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SUR UNE INEGALITE DE MONTGOMERY-VAUGHAN

par E. PREISSMANN

LES INEGALITES DE GRAND CRIBLE ET LEURS APPLICATIONS

Le grand crible est une idée relativement récente, permettant par exemple
de démontrer le théoréeme de Bombieri-Vinogradov [2] ou de montrer que
pour n assez grand on a 2n = p + P, (p étant premier et P, produit de k
facteurs premiers au plus). Barban [1] a trouvé k = 4, et Chen (voir [3])
k=2

Notons e(0) = e*™ et soient ay 1, prs 5, - G+ § d€S nOMbres complexes
arbitraires. Posons

M+N

S() = ) a,e(no).

n=M+1

Soient o, &, ..., &g des nombres réels distincts modulo 1 et posons

0 = Min o, — o, — 1.
r,s, neZ

r¥s

Une inégalité de grand crible est du type
(A) 21 8(e) 2 < CN,3) Y | a,|?

(verifiee pour (a,) et (a,) arbitraires).
Si R =1, on trouve |S(et;)|* < N-Z]|a,|? (inégalit¢ de Schwarz) et si
N = LZIS(%HZ = R'laM+1'2 < 8_1[aM+1IZ-

On a trouvé diverses expressions de C(N, §) [4] mais il est surprenant
quon ait pu réunir les deux inégalités précédentes et montrer que C(N, )
= N + 8! — 1 satisfait (A) [5]. Cette expression est la meilleure possible au
sens suivant: pour R donné, on peut toujours obtenir I’égalité dans (A) [S].
On peut obtenir une forme un peu plus sophistiquée que (1):

S19, = i\/ﬁnz | &, — og — n |, alors Montgomery-Vaughan [6] [7] ont m_ontré

que
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. R
(B) ZIS(OL)IZNJrCES‘l)‘1 Zla,l?

avec C = X inégalite dont ils donnent des applications arithmétiques.

LES INEGALITES DE HILBERT-MONTGOMERY-VAUGHAN

L’inégalité (A) équivaut a dire que la norme de la matrice R x N (e(na,))

est inférieure ou égale a ./C(N, d). La matrice transposée ayant la méme
norme, on est conduit [6] a s’intéresser a la majoration de la norme d’une
matrice du type (sin”'m(a, —o)) (le prime signifiant que les termes de la
grande diagonale sont nuls). Cette majoration se rameéne a celle de la norme
d’une matrice du type ((x,—xs)‘l)’ [5]. Cest pourquoi Montgomery et
Vaughan [7] ont démontré:
Soit x,, x,, ..., X, des nombres réels distincts,
0 = Min|x, — x|, 0, = Min|x, — X
o) S

alors quels que soient les nombres complexes u,, u,, ..., Ug

© ' 5

rs X — Xg

u.u
= < w3 IE

r¥s
uu
(D) Y ———|<nC-Z|u|*8 ",
r,s Xp — X
r¥s

avec C = —

De (C) on déduit (A) avec C(N,8) = N + 871, et de (D) on déduit (B).
Un conjecture vraisemblable est qu’on peut donner a C la valeur 1 dans (D).

Dans ce sens, j’ai montré le résultat suivant:

.. 4
THEOREME. (D) reste vraie pour C = 3
Notation: Tout au long de la démonstration 8, = Min | x, — X |-
, s;:r

LEMME 1. Soit (x,)Q une suite réelle strictement croissante telle que
Xo = 0; f une fonction de 10, + o[ dans R, intégrable a linfini, trois |
fois dérivable et vérifiant f'(x) < 0, f"(x) > 0, f""(x) < O pourtout x. Alors | |
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120:1 F (%)

T(X15 Xgy ey Xp -or)

considéré comme fonction de Xy, X3, .y Xy, .. €St maximum pour X, = Kx;
pour tout k.

D’aprés les conditions précédentes, il est clair que lim f(x) = O et que f et

X0

— f” sont des fonctions convexes. Notons

1 1
ak:xk—isk et bk:xk+56k.

On a donc

bk
(1) O, f(xp) < J f(x)dx pour tout k.

D’aprés la définition de o, on sait que les intervalles ]a,, b,[ sont disjoints,
et donc |

2 3. a3, < f

+

" fodx,

ai

d’ou la convergence de la série définissant T.

