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L'Enseignement Mathématique, t. 30 1984), p. 95-113

SUR UNE INÉGALITÉ DE MONTGOMERY-VAUGHAN

par E. Preissmann

Les inégalités de grand crible et leurs applications

Le grand crible est une idée relativement récente, permettant par exemple
de démontrer le théorème de Bombieri-Vinogradov [2] ou de montrer que

pour n assez grand on a 2n p + Pk (p étant premier et Pk produit de k

facteurs premiers au plus). Barban [1] a trouvé k 4, et Chen (voir [3])
k 2.

Notons e(0) e2inQ et soient aM + 1, aM + 2,ciM + N des nombres complexes
arbitraires. Posons

M + N

S( a)L
n M+l

Soient a2,..., ocR des nombres réels distincts modulo 1 et posons

5 Min | ar — as — rc [.
r, s, neZ

rîs
Une inégalité de grand crible est du type

(A) ZN(oOI2 s: C(iV,ô)L|a„|2
r n

(vérifiée pour (an) et (ar) arbitraires).
Si R •= 1, on trouve | |2 ^ N S | an |2 (inégalité de Schwarz) et si
N 1, £ | S(ar) |2 R'\aM +1\2^ô~1 | aM + j |2

r
On a trouvé diverses expressions de C(N, ô) [4] mais il est surprenant

qu'on ait pu réunir les deux inégalités précédentes et montrer que C(N, 5)
N + ô 1

— 1 satisfait (A) [5]. Cette expression est la meilleure possible au
sens suivant: pour Rdonné, on peut toujours obtenir l'égalité dans (A) [5],
On peut obtenir une forme un peu plus sophistiquée que (1) :

Si 8r Min ar - cq - n |, alors Montgomery-Vaughan [6] [7] ont montré
sfr, neZ

que
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(B) X IStoOI^JV + CS,-1)-1 < s I a» I

avec C -, inégalité dont ils donnent des applications arithmétiques.

Les inégalités de Hilbert-Montgomery-Vaughan

L'inégalité (A) équivaut à dire que la norme de la matrice R x N (e(nar))

est inférieure ou égale à sJC{N, 8). La matrice transposée ayant la même

norme, on est conduit [6] à s'intéresser à la majoration de la norme d'une
matrice du type (sin~ 17u(ar — (le prime signifiant que les termes de la

grande diagonale sont nuls). Cette majoration se ramène à celle de la norme
d'une matrice du type ((xr — xs)~ 1)/ [5]. C'est pourquoi Montgomery et

Vaughan [7] ont démontré :

Soit xl9x2, -, xr des nombres réels distincts,

8 Min I xr
r, s

rfs

8r Min | xr
sfr

alors quels que soient les nombres complexes u1,u2,-, uR

(C)

P)

E
r, s Xr
rfs

rfs

^ nb I ur I

^ nC • S | ur |2 8r 1

avec C —
2

De (C) on déduit (A) avec C(N, 8) N + 8_1, et de (D) on déduit (B).

Un conjecture vraisemblable est qu'on peut donner à C la valeur 1 dans (D).

Dans ce sens, j'ai montré le résultat suivant :

Théorème. (D) reste vraie pour C -.
Notation: Tout au long de la démonstration 8r Min | xr — xs |.

s

sfr
Lemme 1. Soit (xr)cT une suite réelle strictement croissante telle que

x0 0; / une fonction de ]0, + oo[ dans R, intégrable à l'infini, trois

fois dérivable et vérifiant f\x) < 0, f"(x) > 0, f" ' (x) < 0 pour tout x. Alors
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T(X1X2, X„...) Yj
k= 1

considéré comme fonction de x2, x3,..., xn,... est maximum pour xk kx1

pour tout k.

D'après les conditions précédentes, il est clair que lim f(x) 0 et que / et
X-* 00

— /' sont des fonctions convexes. Notons

1
s L

1
S

ak xk - -5ket
On a donc

(1) 8*/(x*) <
'bu

f(x)dx pour tout k

D'après la définition de 8k on sait que les intervalles ~\ak, bk[_ sont disjoints,
et donc

(2) I M, < f{x)dx,

d'où la convergence de la série définissant T.

