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sentant () € Br(K(¢)). Choisissons une racine &€ K de f et considérons
le corps fixe L de K par Kerg qui est une extension cyclique de K.
Si m est son degré, notons O le générateur de G := Gal(L/K,) tel que
¢(0) = 1/m dans Q/Z.

L’image de ¢ dans H¥G, L(t)') = H¥Gy,, K(t)") est représentée par le
cocycle

t —&; st i +j=2m,
(0, §)) = - 0<Li, j<m).
1 st i+j<m.

1l lui correspond dans Br(L(t)/K (t)) = Br(K(z)) la classe du produit croisé
cyclique A4 := (L(t)/KA1), 0, t—E;). On a alors o) = cor([A]), ou cor:
Br(K (1)) = Br(K(1)) est la corestriction.

Mentionnons qu’il existe des formules explicites pour calculer la cores-
triction d’une algébre simple [16], si bien que u@) peut étre exprimeé
explicitement.

Conséquence: Le théoréme 1.1 donne une méthode pour calculer le
groupe de Brauer des corps de fractions rationnelles a coefficients complexes.
Sachant que Br(C) = 0 et Br(C(t)) = O (par le théoréme de Tsen), on peut
faire une récurrence sur n:

(5) Br(C(tl 5 wowy tn-f- 1)) = Br(C(tl 3 =eey tn)) @ {@feg(C(tl, - tn))X(C(tl 9 iy tn)f)} »

Tout le probléme est de calculer les groupes y(K) pour les corps de fonc-
tions complexes a n variables K. On va d’abord faire un rappel de géometrie
algébrique. |

§ 2. LA NORMALISATION

Dans tout ce paragraphe, on ne fait que rappeler une construction tres
standard de géométrie algébrique: la normalisation, car elle joue un role
essentiel dans la démonstration du théoréme 3.1.

Toutes les variétés considérées dans ce paragraphe seront algébriques
irréductibles (réduites) et le corps de base k algébriquement clos. On notera
k(X) le corps des fonctions rationnelles sur une variété X, qui est égal au

corps des fractions de 'anneau k[U] des fonctions régulieres sur U, pour
tout ouvert affine U de X.
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Rappelons qu’un morphisme p: Y — X entre deux variétés est dit fini
sl satisfait les conditions équivalentes (voir [12, Chap. III, § 1, prop. 5])

(i) Pour tout ouvert affine U de X, p~'(U) est affine et l'application
p*: k[U] — k[pn~*(U)] induite par p fait de k[~ }(U)] un module de type
fini sur k[U].

(ii) I existe un recouvrement affine {U,};.; de X tel que pour tout i€ I,
p~ (U, est affine et p* fait de k[p~}(U,)] un module de type fini
sur k[U;].

Rappelons aussi qu'une variété Y est dite normale si pour tout ouvert
affine ¥V de Y, lanneau k[V] est intégralement clos. On utilisera qu’une
variété lisse est normale.

THEOREME 2.1. Soit X une variété et L une extension finie de k(X).
Alors il existe une variété normale Y et un morphisme fini v:Y - X
tels que k(Y) est isomorphe d L (notons t:k(Y)> L) et que 7To v*
est linclusion donnée de k(X) dans L. De plus, si (Y,v) et (Y,V)
satisfont ces conditions, alors il existe un isomorphisme o:Y > Y' tel que
Veo = . ‘

Déﬁnition : La paire (Y,v) du théoreme est appelée la normalisation de X
dans L.

Démonstration du théoreme 2.1.

1) Unicité: Soit (Y, v) une normalisation de X dans L. Si U < X est un
ouvert affine, comme v est fini, V := v !(U) est affine et k[V] est entier
sur kfU]. Comme k[ V] est aussi intégralement clos par normalité de Y,
c’est la cloture intégrale de k[ U] dans k(Y).

Soit (Y’,V) une autre normalisation de X dans L et soit t:k(Y")
" — k(Y) un isomorphisme qui est Iidentité sur k(X). Soit {U};., un recou-
vrement affine de X. Pour iel, notons V; = v }(U) et Vi = v~ }U,.
Comme k[V;] et k[V{] sont les clotures intégrales de k[U;] dans k(Y) et
k(Y"), ©k[V'{]) = k[V{] et T induit un isomorphisme o;: V; - V.

