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où les homomorphismes verticaux sont induits par l'inclusion Xcf, celui

de gauche étant surjectif. Comme X est compact, on peut appliquer le

raisonnement ci-dessus à c. On en déduit que c et donc c sont induits par la

première classe de Chern.

§ 5. Application à la construction d'algèbres simples

On a vu que pour un corps de fonctions complexes K et pour une

variété algébrique lisse X avec C(X) K, on a la suite exacte

0 -+ H\X,Q/Z) A X(K) i Div(A) ®zQ/Z ^ H\X, Q/Z).

Problème 5.1. Soient / g ^>{C(tl,tn)) un polynôme unitaire irréductible,
£ une racine de / engendrant l'extension K de C(t1,..., tn) et X une variété

algébrique lisse avec C(X) K.
Etant donné 8 g Div(2f) ® zQ/Z tel que c(8) 0, on aimerait décrire tous les

relevés de 8 par b et les éléments de Br(C(^,tn+1j) leur correspondant
par l'isomorphisme (5).

On va résoudre ce problème en explicitant l'homomorphisme b (lemme 5.2

ci-dessous). Par contre, la méthode de calcul de a qu'on peut déduire de la
démonstration du théorème 3.1 (point 4, avec A 0) n'est pas très explicite.
Nous comparerons les deux descriptions de Ima Kerb en fin de paragraphe.

Lemme 5.2. Soit (p g %(K). Notons L XKer<p et 0 le générateur de

Gal(L/K) tel que cp(0) 1 /m g Q/Z. Soit k e K tel que L K(^fk) et

ô(<yïc) e_2ni/m • ^k. Alors b(q>) (k) ® 1 /m g Div(X) ®zQ/Z, où (k)
est le diviseur de k.

Démonstration. D'après la définition de h, il faut d'abord calculer l'image
de cp dans limDenx)H1(X — D, Q/Z) par l'isomorphisme F du théorème 3.1.

On va voir qu'on peut représenter F{cp) dans H1(X — D, Q/Z) pour D le
support du diviseur (k), puis on va exprimer son représentant 7i*(cp) en terme
de k. Il faudra ensuite revenir à la démonstration du théorème 4.1 pour
calculer b(cp) à partir de rc*(<p).

1) Choix de Dsi^(X): Notons (7, v) la normalisation de X dans L et
D g-T(X) le support de (k). On montre que D contient la ramification de v.

Soit U un ouvert affine quelconque de X - D. Considérons la sous-
variété affine V de U x C définie par

(14) V {(x,QeU x C | k(x)}.
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1

L'anneau C[E] (C[L]) — k) est de type fini sur C[L] et C(V) L.

De plus, V est lisse et donc normale. En effet, la première projection
p1 : V -> U est un revêtement topologique non ramifié et U est lisse. Donc V

est analytiquement (et par conséquent algébriquement) lisse. Ceci montre que
(V, Pi) est isomorphe à la normalisation de U dans L et que v est non
ramifié au-dessus de U.

2) Calcul de 7t*(q>) g H1(X — D, Q/Z): Notons W X - D, Z Y - v"1^)
et définissons comme en (8) n: H^W) -» Ged(L/K). On va calculer explicitement

7c*(cp) g Hon\(H1(W)9 Q/Z).
Considérons le diagramme commutatif

Z ^ Ç

(15) v IeiJ

W-5>C'a Çm

où X : j/k e L.En utilisant l'orientation naturelle de C, on identifie H^C ')

à - Z c Q et on définit \|/: H^W) -> Q/Z comme la composition
m

H^W)^ H^C')-Z-*-Z/ZcQ/Z.mm
On va voir que 7i*(cp) — \|/.

On a Kerv|/ v^T/^Z). En effet, l'inclusion v^H^Z) a Kerv|/ est claire,

car d'après (15), k^v^H^Z)) eJX^H\(Z)) c: mif^C') Z. Réciproquement,

soit co g Ker\|/, qu'on représente par un lacet / en un point x e W,

et soit yGv-1(x). En remarquant que sur l'ouvert V de (14) X coïncide

avec la seconde projection p2: V -> C, on voit que dans (15), X est bijective

sur les fibres. Ainsi, tout comme le relevé de k(/) en A£y) (par l'hypothèse
co g Ker\J/), le relevé de / en y est un lacet et donc co g v^H^Z).

