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GROUPE DE BRAUER
DES CORPS DE FRACTIONS RATIONNELLES
A COEFFICIENTS COMPLEXES

par Philippe A.J. STEINER

INTRODUCTION

Le but de cet article est de calculer le groupe de Brauer des corps de
fractions rationnelles a coefficients complexes C(t,, .., t,). Des que n est
supérieur ou égal a 2, ce groupe est non nul et il se décompose en une .
somme directe non dénombrable de groupes y(K) associés a des corps de
fonctions complexes K. Plus précisément, on a une formule de récurrence

Br(C(ty, ..., t) =~ Br(C(ty, ... t,_ ) ® {®,; 1K)},

ou f parcourt 'ensemble des polyndomes unitaires irréductibles a coefficients
dans C(t,, .. t,—;) et ou K, est Pextension de C(t,,.., t,_;) obtenue en
adjoignant une racine de f.

Chaque groupe x(K) est calculé a I'aide d’'un modéle géométrique de K,
c’est-a-dire a I'aide d’une variété algébrique lisse X ayant K pour corps des
fonctions. On obtient la suite exacte

0 - H(X, Q/Z) - x(K) - Div(X) ®.Q/Z -~ H*(X, Q/Z),

qui exprime ¥(K) en terme du groupe Div(X) des diviseurs de X et de la
cohomologie HY(X, Q/Z) de X muni de la topologie transcendante et ou
’homomorphisme ¢ est induit par la premiére classe de Chern.

On montrera ensuite comment (une fois un modéle X de K fixé) on
peut construire des algébres simples centrales sur C(¢y, .., t,) 4 partir d’élé-
ments de Div(X) et de HYX, Q/Z), puis quil existe un modéle X pour
iequel H'(X, Q/Z) est divisible. Soit X, un tel modéle de K s et notons

Divo(X,) son groupe des diviseurs dont la premiére classe de Chern est
nulle. On obtient une formule

Br(C(tl 5 ey tn)) ~ ®f{H1(Xf) Q/Z) @ DiVO(Xf) ®ZQ/Z} ’
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ou f parcourt I’ensemble des polyndmes unitaires irréductibles a coefficients
dans C(t,,..,t) pour 1 <i < n On établit enfin que Br(C(ty,..,t,) est
divisible et que, pour n > 2, sa classe d’isomorphie est indépendante de n.

Les deux premiers paragraphes sont consacrés aux rappels du théoréme
d’Auslander-Brumer-Faddeev (qui fournit la décomposition de Br(C(t,, ..., t,))
en somme directe) et de la normalisation en géométrie algébrique. Dans les
paragraphes 3 et 4, on dérive la suite exacte qui détermine le groupe y(K).
On en tire au paragraphe 5 un procédé pour construire « explicitement »
des algebres simples, puis on termine en établissant au paragraphe 6 la

formule finale pour Br(C(ty,..,t,) et en montrant que ce groupe est
divisible.

Je tiens a remercier toutes les personnes qui m’ont aidé a accomplir ce

travail, notamment M. Kervaire qui m’en a suggéré le théme.

§ 1. THEOREME D’AUSLANDER-BRUMER-FADDEEV

Ce théoréme calcule la structure du groupe de Brauer d’un corps de
fractions rationnelles a une variable sur un corps quelconque. En se res-
- treignant a la caractéristique zéro pour simplifier, on va rappeler (d’apres [7])
comment il découle d’un résultat classique de Tsen.

Si K est un corps, on notera K  son groupe multiplicatif, 2(K) l'en-
semble des polyndémes en T unitaires irréductibles a coefficients dans K et
si fePK), K, sera I'extension K[T1/(f(T)) de K. Si K est une cloture
algébrique de K, on considérera le groupe yx(K) des homomorphismes
Gal(K/K) — Q/Z d’ordre fini (le groupe des homomorphismes continus pour
les topologies discréte de Q/Z et naturelle de Gal(K/K)). Comme Q/Z est
abélien, si K est une autre cloture algébrique de K, yz(K) est canoniquement
isomorphe a yz(K) et sera noté simplement x(K).

THEOREME 1.1 (Auslander-Brumer [1], Faddeev [6]). Soit K wun corps
de caractéristique zéro. On a un isomorphisme naturel

Br(K(t)) = Br(K) @ {B;cax XK/} .

Démonstration. Tout repose sur linterprétation du groupe de Brauer
comme groupe de cohomologie galoisienne. Pour cette interprétation, ainsi
que pour la notion de produit croisé, on pourra se reporter a [14]."

1) Construction de lisomorphisme: Fixons une cl6ture algébrique K de K.
Par le théoréme de Tsen [14, Chap. 19, § 4], Br(K()) = O et donc
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