(a) Supposons qu'on ait une suite telle que

xk ^ x2- Xi ^ x3 -x2 ^ xn-xn_!et xn -*„_!> x„+1 - xn

Alors :

D [ôXj
+

T(xl,x2,~,xn,xn+l + Kxn+2 +

n~ 1

I 5*/(**) + (x„+1 + ^-x„)/(x„) + £ 5
k= 1

+ 8n + lW/(x„+i+X.)

/(*„) + £ 5k/'(xk) + —- (ô„+1(A,)),
k=n+l\0A

°ù 8„+1(À.) Inf[(x„ + j — x„ + X),x„+ j)].
Comme -/' est convexe, on trouve de manière similaire à (2):

Z f'(xk)8t <
k n + 1

/'(x)dx d'où D> /(x„) - /(a„+1) > 0.
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C'est pourquoi (en notant h [(x„ — x„_i) — (xw + 1— x„)]) on a

T{xl, x2,x„, xn + l, x„ + 2, •••) < T(x1, x2,x„ 9xn+1 + h, xn + 2 + h,...).

(b) Supposons maintenant qu'on ait une suite telle que

a xn Xn X,71 + 2 Art + 1X„+1 X71+3 -Si+ 2x„ + 9 et X, < a.

— T(x1,x2, x„, x„+1 —xn + 2 —À,,...)
X 0 +

X + (a -X)/(x, + - X) + £ - X)bk
k= 1 k n.+ 2

-/(*,+,)- I 5t/'(xt) > -/(x„+1)
fc n+ 1

f'{x)dx 0

Notons /z a — (xn — xn_1); on a donc

T(x!X2 -, xn, x„ +< T(x!,x„,xn+T h, x„+ 2 -h,...),
et en répétant indéfiniment ce décalage on trouve (en notant k xn — xn-1)

T(xl9x2t„.9 xn-l9xn9xn + 1 < T(x1?x„_l5 x^i + fc, x„_! + 2/c,

(c) M étant la borne supérieure de T(xx,x„,...), on peut supposer

T(xx,x„,...) > M — 8 et par une application répétée de a) on sait que pour
tout m on peut trouver une suite (yn telle que

*i J>1 < J>2 - yi< < ym +i - ymet >

D'autre part

Rm= 1 f(yk)h < f(x)dx

est plus petit que 8 pour m assez grand, donc (en notant l (ym + i — ym))

T{Xi y2 î •••5 ym 5 ym + 1 ^ ym + 1 ~b ^ M s Rm > A/ 28

et en appliquant b) de manière répétée on trouve

T(x1, 2xx, 3xx,kxt,...) > M — 2s

pour tout 8, d'où le lemme.

Conséquences : on a donc
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(4)

(5)

y h. < y=J?! x$ ^k=!\âx\ xl 90'

y < y ß > 0
k= 1 x£(xk + u)2 ^

fc i (kx1)2(kx1Aa)2
9

1 1 1

avec /(x) -y; -y; -y- -y
X X X (x + fl)

Lemme 2. Soft (x„)^=0 une suite réelle strictement croissante, x0 0,

telle que (xi et xN étant fixés)

N 8
r(x1,x2,,.,xN_1,xiV) £ —

*=1

soit maximum pour x2, x3,..., xN_x variables. Alors la suite xx,x2 — xx,
x3 — x2,xN — xN-x est monotone.

(a) Supposons que la suite est telle que

a x„+1 - xn+ 1 ~ ^n + 2 •*» + 1XM+1 — — Xm + l. X,n + fc An + fc- 1

Xn - xn-x > a, X, - -X ». 4-1 > an+k+l An+fc

Alors

D
\pkj x 0-

'3\
x o +

T{xx,..., x„_ ^, xn, x„ + + A,..., xn + i -}- /A, xn + k -f" kk, xn + jc + x,x^y)

^ ^n + fe+1(^) ^ Ôm

r=l Xm 1 0 Xn + i -|- ïk Xn + fc+i m — n + k + 2 Xm

Si on remarque que — Ôn+k + 1(A) 0 ou - k et que
\0A/x=0+

öt 4" ^ 1 xn_|_j — xn Ik

xn + i + Ik l xn + l Ik

on trouve

z
k * 1

> x» I yr-
x„ / 1 1

i-o xn+i xn + jç + x i~o xn + i a \xn x

D>-(aTJA~
a \

x"+k dx\
-T > 0.

