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déterminent le méme élément de y(K) si et seulement si m' = m et K’
differe de k par une puissance m-ieme.

On peut aussi faire le lien avec 'homomorphisme a. Soit ¥ € H (X, Q/Z).
On calcule a(y) € x(K) par la méthode de la démonstration du théoreme 3.1
(point 4). Si m est I'ordre de \, on construit un morphisme algébrique fini
v: Y - X qui est un revétement topologique non ramifi¢ (A= Q) a m feuillets.
Le corps L:= C(Y) est une extension cyclique de degrée m de K et

~ 1 o :
a(y) € x(K) provient d’un isomorphisme Gal(L/K) — - Z/Z induit par {. Si

k€ K est tel que L = K((}'/E), en utilisant cette fois que v est non ramifie,
on peut montrer que (k) = m+ D pour un diviseur D dont la classe [D] est
d’ordre m.

Remarquons pour terminer que cette construction ne fournit pas une
description des classes de diviseurs de torsion (qu’il serait certainement tres
intéressant d’avoir!).

§ 6. DIviSIBILITE DE Br(C(t, ..., t,))

Auslander et Brumer ont prouvé [1] que si F est un corps de frac-
tions rationnelles a une variable a coefficients dans un corps quelconque,
alors soit Br(F) contient un sous-groupe divisible non trivial, soit 2 - Br(F) = 0
(voir aussi [2]). On va montrer que pour tout n, Br(C(t,, .., t,)) est entié-
rement divisible. :

Pour tout corps de fonctions complexes K, on va établir que le groupe
X(K) est divisible en appliquant le théoréme 4.1 & un modéle particulier X
de K: on va choisir une variété algébrique lisse X avec C(X) = K telle
que H(X) soit libre. (Il serait aussi possible de raisonner directement sur
x(K) en séparant chaque composante p-primaire.)

Pour démontrer I'existence d’un modéle adéquat de K, on aura besoin
de deux propriétés élémentaires de la premiére classe de Chern

¢i: Div(X) - H*(X, Z)

que P'on établit immédiatement.

LEMME 6.1.  Soit X une variété algébrique projective complexe lisse. Alors
(i) limage c,(Div(X)) de ¢, contient le sous-groupe de torsion
Tors(H*(X, Z)) et (ii) on a une décomposition H,(X) = N@® L, oi N est
le sous-groupe de H,(X) annulé par I'évaluation de cl(Div(X)) et ou L
est libre.
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Démonstration. On a déja rappelé (remarque 5.3 (iii)) que la premiere
classe de Chern est définie a partir de la suite exacte H'(X, 0*) - H*(X, Z)
— H?(X, 0) et de 'application Div(X) — HY(X, 0*) qui est surjective lorsque X
est projective. ' ,

Ainsi le conoyau de c,: Div(X) - H*(X, Z) se plonge dans 'espace vec-
toriel H*(X, O) et est sans torsion. On en tire immédiatement le point (i),
ainsi que l'existence d’un complément direct libre au sous-groupe c;(Div(X ))
de H*X, Z). On peut alors déduire la décomposition voulue de H,(X) au
moyen de la suite exacte :

0— Tors(Hz(X)) — H,(X) » Hom(H*(X,Z),Z) - 0.

o [n—<n;o>] []

Pour tout D € ¥(X), notons #(D) le sous-groupe @, . ¢mpZA de Div(X).

PROPOSITION 6.2. Soit X une variété algébrique projective complexe lisse
et soit Dev(X) tel que c(L(D)) = c,(Div(X)) comme sous-groupes de
H*(X,Z). Alors H,(X—D) est libre.

Démonstration. On exprime le rapport entre H,(X) et H(X —D) par la .
suite exacte d’homologie de (X, X —D):

i k
H,(X) 3 Hy(X, X—D) > H,(X—D) 3 Hy(X),

ou j, et k, sont induits par j: (X,0) o (X, X—D)etk: X — D ¢ X, 0 étant
T’homomorphisme bord. On va montrer que H,(X, X —D)/j, H,(X) est sans
torsion, puis en déduire que H,(X — D) est libre. .