{

{a) Supposons qu’on ait une suite telle que

Xi S X — X SX3—X3..8X, — X,y € X, — X, > X4 — X,.

Alors:

0
D=|— T(X1, Xg,5 s Xy X1 F A Xy 2+ Ay Xpp3+ A, .0)
O\ /) y—o+

0]

a n—1
_ (5{)[ B8 + (o y H A=) () + 3 86+ D)

k= n+2

+ 8t (M) S (Xn 44 +7\)}

5 0
= f(x,) + Z Onf (i) + | = | - (6n+ 1(”) ,
k=n+1 67\/ A=0+
ou 6n+1()\') = Inf[(xn+1—xn+)\‘): (xn+2_xn+1)] :
Comme — f” est convexe, on trouve de maniére similaire a (2)

- i Jxdd < — J‘Oo f'x)dx dou D> f(x,) — f(a,,,) > 0.

k=n+1 Gn+1
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Ceest pourquoi (en notant h = [(x,—x,-;) — (X,+;—x,)]) on a
T(Xl 5 XZ 5 saey x,,, X.,,+1 N X,,+2, ...) < T(xl 5 x2, ...,'xn, xn+1 +h, xn+2+h; ...) "
(b) Supposons maintenant qu’on ait une suite telle que |

A= Xpr1 = Xpg = Xpya = Xpt1 = Xp43 = Xpy2 = o €0 X, — X,y < A

0
-(ﬁ)kz()*‘ T(-xl’ X5y ey Xps xn-*-l—}\:, xn+2—}\4, )

0 " -
= <ﬁ> . l;;l fOa)dy + (a=Nf(xper =2+ ) f(xk—k)&c]

k=n+2

= — f(xp+1) — i Of'(x) > — f(Xps1) — J f'(x)dx = 0.

k=n+1 ¥n +1
Notons h = a — (x,—x,_;); on a donc
T(Xl Py XZ 9 seey Xn, Xn+1 s ...) < T(X1 5 ssey 'xn, Xn+1 —h, Xn+2—h, ...) ’

et en répétant indéfiniment ce décalage on trouve (en notant k=x,—x,_,)

T(X1 5 Xgs ey X 15 Xy Xt g o) < TAXq 5 w0y X 15 X g+ Ky X + 2Kk, ..0) .
(c) M ¢étant la borne supérieure de T(x,,.., X,,..), on peut supposer -
T(xy, ..., X,,..) > M — g et par une application répétée de a) on sait que pour
tout m on peut trouver une suite (y,) telle que
X1 = Y1 Y2 = V1 K oo K Vi1 — Ym 6 TW1s s Yo ) > T(Xp, o Xy, )
D’autre part

[0 o] o 0]
Ry = Z Jde < j fx)dx
k=m+1 Am + 1

est plus petit que & pour m assez grand, donc (en notant I=(yn+; — V)

T(xl’y,2,""Jymaym+1+laym+1+21, ...) > M — g — Rm > M — 28,

et en appliquant b) de maniére répétée on trouve
T(xy,2x1,3%1, 0, kXq,.) > M — 2¢

pour tout g, d’ou le lemme.
Conséquences: on a donc
(e 0]

S
3 Y. =3

2
k=1 Xg

(e 0]
< = C—
h kgl kzxi' X1 6 ’
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a>0,

o 2 S 3 3>
=1 Xj(x,+a) k=1 (kxy)*(kx,+a)

1 1 1
avec f(x)=;; ;Z; m.

LeEMME 2. Soit (x,)N_, une suite réelle strictement croissante, x, = O,
telle que (x, et xy étant fixés)

N5,

T(X1, Xgys oo Xy—1s Xy) = D, —

k=1 Xg

Soit maximum pour X,, Xz, .., Xy_, variables. Alors la suite x;,x, — X;,
X3 — X, Xy — Xy_1 €St monotone.