Donc la fonction T n'est pas maximisée par cette suite.



(b) Supposons maintenant que la suite est telle que

a *n+l — Xn Xn + 2 ~ Xn + 1 — Xn + k ~ Xn + k~ 1 s

a > xn — xn_1 a > xn+k+1 — xn + k.

Alors

_ f Ô \
D I — I T(x1,xn, xn + 1 — X, xn + 2 — X,xn+k — X, xn + k + 1,xN),

\CA/^=0+
d \ f " 5 a — X a

/> — Z — + + + +
^=o+Lm=id^/X 0+\_m=l Xm Xn+l X Xn + 2 X xn + k_l X

Xn + k+l ~ Xn + k + ^ $n + k+1 -f ^ ^

Xn + k ~ ^ Xn + k+1 m n + k + 2

'

d
En tenant compte du fait que — I 5„+/fc+1(X) 0 ou 1 et en utilisant

<dX x 0 +

la méthode des trapèzes on trouve

Xn d d Xn+k+1
D ^ -=-5- -f + + + 2

xn+\ Xn + 2 XUk-1 Xn + k

D > —

D > —

D > —

y2xn+ 1

Y2•*n+ 1

Y2Xn+ 1

^ *«+1

1

+ ^
a

+
X, ^„+1
1 a

2 *n+ 1

+

2 Xn+1
*Xn+k dx

Xn+l A

1 1

Xn + 2
+

Xn+k—1

1

+ - ~2
'

Cn + k V
a

+

Kn+ 1

1n + k Xn + k

Xn + 1 ~
Xn+ 1

D > ^ 0,

Donc la suite ne maximisait pas la fonction T.
De a) et b) on déduit que la suite maximisante est telle que

*1 (x2 -Xi) ,(x„- _ i),..., (xN- XN _ i)

est monotone.

Lemme 3. Soit (xn)o suite réelle strictement croissante telle que

x0 0 et que (xt et xN étant fixés)
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T(xt,xN _i, xN) X
S"

î xt

est maximum (x2, x3,xN_ étant les variables). Si la suite

Xj (Xî-Xj), (X3-X2), (xjy Xjy —

est décroissante, alors il existe un ktel que

x1 x2 — x1 xk - xk_x > x*+1 - ^ xt + 2 - x*+i
xN —_ J

a) Supposons que la suite soit telle que

x„-1 - xn.2 > x„ - x„_! > x„ + 1 n+2 ~ An+1

Alors

D -— r(x1,x„_ J, x„, x„ + xN) (dérivée à droite),
<x„

J) JL fX" ~ X"-l +
X»+l - X»1 Xn - xo + 1 xn — 1

5x„ L X-1 xn J x^x„-l

D > xl - x„_i(x„ + (.x„-,x„-i)) (X.-X,-!)2
> 0

donc la suite ne maximise pas la fonction T.

b) Supposons que la suite soit telle que

^ %n+1 Xn + 2 -^«+1 ••• — X

a > x„+^ x„+^, a < xn xM _ ^

Alors ^

n + fc An + k- -i (^2),

D I —- T(xl,x2,xn,xn + 1 + {k- 1)X,x„_2 + 2A-, x„+Ä_x ^ x„+*,xN),
\CKJx=o+

-(s)\CA/

Xn+ 1 — xn + (fc— 1)X
+

41 XB + ,+ 1-X„ + l-X.
+

X„ + k+1-Xn + t"

/ i x„+, + x„+k

a a
Notons at xt — - bt xt + - et remarquons que

*n + / + l A« + Z-xM + l-X
\fà/% 0+ \ xn + l + (k-l)1

'

d

<dX/ x=o+
_

xn+k-x„^,-(k-l)X
l xn+j + (/c — l)X ] 2 '*n + l
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1/ 1 k 1 y
ß _ £ *

_ y xn + k

V-
La 2

xn l — l xn + l

(%bn+l dx
et que Y2xn + l

<
X

2 '

D >
k — 1 bn+k-l dx 1

D >
k - 1 xn+k

D >

D >

Xfi

k — 1

xn bn an+k

k — 1 a

xn bn a,n un un + k

\xn+k-xn-a)
bn an + k

^n^n + k Xn Xn + k

a
Xn+k Xn

2

(k-l)

i an + k.

