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§ 3. CaLcuL DE y(K)

Soit K un corps de fonctions complexes et soit K une cloture algébrique
de K. On choisit une variété algébrique lisse X avec corps des fonctions
C(X) ~ K. On veut exprimer y(K) = Hom/(Gal(K/K), Q/Z) en terme d’inva-
riants de X. ‘ :

Dans ce qui suit les variétés algébriques complexes, naturellement munies
de la topologie de .Zariski, seront parfois considérées d’'un point de vue
analytique et munies de la topologie transcendante; notamment lorsque I'on
parlera de leur homologie ou cohomologie. (Sauf indication contraire ces der-
niéres seront a coefficients entiers.) On utilisera que 'on peut trianguler les
variétés algebriques complexes [10].

Notons 77(X) I’ensemble des sous-variétés algébriques fermées pures de
codimension (complexe) 1 de X, que 'on ordonne par I'inclusion. Si D € ¥(X),
le groupe H'(X —D, Q/Z) s’identifie au groupe Hom(H,(X — D), Q/Z), et si
D,,D, e v (X), avec D; < D,, linclusion j: X — D, ¢ X — D, induit un
homomorphisme j*: H{(X—D,,Q/Z) - H (X —D,, Q/Z) qui est injectif.
(En effet, le complément de X — D, dans X — D, étant une sous-variété de
codimension réelle 2, j induit une surjection du groupe fondamental de
X — D, sur celui de X — D, et donc de H{(X—D,) sur H,(X—D,))
L’ensemble {H'(X —D, Q/Z)}, < y(x) forme avec ces homomorphismes un sys-
teme inductif.

On peut maintenant énoncer un premier résultat sur y(K).

THEOREME 3.1. Soit K un corps de fonctions complexes et soit X une
variété algébrique lisse avec C(X) ~ K. On a un isomorphisme

A(K) ~ lim 5.y, H' (X —D, Q/Z)
qui ne dépend que du choix de I isomorphisme' C(X) ~ K.

Préliminaires a la démonstration. Soient X une variété algébrique complexe
lisse et L une extension finie de K : = C(X). Notons (Y, v) la normalisation
de X dans L. On dira qu’une sous-variété fermée A de X contient la
ramification de v si — pour la topologie transcendante — v est un revé-
tement non ramifié 4 [L: K] feuillets au-dessus de W : = X — A et on notera
AutpP(Z) ou Auty(Z) le groupe des automorphismes de ce revétement, ou
on a pos¢ Z = Y — v (A). D’aprés [18, Chap. IL, n° 5.3], on peut trouver
une variéte A € ¥'(X) contenant la ramification de v. (En fait, par le théoréme
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de pureté de Zariski [20], si la variété de ramification est non vide, elle est
pure de codimension 1.) :

On a vu au corollaire 2.3 que Aut(L/K) ~ Aut¥%Y). Ces groupes sont
reliés au groupe AutiyP(Z) de la maniére suivante:

LEMME 3.2. Soient (Y,V) la normalisation d’une variété lisse X dans
une extension finie L de K:= CX) et Ae¥(X) une sous-variété
contenant la ramificationde v. Posons W = X — A et Z =Y — v Y(A).

(i) La restriction des automorphismes @ Z est une injection Aut¥¥Y)
& AutPP(2).
(1)) Si Pextension L/K est galoisienne, cette injection est un isomorphisme
et le revétement v:Z — W est galoisien.
(i11) Si Pextension L/K est abélienne, on a un isomorphisme canonique
Gal(L/K) = AutWP(Z) donné par (ii) et le corollaire 2.3.
Démonstration.
(1) Evident.

(i) On compare les ordres de ces groupes finis: | AutwP(Z)| est inférieur
ou égal au nombre de feuillets du revétement qui est [L: K]. Comme
d’autre part [L: K] = | Gal(L/K)| = | Aut¥¥(Y)| < | AutWP(Z) |, on a
égalité et le revétement v est galoisien.