(a) Supposons que la suite est telle que

A= Xp+1 = Xpg = Xpi2 = Xpp1 = oo = Xpgp T Xpyk-15

Xn = Xp—1 > A, Xpigp+1 — Xpix > 4.

a .
== (_) T(x1 g ooy xn__l N x,,, xn+1 +)\4, seey xn+l+l>\,, xn+k+k>\, xn+k+1 5 veny XN)
A=0%

—_ a n_1 6m k a+ )\’ 6n+k-i-1(7\‘) : ' Bm
—(ax>k=0+[2—+z + + Y .

r=1 Xm 1=0 Xp4y + I Xn+k+1 m=n+k+2 X,

: 0
Si on remarque que [ — Op+k+1(A) = O ou — ket que
al A=0"%

a—+ i 1 ox = x, + Ik

Xpo1 + N1 Xpe1 + I

on trouve

k k
X, k : | x, [ 1 1
D > E = > X, E g = —f— — ,
1=0 Xp41  Xpik+1 I=0 Xp4g a \x Xn+k

X 1 Xn+k dx
D>"|a - —]>0.
a ( Zx'%"'l J‘xn xz) 0

Donc la fonction T n’est pas maximisée par cette suite.




(b) Supposons maintenant que la suite est telle que

A = Xp+1 = Xp = Xpt2 = Xp41 = e Xk = Xptrk-15

A > Xy — Xp_1, > Xkt — Xptko

Alors

0
D = (6_}\“ T(xl, cees Xps xn+1_}\,, x"+2_)\«, coey x,,+k—7», Xp4+k413 eoes XN) )
A=0+

D_(&) Iii 8m+ a— A N a P a
- O A=0+ Lm=1 Xp xn+1_)\‘ xn+2_}\‘ xn+k—1_)‘

Xptk+1 — Xnt+k + A n Ottt i Al 0,

+

Xk — A Xn+k+1  m=ntk+2 Y,

: 0 .
En tenant compte du fait que (ﬁ) On+k+1(A) = 0 ou 1 et en utilisant
- A=07%

la méthode des trapézes on trouve

Dz2——+ 55—+ .+ + ,
Xn+1  Xn+2 Xn+k—1 Xn+k

D> X, 1 a 1 a a PO a 1 a 1 a I

B x_n:-_l 2 Xn+1 2 Xar1  Xmea T Xher 2 Xa 2 X X,
b X, 1 a J""'”‘ dx 1 a 1

>_;c—,f:—_§xf+1 xH;C_Z —2_xr%+k+xn+k,
T R
Xnr1 2 Xpge1r Xpw1 2 Xpix Xn+1 2X041 2Xa4

D > - ¢ >0,

2 2
2x n+1 zxn +k
Donc la suite ne maximisait pas la fonction T.

De a) et b) on déduit que la suite maximisante est telle que

X1 (xZ—x1)3 sy (xn__xn—l) 5 ey (xN—xN~1)

est monotone.

LEMME 3. Soit (x,)Y une suite réelle strictement croissante telle que
xo =0 etque (x, et xy étant fixés)
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N5,
T(xl, ceny xN_l N xN) = Z -
k=1 Xg
est maximum (X,, X3, .., Xy_, etant les variables). Si la suite
Xy, (X3 =%y), (X3=X2), ooy (Xy—Xp-1)

est décroissante, alors il existe un k tel que

X1 = X3 = Xp = oo = X = Xg—g Z Xgpq — Xg 2 Xppy — Xgyg = .

= XN - xN_l .

a) Supposons que la suite soit telle que

Xp—1 = Xp—2 > Xy — Xy = Xpt1 = Xp > Xpt2 = Xpiq--

Alors
5 Id . r A} .
D = . T(X1s s X1 Xns Xnsq - Xy) (dérivée a droite) ,
n
2
D — d l:xn—xn—l +xn+1_xn]_xn — Xp+1Xn-1
- - 2 ¥ .
axn Xn—1 Xn XnXp-1
2 2
D > Xn — xn—1(§n+(xn_xn—1)) _ (xn—;xn—l) > 0.
XnXn—1 XnXp—1
donc la suite ne maximise pas la fonction T.
b) Supposons que la suite soit telle que
a = x"+1 - xn = x,,+2 - x,,+1 = e — xn+k - xn+k_1 (k22),

A > Xpik+1 — Xpsk> A< X5 — Xy—1.

