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ou les homomorphismes verticaux sont induits par linclusion X < X, celui
de gauche étant surjectif. Comme X est compact, on peut appliquer le rai-
sonnement ci-dessus a ¢ On en déduit que ¢ et donc ¢ sont induits par la
premiere classe de Chern. H

§5. APPLICATION A LA CONSTRUCTION D’ALGEBRES SIMPLES

On a vu que pour un corf)s de fonctions complexes K et pour une
variété algébrique lisse X avec C(X ) = K, on a la suite exacte

0 — H'(X, Q/Z) > y(K) > Div(X) ®,Q/Z > H*(X, Q/Z)

Probléme 5.1. Soient f € #(C(t,, ..., t,)) un polyndme unitaire irréductible,
£ une racine de f engendrant I'extension K de C(t,, .., t,) et X une variété
algébrique lisse avec C(X) =

Etantdonné 6 € Div(X) ®ZQ/Z tel que ¢(0) = 0, on aimerait décrire tous les
relevés de & par b et les éléments de Br(C(ty, .., t,.)) leur correspondant
par 'i'somorphisme (5).

On va résoudre ce probléme en explicitant ’homomorphisme b (lemme 5.2
ci-dessous). Par contre, la méthode de calcul de a quon peut déduire de la
démonstration du théoréme 3.1 (point 4, avec A= (D) n’est pas trés explicite.
Nous comparerons les deux descriptions de Ima = Kerb en fin de paragraphe.

LEMME 5.2. Soit @ e x(K). Notons L = KX® et 0 le générateur de
Gal(L/K) tel que ©(0) = 1/me Q/Z. Soit xe K tel que L = K(I/x) et
() = e 2mm. W Alors b(9) = (k) ® 1/me Div(X) ®,Q/Z, o (k)

est le diviseur de «x.

Démonstration. D’apres la definition de b, il faut d’abord calculer 'image
de ¢ dans lim . 4, H'(X — D, Q/Z) par I'isomorphisme F du théoréme 3.1.

On va voir qu’on peut représenter F(¢p) dans H(X —D, Q/Z) pour D le
support du diviseur (x), puis on va exprimer son représentant m*(p) en terme
de k. Il faudra ensuite revenir a la démonstration du théoréme 4.1 pour
calculer b(o) a partir de m*(¢p).

1) Choix de D e ¥ (X): Notons (Y, V) la normalisation de X dans L et
D e ¥°(X) le support de (x). On montre que D contient la ramification de v.

Soit U un ouvert affine quelconque de X — D. Considérons la sous-
variété affine ¥V de U x C définie par

(14) - V=1{x0eUx C|L" = ).
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L’anneau C[V] = (C[U]) [T]AT™—x) est de type fini sur C[U] et C(V) = L.
De plus, V est lisse et donc normale. En effet, la premiére projection
p.:V — U est un revétement topologique non ramifié et U est lisse. Donc V
est analytiquement (et par conséquent algébriquement) lisse. Ceci montre que
(V, p;) est isomorphe a la normalisation de U dans L et que v est non
ramifié au-dessus de U. |

2) Calcul de m*(¢p) e HY(X —D, Q/Z): Notons W = X' — D,Z = Y — v (D)
et définissons comme en (8) n: H, (W) - Gal(L/K). On va calculer explici-
tement ©*(¢) € Hom(H (W), Q/Z).

Considérons le diagramme commutatif

A

| Z 5 C 3 ¢
(15) vl el 1
w 5 C s ¢
ouni:= \'VE e L. En utilisant Porientation naturelle de C, on identifie H,(C")

1
a—7Z < Q et on définit : H,(W) - Q/Z comme la composition
m

x . 1 1
H,(W)3 H,(C) = EZ—»;Z/Z c Q/Z.

On va voir que n*(p) = .

On a Kery = v, H,(Z). En effet, I'inclusion v, H,(Z) < Kery est claire,
car d’aprés (15), k(v H(Z)) = e (A H(Z2)) = mH,(C’) = Z. Réciproque-
ment, soit o € Ker, qu'on représente par un lacet [ en un point x € W,
et soit ye v }x). En remarquant que sur 'ouvert V de (14) A coincide
avec la seconde projection p,: V — C, on voit que dans (15), A est bijective
sur les fibres. Ainsi, tout comme le releve de x(l) en A(y) (par 'hypothese
o € Kery), le relevé de [ en y est un lacet et donc w € v, H(Z).