Comme Ker(7i*(cp)) v^H^Z) également, on sait déjà que 7c*(cp) et \|/

coïncident à un automorphisme de — Z/Z près. Ils sont en fait égaux :

m

en effet, en choisissant co g H^W) tel que \|/(co) 1/m, on va montrer que
7c(co) 0 g Gal(L/K\ d'où 7i*(cp) \|/, car cp(0) 1/m. Soit / un lacet en x

représentant co et soit j;gv-1(x). Si l'on note a l'automorphisme de Z
induit par co, c'est-à-dire l'image de co par la surjection HX(W) -» Aut^(Z)
de (7), le relevé T de / joint y à o(y) et se projette sur X(î) allant de

X(y) à ^(a(y)). D'autre part, X(î) qui est le relevé de k(/) en X(y) a pour
extrémité e2ni/m * L(y). Ainsi, d'après la définition de l'isomorphisme du corol-
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laire 2.3, ti(co) 0 e Gal(L/K), car 71(00) envoie sur GtJ 1 2n"m X.

0(X).

3) Calculde b(cp) e Div(X) ®zQ/Z : Par définition, cp) est représenté par
ß*(jt*(cp)) e ®As*(D)Q/ZeA Div(X) ®zQ/Z où ß* est le dual de l'homomor-

phisme ß: H0(Dr) -> H^X-D) de (11). Rappelons aussi que ß ° x, où

est l'opérateur bord et x l'isomorphisme de Thom (10).

Soit Àe^(D), déterminant l'élément pA de H0(Dr). Comme géométriquement

x(qA) peut être représenté par un petit disque transverse à A, ßCqJ

— c(x(qA)) peut l'être par un petit lacet / autour de À, dont l'orientation

dépend des conventions. On les fixe maintenant de sorte que k(/) représente

ordA(K) fois le générateur naturel de HX(C'). En utilisant que 7i*(cp) \|/

et que sA est le dual de r|A, on voit alors que ß*(7i*(cp)) \J/ ° ß

^Ae^(D)[ordA(K)/w]sA. Donc h(cp) (k) ® 1/m g Diw(X) ®zQ/Z.

Solution du problème 5.1. Soit / g £>(C{t1,..., rj) un polynôme unitaire
irréductible, q une racine de / engendrant l'extension K de C(t1,..., tn)

et X une variété algébrique lisse avec C(X) K. Soit ô g Div(X) ®ZQ/Z tel

que c(5) 0 dans H2(X, Q/Z). Alors toutes les classes d'algèbres simples
centrales sur C(tx,..., tn+ J correspondant à des relevés de 5 dans %(X)

s'obtiennent de la façon suivante :

Comme c(5) 0, 5 est dans l'image de b. Par le lemme 5.2, il s'écrit
donc (de plusieurs manières!) 5 (k) ® 1/m, où (k) est le diviseur de k g K.
Choisissons une écriture 5 (k) ® 1/m qu'on peut supposer réduite, i.e. telle

que si (k) k • (k') et k \ m, alors k 1. Ce choix détermine un relevé

cp g x(K) de 5. En effet, L : K(j/k) est une extension cyclique de degré m

de X et si 9 est le générateur de Gal(L/X) tel que 0(-^/k) e~2nilm • on
peut définir cp : Gal(L/X) Q/Z par cp(0) 1/m. Le lemme 5.2 montre que
b{cp) ô. Par la remarque X.2, il correspond à cp dans Br(C(C,..., tn + J) la
classe d'algèbres simples cor(L(tn + 1)/K{tn+1)9 0, fn+1-Ç), où cor : Br(X(tn +J)
-> Br(C(tx,..., tn + 1)) est la corestriction.

Remarque 5.3. Dans le cas où X est projective, on peut voir
directement que 5 g Div(X) (g>zQ/Z s'écrit 8 (k) (g) 1/m lorsque c(8) 0. En effet,
en écrivant 5 D ® 1/m avec D g Div(X), on va montrer comment obtenir
un diviseur principal en ajoutant à D un diviseur multiple de m. Mais
faisons d'abord quelques rappels (voir [3, § 6; 11]).

(i) On peut définir c1 comme l'homomorphisme de connexion c1 : H\X, (9*)
-* H2(X, Z) de la suite exacte de cohomologie associée à la suite exacte
de l'exponentielle 0 Z O (9* -> 1, où C, resp. (9*, est le faisceau
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des germes de fonctions holomorphes, resp. holomorphes non nulles,

sur X.

(ii) Considérons p : H2(X, Z) - H2(X, R) induit par l'inclusion Z c= R et

notons Hflt 1}(X, R) le sous-espace de H2(X, R) des classes représentables

par des formes différentielles de type (1, 1) (via l'isomorphisme de de Rham
H2(X, R) ~ H dR{X)). On a alors l'égalité

c^iXtÔ*)) p~ 1(H 2lf X)(X, R))

entre sous-groupes de H2(X, Z).