Alors S

0
D= (—> T(X1 5 X5 500y Xp> Xpa1F k=D, oy Xpsno 220 Xin—1F A Xpsks oo XN) s
A=0+

O\
D= (i) [:xn+1_xn+(k_1)7\' " b Xpppt1—Xpri—K n Xnt+k+1 " Xn+k
a)\' A=0* Xn =1 xn+l+(k_l)7\‘ Xn+k .
a a
Notons a, = x, — 2 b, = x, + 2 et remarquons que

<i Xpt1+1— Xps1— M _ E I Xpx— X — k=D _ Xtk
Oh)r=0+ \ Xp+it(k—DA O ) s=o+ [ k=1 Xp+1+ (K—1DA Xav
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D = — ,
Xn S X7
, a J””‘“ dx
et que < — .
X7 Gn+1 x>
k—1  x,op [P vdx k—1 x,.,.[1 1
D > — — = — —_ ,
X, a aney X X, a |b, a,..
k—1 x, Xpip—X,—d 1 X
D > . . +k ( +k n ) _ (k—l) I n+k ,
Xn a bn An+x Xn bn Ay i
k— 1
D>———:-: bnan+k—xnxn+k d
Xn bn An+k

k—1 a a
p>—~—— .2 —x, — 2> 0
X, b, apiyr 2 [x"+k “ 2:| e

donc la suite ne maximise pas la fonction T.
De a) et b) on déduit que les inégalités strictes dans la suite

x1<X2—X1<x3—x2...<xN—xN_1

ne peuvent étre que consécutives.

LEMME 4. Soit (x,)) une suite réelle strictement croissante, x, = 0,
et maximisant la fonction

NS,
T(xy, o Xy) = ), —,
k=1 Xg
(X5, X3, ., Xy_1 eétant les variables). Si
X1s Xy =™ Xg5 X3 = Xpy ey Xy — XN—1
est une suite croissante, alors il existe un nombre n tel que
xl = xz'_xl = .. = x,,——x,,_l <x,,+1——x,,<...<xN—xN_1.

a) Supposons que la suite soit telle que

A= Xpy1 — Xp = o T Xpip 7 Xptk-1> (k>2)a

A > Xy — Xp—15 0 < Xpikt1 7 Xpik-

Alors U

S
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0
e T(X15 X5 s Xps Xt 1= Ny voer Xtk 1—Ms Xyt ks ooes XN)
A=

0

(8) |:,,+1 x-l+ a - a +a+k]
O\ ) = nt1—A Xpt2— A Xn+k—1—M Xn+k
X
2

a 1
t 5t e+ = + ,
xn+1 xn+2 xn+k—1 xn+k

X, j""”‘ dx 1 X, 1 a?
+

n

— + = = = —3 > 0.
xn+2 X Xn+k Xn+1 Xn+2 Xn+1%Xn+2

Donc cette suite ne peut maximiser T.
b) Supposons que la suite soit telle que

<x2—x1<...<xk—xk_1<xk+1—xkzxk+2—xk+1 :...=XN—XN_1=a.

0
(ﬁ) T(xq, X3, s Xg— 15 Xpes Xpp 1 —(N—=k =D, X3y , —(N—k—=2)A, ..., xy -1 =\, Xy)
A=0+

0 Xpr1—Xk—(N—k—1DA a+A a+n a+i
, + + ot + ,
+ xk+1——(N—k-—1)X Xk+2—(N——k-—2)7\. XN_I—)\. xN

o
et comme
/a a+7\« _ 1 6 XN—xk+1+(N—k——l)>\. _ xN
(ax o+ | Xeri—(N—k—=Dr | N—k—1\OA/),_o+| xperi—(N—=k—=2% | x2,,°
on trouve
— X (N—k—1
D = x"(z -, N+
Xk+1 XKk+2 Xk+1 XN

d’ou (par utilisation de la formule des trapézes)

D > - = +- =+
Xk 2 xgvr o 2 X%

- xk(N_k_‘l) 1 )CN 1 XN J‘xN dX . XN

Xk + 1

— x{(N—k—1 1 x 1 x X 1 1
ps MN—k=D) 1 2N+__i+_,g< __>,
Xk+1 2 Xivq1 2 xR a \Xg+1 Xy
1 x 1 XyX — x2i = xxy—x
D> — 2N n 4 %kt k+12 (XN k+1).
2 Xivy  2xy AXj+1
1 x 1 Xya — ax
D> — - 2N n 4N , k1
2 Xig+1 2%y aX+1
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1 - XN + 2XN - 2xk+1

]

2xyn 2Xi4 1

2 2 2
Xiv1 + XN — 2% 1 Xy (Xy—Xp4 1)

D > 5 3
2XNX (41 2XNX i+ 1

= 0.

donc la suite ne maximise pas T.