Xn + k

bnan + k

> 0,

donc la suite ne maximise pas la fonction T.

De a) et b) on déduit que les inégalités strictes dans la suite

X^ ^ X2 X^ X3 X2 • •• ^ Xfl ^

ne peuvent être que consécutives.

Lemme 4. Soit (x„)o une suite réelle strictement croissante, x0 0,

et maximisant la fonction

N g
T(x xN)£ k

k= 1

(x2,x3,..., 1 étant les variables). Si

Xl9X2 - xlfx3 - X2, XN - XN_

est une suite croissante, alors il existe un nombre n tel que

Xl x2 - Xi x„ - xn_i < x„ + 1 - x„ < < xN - xN_!

a) Supposons que la suite soit telle que

ax„+i - «. xn + k-x„+k-^l,(fc3*2),

a > xn — xn_l5 a < xn+fc+1 — xn+k.

Alors
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D — -
I T(xt, x2,, xn+! À,,..., xn+k^ t — X, xn+k,..., xN)

\OKJx=0+

'd'
\dXj x=o+

xM
+

Xn+1 Xn +2

*n+i-Xn-^
Xn +1 X

H- +

+
XM + 7 X

4- +
a 4- X~\

Xn + k- l-^ Xn + k J
+

D >
Xn + 1

+
%Xn+k dx

+ + > 0.
cn+ l-^n+2

Donc cette suite ne peut maximiser T.

b) Supposons que la suite soit telle que

< x2 - Xi < < xk - < xk + l - xk xk + 2 - xk + 1 xN - a.
'
d

'

^=o+
7(Xi, x2,xk-l9xk,xk + 1-(N-k-\)X, xk + 2-(N-k- 2)X,..., xN^x-X, xN)

-xk-(N-k-l)X +
ci -|- X

xk+1—(N — k—l)X xk + 2 — (N — k — 2)X

Cl-^-X Cl-bX
+ 4 4

XN- 1 ^ XN

et comme

ci 4" X

' x=o + \_*k+1 — (N — k — l)X

on trouve

1

N-k-l V dXj
'xN-xk+l + (N-k-l)X

xk+l-(N-k-2)X ]"

D
xk(AT-fc-l) x

xhi Xk + 2

4- 4-
XN XN

2 4~ 4~ 7 •

Xk + l X JV

d'où (par utilisation de la formule des trapèzes)

D >

D >

— xk(N — k — 1) 1 xN 1 x

— xk(N — k— 1) 1 xN 1 Xjv

2 x£+1
+

2 x£
+ J x2 a

1

XN dx xN

D > -
xLi

1 Xw

+ ^ ~T H

1

+
1

2 xk+1 2xn
+

xk+i 2 xN a \xk+1 xN

XNXk + 1 — Xk+ 1 — xk(xN~ Xk+ l)

««k+1
1 X/v 1 xNa — axk+1

D>-2^ + 2^ + ^-7-
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D> J_ +
~ + 2Xn Z2Xk+1

2xn 2x2k+i

D > ** + i. + ~2x*+i= (^-^fc+i)2
> 0

2xnx£+i 2xNxl+1

donc la suite ne maximise pas T.

De a) et b) on déduit le lemme.

Lemme 5. Soit (x„)o une suite réelle croissante, x0 0, maximisant

N Ô

T(x1,x2,...,=X —
fc=i **

(x2,x étant les variables).
1 x \A/ors T(xt,xN) < Y — + 0I—

xN m \xnJ
D'après le lemme 2 on voit qu'il y a deux cas.

