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SUR UNE INÉGALITÉ DE MONTGOMERY-VAUGHAN

par E. Preissmann

Les inégalités de grand crible et leurs applications

Le grand crible est une idée relativement récente, permettant par exemple
de démontrer le théorème de Bombieri-Vinogradov [2] ou de montrer que

pour n assez grand on a 2n p + Pk (p étant premier et Pk produit de k

facteurs premiers au plus). Barban [1] a trouvé k 4, et Chen (voir [3])
k 2.

Notons e(0) e2inQ et soient aM + 1, aM + 2,ciM + N des nombres complexes
arbitraires. Posons

M + N

S( a)L
n M+l

Soient a2,..., ocR des nombres réels distincts modulo 1 et posons

5 Min | ar — as — rc [.
r, s, neZ

rîs
Une inégalité de grand crible est du type

(A) ZN(oOI2 s: C(iV,ô)L|a„|2
r n

(vérifiée pour (an) et (ar) arbitraires).
Si R •= 1, on trouve | |2 ^ N S | an |2 (inégalité de Schwarz) et si
N 1, £ | S(ar) |2 R'\aM +1\2^ô~1 | aM + j |2

r
On a trouvé diverses expressions de C(N, ô) [4] mais il est surprenant

qu'on ait pu réunir les deux inégalités précédentes et montrer que C(N, 5)
N + ô 1

— 1 satisfait (A) [5]. Cette expression est la meilleure possible au
sens suivant: pour Rdonné, on peut toujours obtenir l'égalité dans (A) [5],
On peut obtenir une forme un peu plus sophistiquée que (1) :

Si 8r Min ar - cq - n |, alors Montgomery-Vaughan [6] [7] ont montré
sfr, neZ

que
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(B) X IStoOI^JV + CS,-1)-1 < s I a» I

avec C -, inégalité dont ils donnent des applications arithmétiques.

Les inégalités de Hilbert-Montgomery-Vaughan

L'inégalité (A) équivaut à dire que la norme de la matrice R x N (e(nar))

est inférieure ou égale à sJC{N, 8). La matrice transposée ayant la même

norme, on est conduit [6] à s'intéresser à la majoration de la norme d'une
matrice du type (sin~ 17u(ar — (le prime signifiant que les termes de la

grande diagonale sont nuls). Cette majoration se ramène à celle de la norme
d'une matrice du type ((xr — xs)~ 1)/ [5]. C'est pourquoi Montgomery et

Vaughan [7] ont démontré :

Soit xl9x2, -, xr des nombres réels distincts,

8 Min I xr
r, s

rfs

8r Min | xr
sfr

alors quels que soient les nombres complexes u1,u2,-, uR

(C)

P)

E
r, s Xr
rfs

rfs

^ nb I ur I

^ nC • S | ur |2 8r 1

avec C —
2

De (C) on déduit (A) avec C(N, 8) N + 8_1, et de (D) on déduit (B).

Un conjecture vraisemblable est qu'on peut donner à C la valeur 1 dans (D).

Dans ce sens, j'ai montré le résultat suivant :

Théorème. (D) reste vraie pour C -.
Notation: Tout au long de la démonstration 8r Min | xr — xs |.

s

sfr
Lemme 1. Soit (xr)cT une suite réelle strictement croissante telle que

x0 0; / une fonction de ]0, + oo[ dans R, intégrable à l'infini, trois

fois dérivable et vérifiant f\x) < 0, f"(x) > 0, f" ' (x) < 0 pour tout x. Alors
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