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déterminent le même élément de %(K) si et seulement si m' m et k'

diffère de k par une puissance m-ième.

On peut aussi faire le lien avec Fhomomorphisme a. Soit \|/ e H1(X, Q/Z).

On calcule u(i|/) e %(K) par la méthode de la démonstration du théorème 3.1

(point 4). Si m est l'ordre de i|/, on construit un morphisme algébrique fini

v: Y -> X qui est un revêtement topologique non ramifié (A 0) à m feuillets.

Le corps L: C(Y) est une extension cyclique de degré m de K et

a(\|/) g %(K) provient d'un isomorphisme Ga\(L/K) — Z/Z induit par \J/. Si
m

k e K est tel que L k), en utilisant cette fois que v est non ramifié,

on peut montrer que (k) m • D pour un diviseur D dont la classe [D] est

d'ordre m.

Remarquons pour terminer que cette construction ne fournit pas une

description des classes de diviseurs de torsion (qu'il serait certainement très

intéressant d'avoir!).

§ 6. Divisibilité de Br(C(f tn))

Auslander et Brumer ont prouvé [1] que si F est un corps de
fractions rationnelles à une variable à coefficients dans un corps quelconque,
alors soit Br(F) contient un sous-groupe divisible non trivial, soit 2 • Br(F) 0

(voir aussi [2]). On va montrer que pour tout n, Br(C(tj,..., tnj) est
entièrement divisible.

Pour tout corps de fonctions complexes K, on va établir que le groupe
%(K) est divisible en appliquant le théorème 4.1 à un modèle particulier X
de K : on va choisir une variété algébrique lisse X *

avec C(A) K telle

que H^X) soit libre. (Il serait aussi possible de raisonner directement sur
%(K) en séparant chaque composante p-primaire.)

Pour démontrer l'existence d'un modèle adéquat de K, on aura besoin
de deux propriétés élémentaires de la première classe de Chern

c : Diw(X) H2(X, Z)

que l'on établit immédiatement.

Lemme 6.1. Soit X une variété algébrique projective complexe lisse. Alors
(i) l'image c1(Div(2f)) de c1 contient le sous-groupe de torsion
Tots(H2(X, Z)) et (ii) on a une décomposition H2(X) N © L, où N est
le sous-groupe de H2(X) annulé par l'évaluation de cx(Div(A:)) et où L
est libre.
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Démonstration. On a déjà rappelé (remarque 5.3 (iii)) que la première
classe de Chern est définie à partir de la suite exacte H\X, 0*) -+ H2(X, Z)

H2(X, 0) et de l'application Div(Z) -> H1(X, 0*) qui est surjective lorsque X
est projective.

Ainsi le conoyau de cx : Div(X) - H2(X, Z) se plonge dans l'espace
vectoriel H2(X, (9) et est sans torsion. On en tire immédiatement le point (i),

ainsi que l'existence d'un complément direct libre au sous-groupe c^Div^))
de H2(X, Z). On peut alors déduire la décomposition voulue de H2(X) au

moyen de la suite exacte

0 -> Tors(H2(X)) H2(X) -> ¥Lom(H2(X, Z), Z) -> 0

cr [r|h-><rj ; a>]
Pour tout D e y{X), notons <9f(D) le sous-groupe ©A6<g>(D)ZÀ de Div(A).

Proposition 6.2. Soit X une variété algébrique projective complexe lisse

et soit D g if(X) tel que c1(Div(A')) comme sous-groupes de

H2(X, Z). Alors Hx(X — D) est libre.

Démonstration. On exprime le rapport entre Hx(X) et Hx(X — D) par la
suite exacte d'homologie de (X, X — D) :

H2(X) ^ H2(X, X-D)^ Hx(X — D) h Hx(X),

où et fc* sont induits par j : (X, 0) c» (.X, X — D) et k : X — D c> X, d étant

l'homomorphisme bord. On va montrer que H2(X, X — D)/j2(X) est sans

torsion, puis en déduire que Hx(X — D) est libre.