Premier cas : La suite x1, x2 — xl7..., xN — xN^t est décroissante. D'après
le lemme 3, on a :

Xi x2 ~ X1 ». xk ~ > xk+l ~ xk > xk + 2 ~ xk+l
— Xk + 3 ~ Xk + 2 — XN ~ XN - 1 a f

d'où

/ d\/) — ] T(x1}> Xk-1, Xk9 Xk+1+X, Xk + 2 + K —9 XN-1+K xN + ty

'
d

x o +

1

— Xk -f- X

a
1 1

+ + -H,xn;

- +
+ X

+ +
xN + A,

**+i

D > —
dx 1 dje 1

— — > 0.
Kk J Xk * XN

Soit

> —
a ** Xk

y,1+1 **+1 + (2xk-xk+1-xk_1)

,P)c + 2 *fc + 2 + (2xt —Xt+1—Xfc-i)

V« Xv + (2xt-xv+1-xt_,).
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Nous avons donc

T(xi X2 —, Xk Xk+1, XN) ^ —, Xk, }^jt + î y*+ 2 —» J^iv) •

Soit zN le plus petit des multiples entiers de xx qui soit supérieur ou égal à

yN et définissons zk + 1, zk+2,zN par:

C — Zk + 2 ~ Zk+1 Zk + 3 ~~ Zk + 2 — ZX-1 ~~ ZiV~2 ZN ~ ZN~ 1

et zfc+l y/c+1 •

Remarquons qu'il est impossible d'avoir c > x1 car on aurait alors

ZN > yk + 1+ x^N-k-l)Nxj > yt + 1 +

a) Supposons c x1

ZN < )?N X1 XN ~b *1 ~b 2xfc — Xk+l — Xk^i < + 2X]l

donc

1 /x \
(6) T(xl9 ...9 xk9 zk+l9 ...9 zN) ^ Yj 1" 2 —-

xn m \xNJ
Xi

b) Supposons c < xx
Définissons uk + ^, uk + 2 •••> — 1 P^r

W/c+l ~~ zfc+l5WiV-l — ziV) % + 2 ~ Mfc+1 w/c+3 — Uk + 2

— uN — uN x d

Il existe alors un entier / tel que /xt zN - (k+l)xl zN - zk + 1, donc

Cl\ Ixi lx 1

(7) c TT r r et d
N - k - 1 n — k — 2 '

Comme c<xl5ona donc d ^ xl9 alors

^ ~~ ^(xi » •••> wfc + i » —» Wjv-i) — 2"(xi,Xfc, + 1,..., j/jy)

d
_j_

d c

UN m 0 \Um + k+1 Zm + k+1

_ _j_

N

^ ^(zfe +1 ~b WIC) c{uk +1 ~b

Un m 0 + fc + lZm+ k + 1

- — +
* (^~cK+i

% m 0 Wm + fc+lZm + fc+l

X > - A +
(d~C)Uk+1

m 0 Um + k+l
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En utilisant la méthode des trapèzes, on trouve :

A > +
UN

A > h (d — c)uk
Mn

1

*k+l

1

*k + 1

1
~ ""N

+
2t4_ "k +1

1 " 'i-c'
2t^_ d

dx - dx.

1 1"

Mk + 1 UN_

le dernier terme valant (par utilisation de (7)) :

d c Ufj Ub a- 1
1

Donc

et

UN ~ Uk+ 1

7 Uk+1
d uk+1uN

A > (d — c)uk

N - k - 1

d(N-k-l) _
d

uN uN

lui +
lu]

> o,

T(Xi,xk, zk + 1,..., z1v).< T(xx,xk, ufc + x,..., u^_ 1).

En répétant le procédé on trouve une suite tk+lftk+2,...,tk+i telle que

tk + 2 ~~ h+i — — h + i ~ h + i-i xi •

Nous sommes alors dans le cas a), donc (d'après (6))

1 fx
T(X1,x2, ...,Xn) ^ £ —+ 21 —

xN m

Deuxième cas: la suite xlfx2 — x1,...,xN — xN-1 est croissante. Alors
d'après le lemme 4, il existe n tel que

Xl x2 - X1 X„ - < Xn+1 - < Xn + 2 - xn+1

< < xN — x^-i
Soit k tel que n+l^k^N— l.

xk-1 1Ô-Lu * *>--?-xk, XN) —
dxk dxk

xk ~ xk-1 *fc + i ~ xk

Et si T est maximum on a donc

xk xk+i

1 _
xfc

*k +1

et donc +N- 1 _ N — 2

*N-1
Si+ 1

—— X < 1

*n + 2 Xn + 1
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Soit A —, on a donc — X(N n),
xn A