1) Hy(X, X —D)/j, H,(X) est sans torsion: On a vu (démonstration du théo-
réeme 4.1) que H,(X, X —D) ést isomorphe au groupe libre @, ¢p)Zn,a sur
les composantes de D et que I'application j, devient y: Hy(X) = @ac¢mpyZNa
dont le dual est donné par la premiére classe de Chern. Par conséquent,
sioce Hy(X)on a

V(o) = Zacew <C1(A);o>mM,.

Soit donc T € @4 ¢wyLNna tel que m - T € YH,(X), avec m minimal. On doit
montrer que 1€ YH,(X), cest-a-dire que m = 1. Par hypothese, il existe
o € Hy(X) tel que y(o) = m-t et donc tel que m| <cy(A), 5> pour tout
A € (D). En décomposant H,(X) = N @ L selon le lemme 6.1, on voit qu’on
peut supposer que o € L puisque I’évaluation de ¢,(Div(X)) est nulle sur N.

Il résulte aussi du lemme 6.1 que I’évaluation est un isomorphisme de L
sur le dual de ¢,(Div(X)) = ¢,(£(D)). Ainsi, < —; > est un élément pur
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de Hom(c,(Z#(D)), Z) puisque o est pur dans L par minimalité de m. Il
existe donc D, e #(D) tel que <c;(Dy); 0> = 1. Comme m| <cy(A); o>
pour tout Ae%(D), on a aussi m| <c,(D,);0> = 1. Donc m = 1 et
HyX, X —D)j, Hy(X) =~ DacepZna/vYH,(X) est sans torsion.

2) H(X—D) est libre: Soit @ un l-cycle de X — D dont la classe [o]
e H,(X —D) est de torsion, d’ordre m. On va montrer que m = 1 et donc
que [o] = 0.

Comme Ker{k,: H,(X —D) - H{(X)} est sans torsion par le point I,
la restriction de k, & la torsion Tors(H (X — D)) — Tors(H,(X)) est injective.
La classe k,[w]e H(X) de ® est donc aussi d’ordre m et il existe une
2-chaine o de X dont le bord est m - ®. Notons [o] € H,(X, X — D) sa classe.
Par construction, ¢[c] = m-[w] = 0 dans H (X —D), d’ou [c] €j,H,(X).
On va montrer que m = 1 en construisant une forme linéaire A: H,(X, X — D)
— Z nulle sur j, H,(X) et telle que A[c] = 1 (mod m).

On choisit une décomposition du groupe des 2-chaines de X en Zoc @ M,
de sorte que M contienne tous les 2-cycles de X, et on définit un 2-cocycle n
valant 1 sur o et s’annulant sur M. Sa classe [n] € H*(X, Z) est de torsion
(d’ordre m si w est pur), donc par le lemme 6.1, [n] € ¢;(Div(X)) = ¢,(Z(D)).

Soit Dy, e #(D) tel que c,(Dy) = [n]. L’évaluation de la classe ¢,(D,)
sur o n’est pas bien définie dans les entiers, mais seulement dans les entiers
modulo m — puisque ¢c = m+-® — et on a ¢,(Dy) (0) = n(o) = 1 (mod m).
On va voir que I’évaluation de ¢,(D,) provient d’une forme sur H,(X, X —D)
qui est la forme A cherchée.

Soit ¥ un voisinage tubulaire fermé de D dans X, d’intérieur V. En
utilisant que D, respectivement X — D, a le méme type d’homotopie que V,
respectivement X — V, ainsi que la dualité de Poincaré H(V, V)~ H,,_,(V)
donnée par —~ [V, ¢V], on peut déduire une dualité H*(X, X — D) ~ H,,_,(D),
ou n est la dimension complexe de X. Elle est compatible avec la dualité
de Poincaré dans X ; plus précisément, le diagramme

H*X, X —D)

12

H2n—2(D)
J* | Lig
H*(X) ~ Hj,_,(X)
commute, avec i, induit par l'inclusion i: D o X. (On le Véfiﬁe- en utilisant

la naturaljté du produit cap et le fait que la classe fondamentale [V, av]
de V provient de celle de X.) Comme la premiére classe de Chern est
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donnée par la dualité de Poincaré, si A€ %(D), on a ¢,(A) = (i,[A]),. On
voit ainsi que ¢;: #(D) - H*(X) se factorise par H*(X, X —D). On a donc
un carré commutatif |

