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116 P. A. J. STEINER

où / parcourt l'ensemble des polynômes unitaires irréductibles à coefficients
dans C(tx,..., tt) pour 1 ^ i < n. On établit enfin que Br(C(^,tn)) est

divisible et que, pour n ^ 2, sa classe d'isomorphie est indépendante de n.

Les deux premiers paragraphes sont consacrés aux rappels du théorème

d'Auslander-Brumer-Faddeev (qui fournit la décomposition de Br(C(f!tn))
en somme directe) et de la normalisation en géométrie algébrique. Dans les

paragraphes 3 et 4, on dérive la suite exacte qui détermine le groupe %(K).

On en tire au paragraphe 5 un procédé pour construire « explicitement »

des algèbres simples, puis on termine en établissant au paragraphe 6 la
formule finale pour Br(C(ti,..., tn)) et en montrant que ce groupe est

divisible.
Je tiens à remercier toutes les personnes qui m'ont aidé à accomplir ce

travail, notamment M. Kervaire qui m'en a suggéré le thème.

§ 1. Théorème d'Auslander-Brumer-Faddeev

Ce théorème calcule la structure du groupe de Brauer d'un corps de

fractions rationnelles à une variable sur un corps quelconque. En se

restreignant à la caractéristique zéro pour simplifier, on va rappeler (d'après [7])
comment il découle d'un résultat classique de Tsen.

Si K est un corps, on notera K' son groupe multiplicatif, K)
l'ensemble des polynômes en T unitaires irréductibles à coefficients dans K et

si / g ^(K), Kf sera l'extension K[T~\/(f(T)) de K. Si K est une clôture

algébrique de K, on considérera le groupe %k(K) des homomorphismes
Gal(K/K) - Q/Z d'ordre fini (le groupe des homomorphismes continus pour
les topologies discrète de Q/Z et naturelle de Gal(K/K)). Comme Q/Z est

abélien, si K est une autre clôture algébrique de K, %^{K) est canoniquement
isomorphe à x^(^) et sera not^ simplement %(K).

Théorème 1.1 (Auslander-Brumer [1], Faddeev [6]). Soit K un corps
de caractéristique zéro. On a un isomorphisme naturel

Br(K(t)) Br(K) © {®fenK)%(Kf)}

Démonstration. Tout repose sur l'interprétation du groupe de Brauer

comme groupe de cohomologie galoisienne. Pour cette interprétation, ainsi

que pour la notion de produit croisé, on pourra se reporter à [14].

1) Construction de /'isomorphisme : Fixons une clôture algébrique K de K.
Par le théorème de Tsen [14, Chap. 19, § 4], Br(K(tj) 0 et donc
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(1) Br(K(t)) Br(K(t)/K(t)) * H2(G, K(t)'),

où G : Gai(K(t)/K(t)) s'identifie à Gal(K/K).
Si l'on écrit additivement le groupe K(t)', la factorisation des fractions

rationnelles s'exprime comme K(t)' K* © {©çexZ(£ — £)}• On peut en

déduire une décomposition de K(t) ' comme G-module. En effet, l'orbite par G

de £, e K étant l'ensemble des racines du polynôme minimal de £ sur K, on a

(2) K(tY K' ® {®fenK)0(^f)}

où g K est une racine de / et 0(^f) le ZG-module engendré par t — ^f.
En substituant (2) dans (1) et en utilisant H2(G, K') ~ Br(K), on obtient

(3) Br(K(tj) Br(X) © {©/enK)H2(G, 0&f))}

Le choix de la racine de / fournit un plongement de Kf dans K,
de sorte que le stabilisateur de \f est Gf : Ga\(K/Kf) et que 0(^f) est

isomorphe au G-module Z[G/Gj] sur les classes à gauche de G modulo Gf.
Considérons le Gj-module trivial Z. On peut munir HomG/(ZG, Z) d'une
structure de G-module par (g • (p) (x) cp(xg) pour cp e HomG/(ZG, Z), g e G
et x g ZG.

Comme l'indice de G; dans G est fini (égal à [Kf : K]), on a un iso-
morphisme de G-modules

Z[G/Gy] HomG/(ZG, Z)

Yßcc

où geG/Gfest la classe de g e G. En utilisant le lemme de Shapiro
[19, n° 3-7-14], on en déduit

(4) H2(G, O(^)) ~ H2(G, HomG/(ZG, Z)) ~ H\Gf, Z).
La suite exacte 0 — Z — Q —» Q/Z —+ 0 de G^-modules triviaux/fournit

une suite exacte en cohomologie

H\Gf,Q)-, H1(Gf,Q/Z)i Z) -, H2(Gf, Q),

où ô est un isomorphisms puisque H\Gf,Q) 0, Q étant Grinjectif. On
vérifie enfin que H1(Gf,Q/Z) ä x(Kf), d'oùH2Oft,))x(Kf). Cela fournit
avec (3) l'isomorphisme voulu.