T(x1,xn,..., xN) 1 + — + H h (N — n) (1 — X).
2 n

Notons (N — n) (l — X) — • (1 — X) et dérivons Si en faisant
LogA.

varier X (on suppose A fixe) :

— S\ — LogA, — (1 — X)X~x

LogA (LogA,)2

et comme - LogA, - - + 1 < 0 on a Si > 0.
X

D'autre part X
nx i

x„ + 1 (n+ ljxj n+1
donc

Sx < - LogA

Log
n+1

n+ 1

LogA

(n+1) Log (—-—r

\n + 1

S, ^ LogA

(n+ 1)
1 1 1

+ TT 77T + — —TTT +_(w+l)
'

2(n + l)2
'

3(n+l)3
2n + 2

LogA

1 +
1

2(n + 1)

2n + 3
LogA

Q T C
1 1 1

Soit S2 7 7^7 +
(n+1) (n + 2)

+ + on a

1 +
S2 + — > Log -

n ^ Log — Log A

Distinguons deux cas :

1 \ t 2n + 3
1) Log A ^ 5 ^ Alors
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S2 — St ^ h Log A — Log A + -—-—- Log A ^ 0
n 2n + 3

done T(x1,xN) ^
xN m

2) Log A < 5. Alors A < e5, done

1 e5
$2 $1 — ^1

n (xN

T{x19...,Xn)^ X - + e5-^.
xN m xN

Lemme 6. Soit (*„) «, une suite réelle strictement croissante s et t
deux entiers tels que s > t,

T(..,X_!,X0,X1;...)= £
r=-oo (Xr-Xj2(Xr-xf

rfs r^t

Alors

T(.„, X,_ 1 X,, X, + Xs _ Xs Xs +

^(Ô-i+ôr1) 3(ÔS + Ô,)

(xs-xj3(xs-x,)2

Définissons (yn)f-0oPar
y„ xs + (n — s)ôs

^ x„

x, - (t — n)8(

D'après (5) on a

T(..„ y, _ y,, y, + 1,ys, ys +x,...) ^ T(.., x, _ t,x,,xs, xs+ j,...)

Il suffit de vérifier que l'inégalité du lemme est vérifiée pour la suite (ym).

Soit N tel que

si n > s,
si t ^ n ^ s,
si n < t.

(8) s — N < t et L ys-ys-N
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Remarquons que pour r, s, t distincts on a

1 1

(yr-ys)2 Ov-y,)2

î î
+

1 î
+

_( ys-yr)2
'

(yr-y,)2_

On trouve que

s + L

SN= I

_y,-yr yr-yt.
1 2

+

(ys-y<)

iys-yt)2
'

(ys-y<)3

5,

1 1

+
y,-y*J

s + LIr s — N

rfs,rft

1

r=^JV (ys-yr)2(yr-y()2
r + s,rft

28r
+

1

+
(^-^r)2 vOv-jO2 (yr-yt)2J (ys-yt)3 VOv-tt) (yr-y>

Or, par application du lemme 5, on a :

s + L fi s-1

- I -Ar= I 5 S+L 8' - I r

r s-N yr ~ ys r s~N ~ 3V r s+l 3V 3^

rfs,rft

< o | ZiZikzl) + £ i_ £
ys-ys-N) vb-vm-n m m^L m ys - yt

ys-ys-i

L, on a doncComme ys-ys-N
1

Os 1
1

_ys-ys-1_ L 0, j
(9)

D'autre part

y1 _J:_<0 ^L_
r=s-N yr - ys \ys-ys-Nj y* - yt
r + s,r + t

8rs + L X s+L R s~N
V — V V

r=r~N yr - yt r=7+1 yr - yt r=r-1 y, - yr ys - yt
rfs,rft

yt+1 3^f\ y'
^

y"
^

m m m m
'+ 0

avec, pour : 1 < m ^

3>s - 3>f

3W - ^
yt+i - yt

ys+L-yty

et pour — s,

en appliquant à nouveau le lemme 5 et remarquant que yt-i, yt-2* •••> 3>s-n

sont équidistants. La différence entre les deux dernières sommes est (si elle

n'est pas négative) :



