENDIX

R = R @ Ry, @ ... is a graded k-algebra with R, = k. Let m be the
0.0
maximal ideal ) R;. We assume that R is a power series ring in finitely
: i=1 . .
many variables. Obviously v corresponds to the unique maximal ideal of
the power series ring, whence R/ is always finite dimensional. Since ﬁjd is

o 0]
homogeneous, some tail [] R; must then lie in ’ It follows that the
9

graded algebra of R for the m-adic filtration is isomorphic to the graded
algebra of R for the rir-adic filtration. The power series assumption implies
that the latter is simply a polynomial ring with the standard grading.

(e 0}
Clearly m* < ) R;,. Hence R, injects into m/m? Choose a basis for
j=2
R;, over k and extend it to a list of homogeneous elements x,, ..., X, in m

whose images constitute a basis for m/m? It is generally true for any
commutative k-algebra R that when R/m = k and when the associated
graded ring for the m-adic filtration is the symmetric algebra on m/m?, that
any basis for m/m? pulls back to a set of algebraically independent elements
in R. In particular, x,, ..., x, are algebraically independent. ,

We use the given grading on R to prove that R = k[x,, .., x,].
Vacuously, R, < k[x;, .., x,]. We have chosen the x; so that R, lies in
their span, so R, < k[xy, .., x,]. Assume, inductively, that d > 1 and R
< k[xy,..,x,]foralls <d If ye Ry, then

for some A; ek and u;, v;e m. Without loss of generality u; and v; are

homogeneous and all the x; and u;v; which appear in the formula lie in
d+1

U Ryy. This can only happen when u; and v; are in R, for some s < d.
t=1 .

By induction, u; and v; are elements of k[x,, .., x,]. Therefore y € k[x,, ..., x,].

§5. WEYL GROUPS

It seems to be-part of the folklore for Lie theory that the converse
of Theorem 8 fails to be true (cf. [4] VI§3 Ex. 2). Rather than being
dead-ends, these examples serve as inspiration: the machinery of root systems
will allow us to determine the correct necessary and sufficient conditions
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for a multiplicative Shephard-Todd-Chevalley analogue. For the most part,
we will follow the notation in [&].

Suppose that V is an n-dimensional complex vector space and G < GL(V).
By a G-lattice we mean a lattice in V (of rank n) which is invariant under
the action of G. The G-lattice A is effective if zero is the only element
fixed by all members of G. Notice that A is effective if and only if the
units of C[A]¢ are precisely the nonzero elements of C.

PROPOSITION 12:/ Let A be an effective G-lattice. If G is a finite
group generated by reflections then

(i) there is a reduced root system @ lying in A so that G is the
Weyl group for ®, and

(i) A (considered inside V) lies between the root lattice for ® and
the weight lattice.

Proof. Endow V with an inner product which makes members of G
orthogonal transformations. If ¢ is a reflection in G and a € A4 is such that
a # o(a) then a — o(a) # 0 and o(a—o(a)) = — (a—o(a)). Thus {b € 4 | o(b)
= — b} is an infinite cyclic subgroup of A4. Its two possible generators,
a, and — a,, are the nonzero vectors of smallest length in 4 which are
“reflected” by o. It is not difficult to check that ® = {+ a,| o is a reflection
in G} is a root system, whence G is its Weyl group. Moreover, if xe A4

2(x, o 2(x,
and o« = + a, € ® then o(x) e A. Thus x — & )oceA.Now x Ot)oceA
(o, ) (o, o)
implies that ( ’O() 1s an integer. This is just the statement that x is a
&,
weight. ]

Although we have “located” the effective G-lattices, there are still quite
a few of them: every lattice between the root lattice and the weight lattice
1s invariant under G. On the positive side, it turns out that the group
algebra of the weight lattice has well-behaved invariants.

THEOREM ([4], VI§3.4). Let G be a Weyl group and let A be its
weight lattice. Then C[A]® is a polynomial ring. O

This theorem of Bourbaki can be generalized just enough to suggest
its own converse. Fix a root system with base A. Let A, and A denote
the root lattice and weight respectively and let w,, .., w, be the fundamental
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dominant weights. Then A™ is the collection of dominant weights: the non-
negative integer combinations of w,, .., w,. Write W for the Weyl group.

In [5], we introduced the notion of stretched weight lattice for a root
system. It is a W-lattice lying between A, and A which has a 'basis of
the form ryw,, r,w,, .., r,w, for positive integers r,, ..., ,. A stretched weight
lattice can always be built up from ordinary weight lattices and certain

root lattices ([5]). More unexpectedly, we found an abstract characterization.

Suppose G is a finite subgroup of GL(n, Z); then the corresponding action
on Z" has the non-negative “quadrant” as fundamental domain (in Bour-
baki’s strong sense) if and only if G is a Weyl group and Z" is isomorphic
to a stretched weight lattice for G.

To talk about the group algebra C[A], we will have to switch from
additive to multiplicative notation for elements of A. If we think of A as
a weight then A* will be its image in C[A], e.g (A{—X,)* = (A, *) (A,*) L.