(iii) Si I'on choisit deux K-isomorphismes C(Y) ~ L, les applications induites
Gal(L/K) ~ AutyP(Z) different par un automorphisme intérieur. ]

On rappelle encore un théoréme plus profond dont on aura besoin

(voir [8, App. B, th. 3.2; 15, th. 5.1; 17]). '

THEOREME D’EXISTENCE DE RIEMANN GENERALISE. Soit W une variété
algébrique complexe normale et soit p:Z — W un revétement non ramifié fini
pour la topologie transcendante. Alors on peut munir Z dune structure de
variété algébrique normale de sorte que p soit un morphisme algébrique fini.

Démonstration du théoréeme 3.1. On fixe un isomorphisme permettant
d’identifier C(X) a K.

1) Consiruction de l'isomorphisme : On veut définir une application
F:y(K) - lim p . yx,H' (X —D, Q/Z).

Soit ¢ € x(K) un- homomorphisme de Gal(K/K) dans Q/Z d’ordre fini m.
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Notons (Y, v)la normalisationde X dans L : = K Kero et également © : Gal(L/K)
¢ Q/Z 'homomorphisme induit par ¢. Soit A € ¥'(X) contenant la rami-
fication de v et posons W = X — A, Z =Y — v {(A). Comme L/K est
une extension abélienne (cyclique de degré m), par le lemme 3.2, le reve-
tement v: Z — W est galoisien et on a lidentification Auty(Z) = Gal(L/K).

Comme X et Y, W =X —AetZ =Y — v !(A) sont algebriquement
irréductibles et donc connexes pour la topologie transcendante [18, Chap. VII,
§ 2]. La suite exacte usuelle

v

(6) I = m,(2) 3 (W) - Autg(Z) - 0
donne une suite exacte en homologie
7 H\(Z) 3 Hy(W) > Auty(Z) - 0.

Avec l'identification Auty(Z) = Gal(L/K) du lemme 3.2, on obtient une sur-
jection naturelle

(8) n: H,(W) - Gal(L/K) .

En notant n*: Hom(Gal(L/K), Q/Z) — Hom(H (W), Q/Z) 'application duale,
on peut considérer n*(p) e Hom(H (W), Q/Z) = H'(W, Q/Z) et définir F(op)
comme son image dans lim .y, H (X —D, Q/Z).

I faut vérifier que F(p) est indépendant du choix de A. Soit donc
A"e ¥ (X) une autre sous-variete de X contenant la ramification de v.
Quitte a remplacer A" par A’ U A, on peut supposer A < A'. On définit
comme plus haut W' = X — A’ et n': H,(W’') - Gal(L/K). Par fonctorialité
de la suite exacte (6) [4, p. 12], le carré '

H, (W) 5 Gal(L/K)

! |
H,(W) 5 Gal(L/K)

est commutatif. Ceci montre que 7' *(¢) et n*(¢) ont la méme image dans
lim p. y o H'(X —D, Q/Z).

Remarqye. On obtient le méme élément F(op) si on fait cette construction
a partir de n’importe quelle extension abélienne finie L' de K contenant
L = KKere, |

En effet, si (Y, p) est la normalisation de Y dans L' et si V. = voy,
alors (Y', V') est la normalisation de X dans L'. Quitte a agrandir A, on
peut supposer quil contient également la ramification de V' et définir
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Z' = Y — v "1(A). La compatibilité évidente entre la suite exacte (7) et celle
correspondant & V' s’exprime par le diagramme commutatif
H\(Z') 3 Hy(W) ~ Auty(Z)
My | I L by

H\(Z) 3 H(W) - Auty(2)

ou lon vérifie que I'application p, de droite est la projection sur Z des
automorphismes de Z'.
En utilisant le corollaire 2.4, on en déduit la commutativité du carré

H, (W) 5 Gal(L'/K)

I l
H,(W) 5 GalL/K),

d’ou 7' *() = n¥(9).