1) H2(X, X — D)/j^H2{X) est sans torsion: On a vu (démonstration du théorème

4.1) que H2(X, X — D) est isomorphe au groupe libre ffiA6#(D)Zr|A sur
les composantes de D et que l'applicationdevient y: H2(X) -»

dont le dual est donné par la première classe de Chern. Par conséquent,
si a e H2(X) on a

y(a) ^Ae^(D) <ci(À); <^>t1a •

Soit donc x g ©Ae^DjZTlA tel que m' T g yH2(X\ avec m minimal. On doit

montrer que x g jH2(X), c'est-à-dire que m 1. Par hypothèse, il existe

ge H2(X) tel que y(a) m • x et donc tel que m| <c1(À), a> pour tout
À g ^(D). En décomposant H2(X) N © L selon le lemme 6.1, on voit qu'on

peut supposer que a g L puisque l'évaluation de c1(Div(X)) est nulle sur N.

Il résulte aussi du lemme 6.1 que l'évaluation est un isomorphisme de L
sur le dual de c^Div^O) c^^D)). Ainsi, < — ; a> est un élément pur



GROUPE DE BRAUER DES CORPS DE FRACTIONS RATIONNELLES 137

de Homfc^fD)), Z) puisque a est pur dans L par minimalité de m. Il
existe donc Dae^(D) tel que <c1(Da);a> m 1. Comme m | <c1(A);g>
pour tout A ê f(D), on a aussi m | <c1(Dc);g> 1. Donc m 1 et

H2(X, X — D)/j 2(X) st ©a e <t(D)Zr\JyH2{X) est sans torsion.

2) H^X-D) est libre: Soit co un 1-cycle de I - D dont la classe [co]

eH^X-D) est de torsion, d'ordre m. On va montrer que m 1 et donc

que [co] 0.

Comme KerjJc* : H^X-D) H^X)} est sans torsion par le point 1,

la restriction de k# à la torsion Tors(H^X — D)) -» Tovsfä^X)) est injective.

La classe ^[co] e Hx(X) de co est donc aussi d'ordre m et il existe une

2-chaîne a de X dont le bord est m • co. Notons [a] g H2(X, X — D) sa classe.

Par construction, c[a] m - [co] 0 dans H^X — D), d'où [a] ej^H2{X).
On va montrer que m 1 en construisant une forme linéaire X: H2(X, X — D)

Z nulle sur j^H2(X) et telle que X[ct] 1 (mod m).

On choisit une décomposition du groupe des 2-chaînes de X en Za © M,
de sorte que M contienne tous les 2-cycles de X, et on définit un 2-cocycle q
valant 1 sur a et s'annulant sur M. Sa classe [q] g H2(X, Z) est de torsion
(d'ordre m si co est pur), donc par le lemme 6.1, [q] g c1(Div(X)) c^&iD)).

Soit Dq g S£(D) tel que c^Dq) [q]. L'évaluation de la classe cq(D0)

sur g n'est pas bien définie dans les entiers, mais seulement dans les entiers

modulo m — puisque ôg m • co — et on a c^Dq) (a) q(a) 1 (mod m).

On va voir que l'évaluation de c1(D0) provient d'une forme sur H2(X, X — D)

qui est la forme X cherchée.

Soit V un voisinage tubulaire fermé de D dans X, d'intérieur V. En
utilisant que D, respectivement X — D, a le même type d'homotopie que V,

respectivement X — V, ainsi que la dualité de Poincaré H2(V, ôV) ~ H2n_2(V)
donnée par ^ [V, dV~], on peut déduire une dualité H2(X, X — D)c^ H2n_2(D),
où n est la dimension complexe de X. Elle est compatible avec la dualité
de Poincaré dans X ; plus précisément, le diagramme

commute, avec induit par l'inclusion i : D X. (On le vérifie en utilisant
la naturalité du produit cap et le fait que la classe fondamentale [F, âV]
de V provient de celle de X.) Comme la première classe de Chern est

H2(X,X-D)

j* I

H2n-2(D)