For A e A we set X(A) = (constant) - av(A*) where the normalizing con-
stant is chosen so that each element of A appears with coefficient 0 or 1
in X(A). Using this notation, we state the appropriate form of Bourbaki’s
Theorem. (The proof carries over verbatim from [4].)

THEOREM 13. If S is a stretched weight lattice with basis r,w;, ..., ',W,
then

C[ST” = C[X(rw,), ... X(r,w,)].

Moreover, X(r,wy), .., X(r,w,) are algebraically independent. O

We shall frequently use the consequence that X(w,), .., X(w,) are irre-
ducible elements of the unique factorization domain C[A]Y.

For the rest of this paper, M will be a W-lattice with
| A,cMcA.

LEMMA 14. Suppose A,,..,A, are (not necessarily distinct) dominant
weights. If Ay + .. + A, €M then (g A) + .. +(g,*AN)eM for all
choices g,,...9,€ W.

Proof. For a € A let o, denote reflection in the hyperplane perpendicular
to a. Then o, (A;) = A; — < A;, & > o. The definition of “weight” implies
that < A;, o > is an integer. Thus

O4(A;) = A;(mod A))

and so,
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o,(A;) = A;(mod M).

Now W is generated by {c,|a e A}. An easy induction on the length
of g e W as a word in the generators yields

g(h;) = A;(mod M) .

Hence

i gir) = Zt: A; (mod M) . | O

LEMMA 15. Suppose A, .., A, are (not necessarily distinct) dominant
weights. If Ay + .. + L, e M then

X(A)X(Np) = X(A,) € C[M]7 .

Proof. A typical element of A in the support of X(A,) - X(A,) has the
form (g,(Ay)+..+g(A))* where g,,..,g,€ W. According to Lemma 14,
2g{\;) e M. Thus

X)X (Az) - X(?»t) e C[M] n C[A]". O

We say that an element we M n A" is M-indecomposable if it cannot
be written as a sum of two nonzero elements of M m\A+. Clearly, every
element of M n A" is a sum of M-indecomposable elements.

THEOREM 16. The following statements are equivalent :
(1) M is a stretched weight lattice for W.
(ii) C[M]" is a polynomial ring.
(i) C[M]¥ isa UFD.

Proof. (i) = (ii) is Theorem 13 and (ii) = (i) is classical. Thus we
assume that. CLM]" is a UFD and prove (i).

Suppose ). a;w; is M-indecomposable. According to Lemma 15,
ji=1

Y = X(wy)" X(wa)” = X(w,)"

is an element of C[M]". Every coefficient appearing in X(wj) is 1; hence
any subproduct

X(wy)" X(wg)™ = X(w,)”
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with 0 < b; < a; contains (Z b;w)* in its support. If Y factors in C[M]¥

ji=1

then each factor is one such subproduct by the UFD property of C[A]”.
Therefore, a factoring provides b; for j = 1,..,n such that 0 < b; < a;,
not all b; = a;, and both Zb;w; and X(a;—b;)w; lie in M. This contradicts
the M-indecomposability of Za;w;. In summary, Y is an irreducible element
in C[IM]".

Let d be the index of M in A. Then dw; €M for each fundamental
dominant weight w; Agam Lemma 15 yields

Xw)'e CIM]Y for j=1,.,n.
Consider the equation

= [X(w) T [X(w,)]" = [X(w,)]" |
inside C[M]". Since Y is irreducible, Y | X(w,)? for some k. Interpret this
in C[A]" and use unique factorization there: Y = X(w,)". That is, the
M-indecomposable weights-all have the form a,w,. .
If aw, and a;w, lie in M, so does GCD(a,, a;)w,. But GCD(a,, a;)
divides both g, and a;,. By indecomposability, there are no such repeats:

FiW1, o W, (r;>0 an integer)

is a complete list of the M-indecomposable elements. (Notice that some
positive integer multiple of each w; must be M-indecomposable.) They are
clearly linearly independent over Z. The argument is completed by showing

that they span M. Suppose ) c¢;w; € M. Choose a large positive integer N
i=1

C; . n
such that — < N for i = 1,..,n. Since rw;e M we have N() rw)e M.
r; i=1

1
Z (Nr;—c)w, e M n A™ .
Now every member of M n A* is a sum of M-indecomposable elements.
Solve for XZc;w;. O

Finally, we can put together Theorem 8, Proposition 12, and Theorem 16.
We cite the fact that a reflection group may appear as the Weyl group
for more than one root system. By replacing certain component root systems
of type B, with those of type C,, every stretched weight lattice over a
given reflection group becomes isomorphic, -as an abstract module, to some
ordinary weight lattice. (See §1 and the “note added in proof” of [5].)
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MAIN THEOREM. Assume A is a Z-lattice and G < GL(A) is a finite
group. Then C[A]® is a polynomial ring if and only if G is a reflection
group and, for some choice of root system, it becomes a Weyl group with A
as its weight lattice.
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NOTE ADDED IN PROOF: As occasionally happens when a mathematician wanders
from his area of expertise, he re-invents the wheel. The appendix (§4) can be
eliminated by invoking a theorem of -Serre [B] to the effect that the fixed ring
of a suitably nice regular local ring under the action of a finite group is also
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