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SUR UNE INEGALITE DE MONTGOMERY-VAUGHAN

par E. PREISSMANN

LES INEGALITES DE GRAND CRIBLE ET LEURS APPLICATIONS

Le grand crible est une idée relativement récente, permettant par exemple
de démontrer le théoréeme de Bombieri-Vinogradov [2] ou de montrer que
pour n assez grand on a 2n = p + P, (p étant premier et P, produit de k
facteurs premiers au plus). Barban [1] a trouvé k = 4, et Chen (voir [3])
k=2

Notons e(0) = e*™ et soient ay 1, prs 5, - G+ § d€S nOMbres complexes
arbitraires. Posons

M+N

S() = ) a,e(no).

n=M+1

Soient o, &, ..., &g des nombres réels distincts modulo 1 et posons

0 = Min o, — o, — 1.
r,s, neZ

r¥s

Une inégalité de grand crible est du type
(A) 21 8(e) 2 < CN,3) Y | a,|?

(verifiee pour (a,) et (a,) arbitraires).
Si R =1, on trouve |S(et;)|* < N-Z]|a,|? (inégalit¢ de Schwarz) et si
N = LZIS(%HZ = R'laM+1'2 < 8_1[aM+1IZ-

On a trouvé diverses expressions de C(N, §) [4] mais il est surprenant
quon ait pu réunir les deux inégalités précédentes et montrer que C(N, )
= N + 8! — 1 satisfait (A) [5]. Cette expression est la meilleure possible au
sens suivant: pour R donné, on peut toujours obtenir I’égalité dans (A) [S].
On peut obtenir une forme un peu plus sophistiquée que (1):

S19, = i\/ﬁnz | &, — og — n |, alors Montgomery-Vaughan [6] [7] ont m_ontré

que
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(B) ZIS(OL)IZNJrCES‘l)‘1 Zla,l?

avec C = X inégalite dont ils donnent des applications arithmétiques.

LES INEGALITES DE HILBERT-MONTGOMERY-VAUGHAN

L’inégalité (A) équivaut a dire que la norme de la matrice R x N (e(na,))

est inférieure ou égale a ./C(N, d). La matrice transposée ayant la méme
norme, on est conduit [6] a s’intéresser a la majoration de la norme d’une
matrice du type (sin”'m(a, —o)) (le prime signifiant que les termes de la
grande diagonale sont nuls). Cette majoration se rameéne a celle de la norme
d’une matrice du type ((x,—xs)‘l)’ [5]. Cest pourquoi Montgomery et
Vaughan [7] ont démontré:
Soit x,, x,, ..., X, des nombres réels distincts,
0 = Min|x, — x|, 0, = Min|x, — X
o) S

alors quels que soient les nombres complexes u,, u,, ..., Ug

© ' 5

rs X — Xg

u.u
= < w3 IE

r¥s
uu
(D) Y ———|<nC-Z|u|*8 ",
r,s Xp — X
r¥s

avec C = —

De (C) on déduit (A) avec C(N,8) = N + 871, et de (D) on déduit (B).
Un conjecture vraisemblable est qu’on peut donner a C la valeur 1 dans (D).

Dans ce sens, j’ai montré le résultat suivant:

.. 4
THEOREME. (D) reste vraie pour C = 3
Notation: Tout au long de la démonstration 8, = Min | x, — X |-
, s;:r

LEMME 1. Soit (x,)Q une suite réelle strictement croissante telle que
Xo = 0; f une fonction de 10, + o[ dans R, intégrable a linfini, trois |
fois dérivable et vérifiant f'(x) < 0, f"(x) > 0, f""(x) < O pourtout x. Alors | |
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