Comme Ker(n*(p)) = v,H,(Z) également, on sait déja que n*(p) et |

t . 1 A . *
coincident a un automorphisme de — Z/Z pres. Ils sont en fait égaux:
m

en effet, en choisissant o € H,(W) tel que Y(w) = 1/m, on va montrer que
n(w) = 0 € Gal(L/K), d’ou n*(p) = \, car ©(0) = 1/m. Soit | un lacet en x
représentant ® et soit ye v~ !(x). Si 'on note o l'automorphisme de Z
induit par o, Cest-a-dire I'image de o par la surjection H,(W)-» Auty(Z)
de (7), le relevé [ de [ joint y a o(y) et se projette sur A(J) allant de
My) & Mo(y)). D’autre part, MD) qui est le relevé de x(I) en A(y) a pour
extrémité e2™/™ . \(y). Ainsi, d’apres la définition de I'isomorphisme du corol-

’

:
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laire 2.3, m(w) = 0 € Gal(L/K), car m(®) envoie A sur Aec ' = LY
= O(N).

3) Caicul de b(o)e Div(X) ®,Q/Z: Par définition, b(e) est représenté par
BX(n*(0)) € Dacen)Q/Zes & Div(X) ®2Q/Z ou B* est le dual de 'homomor-
phisme B: Hy(D,) = H,(X —D) de (11). Rappelons aussi que B = -1, ou ¢
est Popérateur bord et t I'isomorphisme de Thom (10).

Soit A € (D), déterminant Iélément n, de Hy(D,). Comme g€ométri-
quement t(n,) peut étre représenté par un petit disque transverse a A, f(14)
= ¢(t(n,)) peut ['atre par un petit lacet [ autour de A, dont I'orientation
dépend des conventions. On les fixe maintenant de sorte que (/) repré-
sente ord (k) fois le générateur naturel de H,(C). En utilisant que n*(p) = ¥
et que e, est le dual de m,, on voit alors que B*n*(p) = Yo P =
X\ cemlorda(x)/m]ey. Donc b(p) = (x) ® 1/m e Div(X) &,Q/Z. U

Solution du probléme 5.1. Soit f e #(C(t, .., t,)) un polyndme unitaire
irréductible, £ une racine de f engendrant lextension K de C(ty, .., ¢,)
et X une varieté algébrique lisse avec C(X) = K. Soit § € Div(X) & ;Q/Z tel
que c(8) = 0 dans H?*(X, Q/Z). Alors toutes les classes d’algébres simples
centrales sur C(t,, .., t,.,) correspondant a des relevés de & dans y(K)
s’obtiennent de la fagon suivante:

Comme ¢(d) = 0, o est dans I'image de b. Par le lemme 5.2, il sécrit
donc (de plusieurs manieres!) 6 = (x) ® 1/m, ou (k) est le diviseur de k € K.
Choisissons une écriture 0 = (k) ® 1/m qu’on peut supposer réduite, i.e. telle
que st (k) = k-(x') et k|m, alors kK = 1. Ce choix détermine un relevé
o e y(K) de 8. En effet, L : = K(\’VE) est une extension cyclique de degré m
de K et si 0 est le générateur de Gal(L/K) tel que 6(\’7@) = ¢~ 2mim, \'7@, on
peut définir @: Gal(L/K) — Q/Z par ¢(8) = 1/m. Le lemme 5.2 montre que
b(e) = &. Par la remarque 4.2, il correspond a ¢ dans Br(C(ty, ..., 1,4 ) la
classe d’algebres simples cor(L(t,; )/K(t,+1), 6, t, 1 —&), ou cor: Br(K(t,, ;)
— Br(C(ty, .., t,+)) est la corestriction.

Remarque 5.3. Dans le cas ou X est projective, on peut voir direc-
tement que 6 € Div(X) ® ,Q/Z s’¢crit d = (x) ® 1/mlorsque ¢(8) = 0. En effet,
en écrivant & = D ® 1/m avec D € Div(X), on va montrer comment obtenir
un diviseur principal en ajoutant & D un diviseur multiple de m. Mais
faisons d’abord quelques rappels (voir [3, § 6; 117).

(1) On peut deéfinir ¢; comme '’homomorphisme de connexion ¢, : HY(X, 0*)
— H*(X, Z) de la suite exacte de cohomologie associée 4 la suite exacte
de l'exponentielle 0 = Z — ¢ — ¢0* - 1, ou €, resp. (0%, est le faisceau
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des germes de fonctions holomorphes, resp. holomorphes non nulles,
sur X.

(ii) Considérons p: H*(X,Z) - H* X, R) induit par linclusion Z = R et
notons HZ (X, R) le sous-espace de H3(X, R) des classes représentables

par des formes différentielles de type (1, 1) (via I'isomorphisme de de Rham
H*(X,R) ~ H%.(X)). On a alors I'égalité

cl(Hl(X, (9*)) =p 1(H(21, (X, R))
entre sous-groupes de H3(X, Z).