#(D) 3 HYX,X-D)
[ Lj*
Div(X) 3. H*(X)

On peut maintenant définir A: H,(X, X —D) —» Z comme I’évaluation de
d{(Dy) pour notre D, € (D). On a bien que A[c] = ¢;(Dy) (c) = 1 (mod m)
et que A o j, = 0, car c’est ’évaluation de j*(d (D)) = ¢,(Do) = [n], or n est
nul sur les 2-cycles (par construction). Comme [c] € j, H,(X), on en tire que
m = 1, d’ou Tors(H,(X — D)) = 0, autrement dit H,(X — D) est libre. O

On peut maintenant établir le résultat principal de ce paragraphe.
THEOREME 6.3. Le groupe Br(C(t, .., t,) est divisible pour tout n.

- Démonstration. On fait une récurrence sur n et on montre que tous les
sommands directs %(K) intervenant dans la décomposition (5) de Br(C(t,, ..., t,))
sont divisibles.

- Soit donc K un corps de fonctions complexes. On peut trouver une
variété algébrique projective lisse X avec C(X) = K par le théoréme de
désingularisation de Hironaka et une sous-variété D € ¥"(X) telle que ¢,(Z(D))
= ¢,(Div(X)) en utilisant que le groupe H*(X, Z) est de type fini. Posons
X = X — D. Le groupe H,(X) est libre par la proposition 6.2.

On traite le groupe %(K) au moyen de la suite exacte du théoréme 4.1
appliqué a X

(16) 0 — HYX, Q/Z) — %(K) > Div(X) ®,Q/Z > H¥X, Q/Z) .

Par le choix de X, le groupe H'(X, Q/Z) = Hom(H,(X), Q/Z) est divisible.
Il suffit de montrer qu’il en est de méme de Imb. Soient 6 € Imb et | un
entier. Par le lemme 5.2, & est de la forme D ® 1/m avec D un diviseur
principal. On a donc ¢,(D) = 0 et [-(D®1/,,) = & avec D ® 1/, € Kerc
= Imb. - | W

On déduit immédiatement de la classification des groupes abéliens divi-
sibles le




GROUPE DE BRAUER DES CORPS DE FRACTIONS RATIONNELLES 139

COROLLAIRE 6.4. Quel que soit lentier n > 2, le groupe Br(C(ty, .., t,,))
est abstraitement isomorphe d une somme directe de copies de Q/Z indicées
par un ensemble équipotent a C.

On obtient donc que pour n > 2, les groupes Br(C(t,, ..., t,)) sont tous
isomorphes entre eux, ce qui est analogue au phénomeéne observé par Fein
et Schacher [7] dans le cas des corps de fractions rationnelles a coefficients
dans des corps globaux. "

La proposition 62 permet aussi d’exprimer Br(C(t,, .., t,)) en une seule
formule, peut-étre plus agréable, mais « moins canonique » que le reste de
notre calcul. Introduisons pour cela les notations Divy(X) pour le groupe des
diviseurs de X dont la premiére classe de Chern est nulle et £, pour
ensemble | 7= 2(C(¢y, ..., t;)) des polyndmes unitaires irréductibles a coeffi-
cients dans un corps C(t,, ... t;) pour 1 <i < n.

THEOREME 6.5.

(i) Pour tout f € P(Clty,...t)), il existe une variété algébrique X, lisse
avec H,(X,) libre et C(X,) isomorphe a lextension de C(t,, ..,t;)
obtenue en adjoignant une racine de f.

(1) On a un isomorphisme

BT(C(tl > oo tn)) = @feg»n{Hl(Xf» Q/Z) ® DiVO(Xf) ®zQ/Z;} .

Démonstration. Pour tout feZ,, on trouve X, de méme maniére
que X dans la deémonstration du théoréme 6.3. Comme H'(X,, Q/Z) est
divisible, la suite exacte (16) est scindée (mais pas de maniére canonique!),
ce qui donne l'isomorphisme annoncé. ]
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