2) F est un homomorphisme: Soient @,, ¢, € x(K). Notons @5 = ¢@; + ¢,
et considérons le corps fixe L de K par Kergp, n Kerp,, qui est une
extension abélienne finie de K contenant les corps fixes de K par Kero,,
Kergp, et Kerp,. Par la remarque qui précede, on peut calculer les images
- par F de @,, @, et @5 en utilisant ’extension L/K. On construit donc a
partir de L la variété W et 'homomorphisme n: H,(W) - Gal(L/K) de (8).
Dans Hom(Gal(L/K), Q/Z), on a toujours que @3 = @; + ¢,, puisque
linclusion L < K induit une injection Hom(Gal(L/K), Q/Z) < x(K). Ainsi
(@3) = n¥(@y) + t*(¢,) dans H (W, Q/Z) et F(9;) = F(o;) + F(p,) dans
lim DeV(X)Hl(X"D, Q/2).

3) F est injective: Soit ¢ € x(K) tel que F(¢) = 0. Comme precedemment,
on construit un homomorphisme n: H (W) - Gal(L/K). Par définition, F(¢)
est 'image de m*(¢p) par linjection H' (W, Q/Z) ¢ lim p .y xH' (X —D, Q/Z).

Si donc F(p) = 0, on a n*(p) = 0 et éomme T est surjective, ¢ = 0.
4) F est surjective: Soit { € lim ;4 x,H'(X — D, Q/Z). Choisissons A € 7(X)

assez grand et, pour‘W := X — A, un représentant ' € H w, Q/Z) de V.
L’ordre m de \': H (W) - Q/Z est fini, car H,(W) est de génération finie. ]

En effet, d’aprés [13], X se plonge comme ouvert dans une variété X
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compléte, Cest-a-dire compacte pour la topologie transcendante. En trian-
gulant, on peut trouver un Voisinage tubulaire U du fermé T : = (X —)f ) U A,
desorteque W = X — A = X — I se rétracte par déformations sur X — U.
Par compacité, I'homologie de X — U (et donc celle de W) est de type fini
[5, Chap. VIII, cor. 1.4].

Soit x € W. Notons p: n,(W, x) - H,(W) la projection canonique et N
le sous-groupe Ker(\/'=p) invariant d’indice m dans n,(W, x). A N correspond
un revétement topologique galoisien non ramifié a m feuillets p: Z - W,
tel que p,m,(Z,y) = N pour tout yep '(x). Remarquons que le groupe
Auty(Z) =~ (W, x)/p,n.(Z, y) est abélien, car par passage au quotient ' o p
devient une injection {": Auty{Z) o Q/Z.

C’est maintenant qu’on utilise le théoréme d’existence de Riemann géné-
ralisé pour savoir qu’on peut munir Z d’une structure de variété algébrique
normale de sorte que p soit un morphisme algébrique fini. Notons L = C(Z).
La paire (Z, p) est la normalisation de W dans L, de sorte que, si (Y, V)
est celle de X dans L, par unicité, on peut supposer Z < Y et p = v| 5.

On veut montrer que l'extension L/K est galoisienne. Pour cela, on
choisit une extension galoisienne L'/K contenant L et on considére la nor-
malisation (Y',p) de Y dans L. Quitte a agrandir A, on peut supposer
quil contient la ramification de v := vop Notons Z' = Y’ — v “1(A).
En utilisant les suites (6) correspondant a v, v’ et p, on obtient la suite exacte

1 - AutZ) - Auty(Z)) - Auty(Z) — 1.

Par Iisomorphisme du lemme 3.2, linclusion de Auty(Z’) dans Autu(Z)
correspond a celle de Gal(L'/L) dans Gal(L'//K), ce qui montre que ce
dernier sous-groupe est invariant et que I’extension L/K est galoisienne.
Soit L, l'unique sous-corps de K isomorphe a L. On a les identi-
fications Gal(Lo/K) = Gal(L/K) = Auty(Z), la premiére étant induite par
n'importe quel isomorphisme L, ~ L, mais n’en dépendant pas puisque les
groupes sont abéliens. On peut donc définir ¢ € ¥(K) comme la composition
de la projection Gal(K/K) —» Gal(Lo/K) suivie de {": Auty(Z) — Q/Z. Par
construction, F(p) = V. n

§ 4. INTERPRETATION DE y(K)

Soit K un corps de fonctions complexes et soit X une variété algébrique
lisse avec corps des fonctions C(X) ~ K. A partir du calcul du §3, on
interprete x(K) en terme d’invariants usuels de X : le groupe des diviseurs
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