(i) Comme X est projective, H}(X, 0%*) est isomorphe au groupe des classes
de diviseurs de X. En faisant I’abus de noter (comme précédemment)
¢;: Div(X) » H*(X, Z), on déduit ¢,(Div(X)) = p~ Y(HE. 1, (X, R)) de (i).

Démonstration de la remarque 5.3.

1) Soit6 = D @ 1/m e Div(X) ® zQ/Z tel que ¢(8) = 0. On montre qu'on peut
supposer ¢,(D) = 0. ]

L’hypothése ¢(8) = 0 e H*(X, Q/Z) signifie que c,(D) est divisible par m
dans Hom(H ,(X), Z). Quitte a amplifier D ® 1/m (i.e. multiplier D et m par un
méme entier), on peut supposer c,(D) divisible par m dans H*(X, Z), car
Ker{H*(X, Z) - Hom(H ,(X), Z)} est de torsion. |

On a donc ¢((D) = m-m, pour n e H¥(X,Z). Daprés (i), p(n) =
1
- —+p(cy(D)) est dans l'espace H{ 4, (X, R) et il existe un diviseur D’ tel que
m «

n = ¢,(D’). On peut donc écrire & = (D—mD’) @ 1/m avec ¢;(D—mD’) = O.

2) Supposons d = D @ 1/mavecc (D) = 0.On veut modifier D en un diviseur
principal. D’apres (1), ¢; s’insere dans la suite exacte

0> H\X,Z) - HYX, 0) > H'(X, 0*) 5 H¥X, Z).

En utilisant (iii), on voit ainsi que le groupe des classes de diviseurs dont
la premiére classe de Chern est nulle est isomorphe au groupe H(X, O)/
H 1(X,Z) qui est divisible. Donc il existe un diviseur D’ tel que D est
linéairement équivalent a mD’; autrement dit D — mD’ est principal. O

Remarque 5.4. Le sous-groupe Ima = Kerb de y(K) est isomorphe au
groupe des classes de diviseurs de torsion.

En effet, si ¢ € Kerb, on peut regarder @ comme un relevée par b de
d = 0, provenant d’une écriture réduite 0 = (x) ® 1/m. On en déduit que

(k) = m+D pour un diviseur D dont la classe [D] est d’ordre m. On’

vérifie facilement que la correspondance ¢ — [D] donne l'isomorphisme
annoncé en remarquant que deux écritures réduites (x) @ 1/m et (x') ® 1/m’

~,
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déterminent le méme élément de y(K) si et seulement si m' = m et K’
differe de k par une puissance m-ieme.

On peut aussi faire le lien avec 'homomorphisme a. Soit ¥ € H (X, Q/Z).
On calcule a(y) € x(K) par la méthode de la démonstration du théoreme 3.1
(point 4). Si m est I'ordre de \, on construit un morphisme algébrique fini
v: Y - X qui est un revétement topologique non ramifi¢ (A= Q) a m feuillets.
Le corps L:= C(Y) est une extension cyclique de degrée m de K et

~ 1 o :
a(y) € x(K) provient d’un isomorphisme Gal(L/K) — - Z/Z induit par {. Si

k€ K est tel que L = K((}'/E), en utilisant cette fois que v est non ramifie,
on peut montrer que (k) = m+ D pour un diviseur D dont la classe [D] est
d’ordre m.

Remarquons pour terminer que cette construction ne fournit pas une
description des classes de diviseurs de torsion (qu’il serait certainement tres
intéressant d’avoir!).

§ 6. DIviSIBILITE DE Br(C(t, ..., t,))

Auslander et Brumer ont prouvé [1] que si F est un corps de frac-
tions rationnelles a une variable a coefficients dans un corps quelconque,
alors soit Br(F) contient un sous-groupe divisible non trivial, soit 2 - Br(F) = 0
(voir aussi [2]). On va montrer que pour tout n, Br(C(t,, .., t,)) est entié-
rement divisible. :

Pour tout corps de fonctions complexes K, on va établir que le groupe
X(K) est divisible en appliquant le théoréme 4.1 & un modéle particulier X
de K: on va choisir une variété algébrique lisse X avec C(X) = K telle
que H(X) soit libre. (Il serait aussi possible de raisonner directement sur
x(K) en séparant chaque composante p-primaire.)

Pour démontrer I'existence d’un modéle adéquat de K, on aura besoin
de deux propriétés élémentaires de la premiére classe de Chern

¢i: Div(X) - H*(X, Z)

que P'on établit immédiatement.

LEMME 6.1.  Soit X une variété algébrique projective complexe lisse. Alors
(i) limage c,(Div(X)) de ¢, contient le sous-groupe de torsion
Tors(H*(X, Z)) et (ii) on a une décomposition H,(X) = N@® L, oi N est
le sous-groupe de H,(X) annulé par I'évaluation de cl(Div(X)) et ou L
est libre.
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