I i*

H2(X) c H2n_2(X)
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donnée par la dualité de Poincaré, si A e #(£>), on a c1(A) (i*[A])d. On
voit ainsi que c1: ££{D) - H2(X) se factorise par H2(X, X — D). On a donc

un carré commutatif

£C(D) d-\ H2(X,X-D)

r
Div(Z) H\X)

On peut maintenant définir X: H2(X, X-D)-+ Z comme l'évaluation de

di(D0) pour notre D0 e On a bien que >^[a] c^Dq) (a) 1 (mod m)

et que X ° 0, car c'est l'évaluation dey'*(di(I>o)) ci(Do) [iq], or rj est

nul sur les 2-cycles (par construction). Comme [a] e j^H2(X\ on en tire que
m 1, d'où Tors(/f1(Ar — D)) 0, autrement dit H^X — D) est libre.

On peut maintenant établir le résultat principal, de ce paragraphe.

Théorème 6.3. Le groupe Br(C(C,..., tn)) est divisible pour tout n.

Démonstration. On fait une récurrence sur n et on montre que tous les

sommands directs %(K) intervenant dans la décomposition (5) de Br(C(C tn))

sont divisibles.
Soit donc K un corps de fonctions complexes. On peut trouver une

variété algébrique projective lisse X avec C(X) K par le théorème de

désingularisation de Hironaka et une sous-variété D e i^{X) telle que (^(^(D))
Ci(Div(Z)) en utilisant que le groupe H2(X, Z) est de type fini. Posons

X X — D. Le groupe H^X) est libre par la proposition 6.2.

On traite le groupe %(K) au moyen de la suite exacte du théorème 4.1

appliqué à X

(16) 0 ^ H\X,Q/Z)- x(K)^Div(X) ®zQ/Z 4 H\X, Q/Z).

Par le choix de X, le groupe H1(X, Q/Z) Hom(//1(X), Q/Z) est divisible.

Il suffit de montrer qu'il en est de même de Imb. Soient 8 e Imb et / un
entier. Par le lemme 5.2, 8 est de la forme D (g) 1/m avec D un diviseur

principal. On a donc c^D) 0 et / • (Z)<g)l//m) 8 avec D (g) l/lm e Kerc

- Imb.

On déduit immédiatement de la classification des groupes abéliens
divisibles le
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Corollaire 6.4. Quel que soit Tentier n ^ 2, le groupe Br(C(t1,..., tj)
est abstraitement isomorphe à une somme directe de copies de Q/Z indicées

par un ensemble équipotent à C.

On obtient donc que pour n ^ 2, les groupes Br(C(C,..., tn)) sont tous

isomorphes entre eux, ce qui est analogue au phénomène observé par Fein

et Schacher [7] dans le cas des corps de fractions rationnelles à coefficients

dans des corps globaux.
La proposition 6/2 permet aussi d'exprimer Br(C(C,..., tn)) en une seule

formule, peut-être plus agréable, mais « moins canonique » que le reste de

notre calcul. Introduisons pour cela les notations Div0(2f) pour le groupe des

diviseurs de X dont la première classe de Chern est nulle et £Pn pour
l'ensemble [J"=l tjj) des polynômes unitaires irréductibles à coefficients

dans un corps C(tl,..., tj) pour 1 ^ i < n.

Théorème 6.5.

(i) Pour tout f e ^(C(t1,t/j), il existe une variété algébrique Xf lisse

avec HfXj) libre et Q(Xf) isomorphe à l'extension de C(t1,..., *,•)

obtenue en adjoignant une racine de f.
(ii) On a un isomorphisme

Br(C(fO) - Q/Z) © Djv0(A» ®zQ/Z}.

Démonstration. Pour tout / g 0>n, on trouve Xf de même manière
que X dans la démonstration du théorème 6.3. Comme H1(Xf, Q/Z) est

divisible, la suite exacte (16) est scindée (mais pas de manière canonique!),
ce qui donne l'isomorphisme annoncé.
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