110 E. PREISSMANN

I
N + t — s<m^-

i Aw-y.
m

~~~

N + t - s \y, + 1-yt

1

— < (N + t-s)

«—1—(u-+y~n
N + t - s V 5,

1 ys-ys-N+ys-yt

(10)

N + t - s \ 8,

1

- (N + t-s)

N + t - s \ 5,

en utilisant (8) et l'équidistance de yt-xys-N. D'après (9) et (10) on a

s + L
$n ^ Y

r=s~N (ys-yt)

1 1

+(y-ys)2 (yr-yt)
2(5,+ 5,)

(ys-yt)4

+ (ys-yf
~o(y,+1~y') + of
_ \ys+L-y,J

ys-ys-i\+ 2(ys-y()

,ys-y»-jv/ (iv+t—s)8,

Quand N tend vers l'infini le dernier crochet tend vers zéro, donc :

z
(=s,r

+ c

+ Ir
rfs,

D'après (3) on sait que

< —
2(8,4-8,)

r=-œ (yr-ys) (y,-y,r (ys-yt)
rfs,rft

r=—co (y,-y,)
rfs,rft

1 1

+

TU 8,

r=~~X' (yr-ys)2 ^ 3 (y,-y/ '

rfs,rft

r=- oo (j^r .Vr) 2

rf s, r f t
(ys-yt):

d'où le lemme.

Preuve du théorème,

Sans perte de généralité, on peut supposer

Xi < x2 < < xR et Y I ur I
2 1

•

r 1

Notons cr J*, pour r= 1, 2,..., R et définissons la matrice M par :
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(M)r,s 0 si r s

(M)r,s
crc.

xr -
si r 7^ 5

La matrice i M est hermitienne, c'est pourquoi ses vecteurs propres sont

orthogonaux et

CrCs

L UrUs
xr - xs

rfs

est donc maximal si (ur)f=i est un vecteur propre de M dont la valeur

propre est maximale en valeur absolue. Admettons que c'est le cas et soit
i ji la valeur propre (qui est donc purement imaginaire), on a donc

n2

r + s

< s i ur i2 z
s (xr-Xs)

Us

s + r

(à cause de l'inégalité de Cauchy)

< z z i c;csc,usu,

r s t {xrXs)(xr
s+rt+r

Le membre de droite peut être partagé en deux parties selon que s t
ou non, et remarquons que si s ^ t, on a

1 1

(xr-xs)(xr-xt) (xs-xt)

1 1

_xr - xs xr - xt

donc

n2 < e i yj"\'22 + z
C r CsCt

r s (Yr Xs) r> Sft Xs Xt
sfr rfs,r^t

sft
xr — xs xr — xt

usut.

D'après (3) on a

ai) Z Z
SA I "s 12 ^ ^ n2 n2

; -yrfs
et la seconde somme devient
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S= Ir, s,
r^s, s^t

c;csctusut y r

r%t (xs-xt)(xr-xs) r, s (•Xs - Xr)2
r?=S

y
C r CgCfUgUf

^
C r CtUrUt

r, s, t (xs Xt) (xr Xf) r> t (xr Xf)
rft,sftt rft

ecuDans la première somme, on a : Y —5 ' x

t xs - xt
tfs

et dans la troisième, on a : £
sf t

CsWs

(xs-xt) l\lUt,

d'où

(12)

CZCMMr
S 2 Re X 7 V2,

r, s (*s Xr)
rfs

^ jj y ^r I M I

2 " " è. (xs-xr)2
r + s

D'après l'inégalité de Cauchy, on a :

< Z I Mr I
2 ' Z

Vs3 I us I

(x,-xs)2

1/2 < I I c2c3c3 I us I I

7 s,t(xr-xs)2(xr-xt)2 '

sfrtfr
ÔrS3 I "s I

2

+ z £c;c;c(j I I I M, I

r s (*, -xf r>s>t (xr-xj2(xr-x,)2
s^=r rfs^i^t

Sf t

Par application de (4) et du lemme 6, on trouve :

t72<2-^+ I Yc'c'(^1+ôrl)r^'90 tt3(xs-x,)2
aft

9
7T4 27T2

L/<45+^17'

3 / 45 9
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K2 fô

yv 5

De (11) et (12) on déduit

Le point faible de la démonstration est sans doute la non utilisation du terme
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3(Ss + 8t)

(*s-U4
du lemme 6.
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