2) Naturalité de l'isomorphisme : On montre que cet isomorphisme ne dépend
pas du choix de la racine t,f Kdu polynôme / e âP(K).
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Fixons / e gP(K) et choisissons t>l, t>2e K deux racines de /. Notons
Kl9 K2 les plongements de Kf dans K et Gx GaliK/KJ, G2 Gal(K/K2)
les stabilisateurs correspondants. Si g e G est tel que £2 täi (d'où K2

gK1 et G2 gG^'1), il induit un isomorphisme a: %(Ki) ^ %(X2) par
a((p) (x) cp(g~1xg). Il faut montrer que les éléments de Br(K(t))
correspondant à cp e x(^i) et a(<P) G %(K2) sont les mêmes.

On vérifie facilement que a induit un isomorphisme ß:f/2(G1? Z)
H2(G2, Z) donné sur un cocycle c par ß(c) (x, y) c(g~1xg, g'^^yg). Pour

i 1, 2, notons jt: Z c» O(^), j£ 1) t — ^ et /q: O(^) c» K(0* l'inclusion.
L'isomorphisme de (4) s'exprime à l'aide de la corestriction comme cor o y\* et

s'insère dans le diagramme commutatif

H2(Gi,Z)c? H2(Gi, O(y) "r H2(G, 0&))

P ki* /q*

i/2(Gi5K(t)-p/f2(G, K(t)m)

décrivant le plongement de H2(GI-, Z) dans //2(G, K(t) '

Pour montrer que ß devient l'identité dans H2(G, on peut définir

y: f/^Gi, H2(G2, K(t)*), qui prolonge ß, par

y(c) (x, y) g-c(g~ lxg, g " V#)

et vérifier la commutativité du carré

H2(Gl9K(tY) H2{G,K(tY)

y I II

H2(G2,K(ty)H2(G, £(t)').

Grâce à la définition de la cohomologie galoisienne, on se ramène à une

extension galoisienne finie de K contenant K1 et K2. Le carré correspondant
commute alors en vertu de la compatibilité de la corestriction avec la

conjugaison [19, prop. 2-4-5] et du fait qu'un automorphisme intérieur est

trivial en cohomologie [19, cor. 2-3-2].

Remarque 1.2. Il est facile d'expliciter l'isomorphisme du théorème 1.1

i • Br(X) © {®/e#(jo l(Kf)} - Br(K(t)).

En effet, si [A] s Br(K), clairement i([A]) [A (g) KK(t)] e Br(K(t)) et si

/ e 0>(K), cp e x(Kf), on peut également construire une algèbre simple repré-
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sentant i(cp) e Br(K(t)). Choisissons une racine s de et considérons

le corps fixe L de Kpar Kercp qui est une extension cyclique de Kf.
Si m est son degré, notons 0 le générateur de G'f:= Ga tel que

cp(0) 1 /mdans Q/Z.
L'image de cp dans H2{G'f, Ut)') H2(Gf, K(tf) est représentée par le

cocycle

Ît - t,f si + >
(0

1 si i + j < m

Il lui correspond dans Br(L(t)/Kj{t)) c B^K/t)) la classe du produit croisé

cyclique A : (L(t)/Kj{t), 0, t — £>f). On a alors i(cp) cor([A]), où cor:

Br{Kj{tj) - Br(K(tj) est la corestriction.

Mentionnons qu'il existe des formules explicites pour calculer la

corestriction d'une algèbre simple [16], si bien que i(cp) peut être exprimé

explicitement.

Conséquence: Le théorème 1.1 donne une méthode pour calculer le

groupe de Brauer des corps de fractions rationnelles à coefficients complexes.

Sachant que Br(C) 0 et Br(C(0) 0 (par le théorème de Tsen), on peut

faire une récurrence sur n :

(5) Br(C(t1,..., £„+i)) Br(C(t!,..., £„)) © {©/e^>(c(fi,fn»x(^(^i **** O/)} •

Tout le problème est de calculer les groupes %(K) pour les corps de fonctions

complexes à n variables K. On va d'abord faire un rappel de géométrie

algébrique.

§ 2. La normalisation

Dans tout ce paragraphe, on ne fait que rappeler une construction très

standard de géométrie algébrique: la normalisation, car elle joue un rôle
essentiel dans la démonstration du théorème 3.1.

Toutes les variétés considérées dans ce paragraphe seront algébriques
irréductibles (réduites) et le corps de base k algébriquement clos. On notera
k(X) le corps des fonctions rationnelles sur une variété X, qui est égal au

corps des fractions de l'anneau /c[I7] des fonctions régulières sur U, pour
tout ouvert affine U de X.
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