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sentant i(cp) e Br(K(t)). Choisissons une racine s de et considérons

le corps fixe L de Kpar Kercp qui est une extension cyclique de Kf.
Si m est son degré, notons 0 le générateur de G'f:= Ga tel que

cp(0) 1 /mdans Q/Z.
L'image de cp dans H2{G'f, Ut)') H2(Gf, K(tf) est représentée par le

cocycle

Ît - t,f si + >
(0

1 si i + j < m

Il lui correspond dans Br(L(t)/Kj{t)) c B^K/t)) la classe du produit croisé

cyclique A : (L(t)/Kj{t), 0, t — £>f). On a alors i(cp) cor([A]), où cor:

Br{Kj{tj) - Br(K(tj) est la corestriction.

Mentionnons qu'il existe des formules explicites pour calculer la

corestriction d'une algèbre simple [16], si bien que i(cp) peut être exprimé

explicitement.

Conséquence: Le théorème 1.1 donne une méthode pour calculer le

groupe de Brauer des corps de fractions rationnelles à coefficients complexes.

Sachant que Br(C) 0 et Br(C(0) 0 (par le théorème de Tsen), on peut

faire une récurrence sur n :

(5) Br(C(t1,..., £„+i)) Br(C(t!,..., £„)) © {©/e^>(c(fi,fn»x(^(^i **** O/)} •

Tout le problème est de calculer les groupes %(K) pour les corps de fonctions

complexes à n variables K. On va d'abord faire un rappel de géométrie

algébrique.

§ 2. La normalisation

Dans tout ce paragraphe, on ne fait que rappeler une construction très

standard de géométrie algébrique: la normalisation, car elle joue un rôle
essentiel dans la démonstration du théorème 3.1.

Toutes les variétés considérées dans ce paragraphe seront algébriques
irréductibles (réduites) et le corps de base k algébriquement clos. On notera
k(X) le corps des fonctions rationnelles sur une variété X, qui est égal au

corps des fractions de l'anneau /c[I7] des fonctions régulières sur U, pour
tout ouvert affine U de X.
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Rappelons qu'un morphisme p : Y -> X entre deux variétés est dit fini
s'il satisfait les conditions équivalentes (voir [12, Chap. III, § 1, prop. 5])

(i) Pour tout ouvert affine U de X, p_1(L) est affine et l'application
p* : k\U~\ - k[p-1(*7)] induite par p fait de fc[p-1(L0] un module de type
fini sur k\U~\.

(ii) Il existe un recouvrement affine {Cjig/ de X tel que pour tout iel,
p-1^) est affine et p* fait de fc[p~1(t/i)] un module de type fini
sur

Rappelons aussi qu'une variété Y est dite normale si pour tout ouvert
affine V de Y, l'anneau /c[F] est intégralement clos. On utilisera qu'une
variété lisse est normale.

Théorème 2.1. Soit X une variété et L une extension finie de k(X).
Alors il existe une variété normale Y et un morphisme fini v: Y - X
tels que k(Y) est isomorphe à L (notons x: k(Y) L) et que x ° v*
est rinclusion donnée de k(X) dans L. De plus, si (Y, v) et (Y', V)
satisfont ces conditions, alors il existe un isomorphisme <j:Y^>Y' tel que
v' ° a v.

Définition: La paire (Y, v) du théorème est appelée la normalisation de X
dans L.

Démonstration du théorème 2.1.

1) Unicité: Soit (Y, v) une normalisation de X dans L. Si U a X est un
ouvert affine, comme v est fini, V := v-1(I7) est affine et k[y~\ est entier

sur k£Ul Comme /c[L] est aussi intégralement clos par normalité de Y,

c'est la clôture intégrale de /c[l/] dans k(Y).

Soit (Y', v') une autre normalisation de X dans L et soit x:k(Yf)
-> k(Y) un isomorphisme qui est l'identité sur k(X). Soit {Ui}ieI un
recouvrement affine de X. Pour iel, notons Vt v-1^) et V\ v'-1^).
Comme k[_V(\ et k[_V'[\ sont les clôtures intégrales de k[U(\ dans k(Y) et

k(Y'), x(/c[L-]) k[V(\ et x induit un isomorphisme af: Vt -* V\.
On montre que ces isomorphismes ct£ sont compatibles. Soient i, j e I.

Comme l'intersection de deux ouverts affines est affine [12, Chap. II, § 6,

prop. 6Jj V i n V j est affine et les restrictions de et CTj de VinVj
dans V\ n V) coïncident, car elles sont toutes deux induites par la
restriction de x à k\y \ n V'f\. Donc les isomorphismes af sont compatibles
et ils définissent ct : Y ^ Y'. Par construction, v' ° ct v.