On montre que ces isomorphismes ©; sont compatibles. Soient i,j € I.
Comme lintersection de deux ouverts affines est affine [12, Chap. II, §6,
prop. 6], Vin V) est affine et les restrictions de o; et o; de V.nV;
dans V;n V' coincident, car elles sont toutes deux induites par la res-
triction de © & k[V;n V]. Donc les isomorphismes o; sont compatibles
et ils définissent o: Y = Y’. Par construction, V"o o = v.
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2) Existence: Soit {U;};; un recouvrement affine fini de X. Pour iel,
notons B, la cloture intégrale de k[U,] dans L. Comme k[U;] est une
algébre de type fini sur k, B; est un module de type fini sur k[U,]
(voir [21, Chap. V, §4, th. 9]) et une algébre de type fini sur k. Notons

= Specm(B,) et v;: V. —» U, le morphisme fini défini par l'inclusion k[ U]

1

= k[V]. |
Montrons qu’on peut recoller les ¥, pour construire la normalisation.
Soient i,j e I. Comme V};:= v; 1(Uir\Uj) est normal et v;|y  fini (ce sont

des propriétés locales), Ia paire (V};, v; | y,,) est une normalisation de U; n U;
dans L. Il en est de méme de (V};,v;|y,), donc par unicité de la nor-
malisation, ces paires sont isomorphes. On peut ainsi recoller les V; en une
prévariété Y et définir v: Y — X coincidant avec v; sur chaque V;.

Pour que Y soit une variété, il faut que la diagonale soit fermée dans
Y x Y, ce qu'on va vérifier sur le recouvrement {V; x V;}; ;.. Pour tout
i,j €1, la diagonale A de V; x V; est irréductible, car isomorphe a ¥, n V.

Comme X est une varieté, la diagonale 6 de U; x U; est fermée et donc

(v, x v;)”1(3) est un fermé de V; X V; contenant A. On montre que A en est
en fait une composante irréductible.

En effet, si £ = A est la composante irréductible de (v;xv,)"1(8) qui
contient A, on a le diagramme commutatif

VinV, 3%
vl ] vixv

Uint—d+8

ol D et d sont les isomorphismes sur les diagonales. Comme (VixV;) oD
= dov est fini, D est fini et I'image de D est %, car tout morphisme fini
dominant est surjectif [18, Chap. I, th. 54]. Ona donc A = £ = A. ]

PROPOSITION 2.2. Soient p un automorphisme d’une variété X et
(Y,v) la normalisation de X dans une extension finie de k(X). Alors
- l'application €: o+ o* est une bijection entre Pensemble des automorphismes

de Y projetés sur p par v et celui des automorphlsmes de k(Y) dont
la restriction @ k(X) est p*.

Démonstration.

1) Injectivité de e: Soient o, e Aut(Y) tels que c* = 1* et soit yeY.
On a forcément o(y) = 1(y). En effet, si o(y) # 1(y), on peut trouver un
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ouvert affine V de Y les contenant — en prenant Iimage réciproque par v
d’un ouvert affine de X comntenant v(o(y)) = v(t(y)) — ainsi qu'une fonction
A e k[V] c k(Y) telle que AMo(y)) # AMt(y)), ce qui contredit o* = t*.

2) Surjectivité de & Soit T € Aut(k(Y)) tel que T| 4y = p*. On procéde comme
dans la démonstration du théoréme 2.1 (unicité) pour construire o € Aut(Y)
tel que o* = 1.

Soit {U;};c; un recouvrefnept affine de X tel que p(U;) = U,(i). Pour -
iel, notons V; = v 1(U,). Comme k[V;] est la cloture intégrale de k[U.]

dans k(Y) et que T|yy; = p* on a r(k[V,(,)]) k[V] et t induit un
1somorphlsme c;i: V.= V- Ces morphismes sont compatibles, car pour tout
i,j€l, les restrictions de o; et 6; a V;n V; sont induites par 7. On peut
donc définir o € Aut(Y) coincidant avec o; sur V; pour tout i € I. Par cons-
truction, o est projeté sur p par v et 6* = 1. n

Etant donné un morphisme p: Y — X, on notera Aut¥%Y) le groupe des

automorphismes de Y se projetant sur l'identit¢é de X par p et si L/K
est une extension de corps, Aut(L/K) sera le groupe des automorphismes de L
qui sont l'identité sur K.

On déduit immédiatement de la proposition 2.2

COROLLAIRE 2.3. Soit (Y,v) la normalisation d’'une variété X dans une
extension finie de k(X). Alors o (c*)"! est un isomorphisme de
Aut¥¥(Y) sur Aut(k(Y)/k(X)).

- COROLLAIRE 2.4. Soit X une variété et soient L'/L/K des extensions
galoisiennes finies de K := k(X). Si (Y,v) et (Y, pn) sont les norma-
lisations de X dans L et de Y dans L', alors (Y',vop) est la nor-
malisation de X dans L' et on a le diagramme commutatif

1 - Gal(L'/L) - Gal(L'/K) - Gal(L/K) — 1
L = « |

1 - Auty¥(Y) > Aut$¥Y’) X Aut¥yy) - 1

ou les isomorphismes verticaux sont ceux du corollaire 2.3 et ou p, est la
projection sur 'Y des automorphismes de Y'. | n
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