(iii) Comme X est projective, H1(X, (9*) est isomorphe au groupe des classes

de diviseurs de X. En faisant l'abus de noter (comme précédemment)

Ci : DivpO -> H2(X, Z), on déduit ^(DivpQ) P_1(^(2i, d(X, R)) de (ii).

Démonstration de la remarque 5.3.

1) Soit 8 D (g) 1/m g Div(AT) (g)zQ/Z tel que c(S) 0. On montre qu'on peut

supposer c^D) 0.

L'hypothèse c(8) 0 e H2(X, Q/Z) signifie que cx(D) est divisible par m

dans Horn(H2(X), Z). Quitte à amplifier D (g) 1/m (i.e. multiplier D et m par un
même entier), on peut supposer c^D) divisible par m dans H2(X, Z), car
Ker{H2(X, Z) -> Hom(f/2(X), Z)} est de torsion.

On a donc c^D) m • p, pour q g H2(X, Z). D'après (iii), p(q)

— • p(ci(D)) est dans l'espace Hfx 1}(X, R) et il existe un diviseur D' tel que
m

p c^D'). On peut donc écrire 5 (.D — mD') (g) 1/m avec c^D — mD') 0.

2) Supposons 8 D (g) 1/m avec c^D) 0. On veut modifier D en un diviseur

principal. D'après (i), cx s'insère dans la suite exacte

0 - H\X, Z).-> H\X,(9)-»H\X, &*) H2(X, Z).

En utilisant (iii), on voit ainsi que le groupe des classes de diviseurs dont
la première classe de Chern est nulle est isomorphe au groupe H1(X, G)/

H^(X, Z) qui est divisible. Donc il existe un diviseur D' tel que D est

linéairement équivalent à mD' ; autrement dit D — mD' est principal.

Remarque 5.4. Le sous-groupe Ima Kerh de %(K) est isomorphe au

groupe des classes de diviseurs de torsion.
En effet, si cp g Ker6, on peut regarder cp comme un relevé par b de

§ 0, provenant d'une écriture réduite 0 (k) (g) 1/m. On en déduit que

(k) m* D pour un diviseur D dont la classe [D] est d'ordre m. On

vérifie facilement que la correspondance cp i— [D] donne l'isomorphisme
annoncé en remarquant que deux écritures réduites (k) (g) 1/m et (k') (g) 1/m'
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déterminent le même élément de %(K) si et seulement si m' m et k'

diffère de k par une puissance m-ième.

On peut aussi faire le lien avec Fhomomorphisme a. Soit \|/ e H1(X, Q/Z).

On calcule u(i|/) e %(K) par la méthode de la démonstration du théorème 3.1

(point 4). Si m est l'ordre de i|/, on construit un morphisme algébrique fini

v: Y -> X qui est un revêtement topologique non ramifié (A 0) à m feuillets.

Le corps L: C(Y) est une extension cyclique de degré m de K et

a(\|/) g %(K) provient d'un isomorphisme Ga\(L/K) — Z/Z induit par \J/. Si
m

k e K est tel que L k), en utilisant cette fois que v est non ramifié,

on peut montrer que (k) m • D pour un diviseur D dont la classe [D] est

d'ordre m.

Remarquons pour terminer que cette construction ne fournit pas une

description des classes de diviseurs de torsion (qu'il serait certainement très

intéressant d'avoir!).

§ 6. Divisibilité de Br(C(f tn))

Auslander et Brumer ont prouvé [1] que si F est un corps de
fractions rationnelles à une variable à coefficients dans un corps quelconque,
alors soit Br(F) contient un sous-groupe divisible non trivial, soit 2 • Br(F) 0

(voir aussi [2]). On va montrer que pour tout n, Br(C(tj,..., tnj) est
entièrement divisible.

Pour tout corps de fonctions complexes K, on va établir que le groupe
%(K) est divisible en appliquant le théorème 4.1 à un modèle particulier X
de K : on va choisir une variété algébrique lisse X *

avec C(A) K telle

que H^X) soit libre. (Il serait aussi possible de raisonner directement sur
%(K) en séparant chaque composante p-primaire.)

Pour démontrer l'existence d'un modèle adéquat de K, on aura besoin
de deux propriétés élémentaires de la première classe de Chern

c : Diw(X) H2(X, Z)

que l'on établit immédiatement.

Lemme 6.1. Soit X une variété algébrique projective complexe lisse. Alors
(i) l'image c1(Div(2f)) de c1 contient le sous-groupe de torsion
Tots(H2(X, Z)) et (ii) on a une décomposition H2(X) N © L, où N est
le sous-groupe de H2(X) annulé par l'évaluation de cx(Div(A:)) et où L
est libre.
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