GROUPE DE BRAUER DES CORPS DE FRACTIONS RATIONNELLES 121

2) Existence: Soit {Ui}ieI un recouvrement affine fini de X. Pour i e I,
notons Bt la clôture intégrale de /c[£/J dans L. Comme k\_U[\ est une

algèbre de type fini sur k, Bt est un module de type fini sur k^UJ
(voir [21, Chap. V, §4, th. 9]) et une algèbre de type fini sur k. Notons
Vi Specm(Bi) et vf: Vt -> Ut le morphisme fini défini par l'inclusion k\_U[\

czb, km
Montrons qu'on peut recoller les Vt pour construire la normalisation.

Soient ij e I. Comme : v î 1{UiC\Uj) est normal et vf |

Vij fini (ce sont
des propriétés locales), la paire (Vij9 vf \ v est une normalisation de t/£ n Uj
dans L. Il en est de même de (VjifVj\Vjifi donc par unicité de la
normalisation, ces paires sont isomorphes. On peut ainsi recoller les Vt en une

prévariété 7 et définir v : Y -> X coïncidant avec vt sur chaque Vi.

Pour que Y soit une variété, il faut que la diagonale soit fermée dans

Y x Y, ce qu'on va vérifier sur le recouvrement {Vt x VJ)UjeI. Pour tout
i, j e /, la diagonale À de Vt x Vj est irréductible, car isomorphe à Vt n Vj.
Comme X est une variété, la diagonale ô de x Uj est fermée et donc

(vfx vJ-)~1(5) est un fermé de Vt x Vj contenant A. On montre que A en est

en fait une composante irréductible.
En effet, si £ Ä est la composante irréductible de (vf x v</)~1(8) qui

contient A, on a le diagramme commutatif

VtnVj iï
VI - i Vi X Vj

UtnUj-iS
où D et d sont les isomorphismes sur les diagonales. Comme (vf x v,) ° D

d o v est fini, D est fini et l'image de D est L, car tout morphisme fini
dominant est surjectif [18, Chap. I, th. 5.4]. On a donc A Z Ä.

Proposition 2.2. Soient p un automorphisme d'une variété X et
(7, v) la normalisation de X dans une extension finie de k{X). Alors
l application e: a i—> a* est une bijection entre l'ensemble des automorphismes
de Y projetés sur p par v et celui des automorphismes de k(Y) dont
la restriction à k(X) est p*.

Démonstration-

1) Injectivité de e: Soient a, xeAut(y) tels que a* x* et soit y e Y.
On a forcément a(y) x(y). En effet, si a(y) ^ x(y), on peut trouver un
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ouvert affine V de Y les contenant — en prenant l'image réciproque par v
d'un ouvert affine de X contenant v(cr(y)) v(x(y)) — ainsi qu'une fonction
Xe k[V] cz k(Y) telle que U,<j(y)) ^ ^(t(.y)), ce qui contredit a* x*.

2) Surjectivité de s: Soit x g Aut(k(Y)) tel que x |

k(X) p*. On procède comme
dans la démonstration du théorème 2.1 (unicité) pour construire a g Aut(7)
tel que a* x.

Soit {Ui}ieI un recouvrement affine de X tel que p(£/f) Ur{i). Pour

iel, notons Vt v-1^). Comme k[V[\ est la clôture intégrale de /c[CJ
dans k(Y) et que x|fc[l/f] p*, on a x(/c[l^(i)]) k[VJ et x induit un

isomorphisme Ti -»• vr(i)- Ces morphismes sont compatibles, car pour tout
U j e /, les restrictions de et à ^ n Vj sont induites par x. On peut
donc définir CTGAut(y) coïncidant avec sur Vt pour tout iel. Par
construction, a est projeté sur p par v et a* x.

Etant donné un morphisme p: Y - X, on notera Aut^lg(7) le groupe des

automorphismes de Y se projetant sur l'identité de X par p et si L/K
est une extension de corps, Aut(L/K) sera le groupe des automorphismes de L
qui sont l'identité sur K.

On déduit immédiatement de la proposition 2.2

Corollaire 2.3. Soit (Y, v) la normalisation d'une variété X dans une

extension finie de k(X). Alors cri—(a*)-1 est un isomorphisme de

Aut|lg(Y) sur Aut(k(Y)/k(X)).

Corollaire 2.4. Soit X une variété et soient L'/L/K des extensions

galoisiennes finies de K : k(X). Si (Y, v) et (Y', p) sont les

normalisations de X dans L et de Y dans L', alors (Y', vop) est la
normalisation de X dans L' et on a le diagramme commutatif

1 -> Gal(L'/L) -> Gai(L/K) - Gal(L/K) - 1

«i
1 -+ Aut^lg(r)-> Aut|Ig(r) ^ Aut |lg(Y) - 1

où les isomorphismes verticaux sont ceux du corollaire 2.3 et où p+ est la

projection sur Y des automorphismes deY


	§2. La normalisation