De a) et b) on déduit le lemme.

LEMME 5. Soit (x,)Y une suite réelle croissante, x, = 0, maximisant

T(X1, Xgy e X1, Xy) = 2 —
. k=1 Xg

(x5, .., Xy_; étant les variables).

1
Alors T(xy,..,xy) < Y —+ 0 (—x—l)
Jnom XN

D’apres le lemme 2 on voit qu’il y a deux cas.
Premier cas: La suite x;, X, — X, .., Xy — Xy—; €st décroissante. D’apres
le lemme 3, on a:
X1 = Xp = X3 = w0 = X Xgog > Xgpg — X 2 Xgpp — Xgtg

= Xg+3 — Xg42 e = Xy — Xy = 4,

N

d’ou

0
b= <_) T(X15 s Xpm15 Xie> X1 T A X2+ oy Xy— 1+ A, Xy +2)
A

0 Xes1 — X + A a a
= (— + + o —
oA r=0+ Xk Xk+1 + A XN + A

1 ™ dx 1 ~dx 1
D>—— — > — - — =—>0.

Xk+1—4a
Soit
Vir1 = X1 + Cxp—Xp 01— X-1)

Yirz = Xz + (2% =X 1 — X4 4)

Vv = Xy + X=X —Xk—1) -
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Nous avons donc
T(X1 5 Xy ey Xios Xt 15 oos XN) < TXq 5 ey Xis Vit 15 Vit 25 s YN) -

Soit zy le plus petit des multiples entiers de x; qui soit supérieur ou égal a
yy et définissons z, , 1, Zx 15, .., Zy pAr:

C = Zk+2 = Zk+1 = Zk+3 — Zk+2 = -+ = ZIN-1 — ZN-2 T ZN T ZN-1
el Zyy1 = Yir1-
Remarquons qu’il est impossible d’avoir ¢ > x, car on aurait alors
Zy > Vi+r + X (N—k—=1) = Nx; 2 1 + (N—k—1)a = yy.
a) Supposons ¢ = x, .
Zy < Yn+ Xg =Xy + X+ 2% — X — X < Xy + 2Xy,
donc

1 X
(6) T(xy, s Xies Zig 15 s Z8) < Z - + 2 <—1>

b) Supposons ¢ < x; .
Definissons . 1, Uy 5, ..., Uy, Uy PAr
Uks1 = Zp+toUN—1 = Zy, Upyy — Uppy = Upyz — Upyo

= .. = uN—uN_l = d.
II existe alors un entier [ tel que Ix; = zy — (k+1)x, = zy — Zy+1, donc

Ix Ix
7 =t = LI
7 ‘TNZk—1 N7

Comme ¢ < x,, on a donc d <. x,, alors

A = T(Xq, ey Xpy Upsq s s Uy—1) — T(xy, oy X, Vi+15s s VN)

d N-k-1 d ¢
Uy m=0 \Um+k+1  Zm+ik+1

d n N_zk:_l d(zy+ 1 +mc) — c(uys +md)

Uy me
L4 @ou,

b

Uy m=0 Umips1Zmir+1

=0 Un+k+1Zm+k+1

N—-k-1 —_—
A> __d_,+ Z (d ZC)u_k+1.

Uy m=0 Um+r+
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En utilisant la méthode des trapézes, on trouve:

d [ 1 1] "N (d—

1= d r -0 ! N 1] N d—c 1 1
—_ —clu u - —{>
Un e | 2uiy 2”1%u d e Ug+1 Uy

le dernier terme valant (par utilisation de (7)):

d — C uN - uk+1 1 d(N—'k—l) d
u = . = —,
d kil uk+1uN N - k - 1 uN uN
Donc
A > (d—c) ! + : > 0
—Cu ,
e uiy,  2uy
et

T(X 15 oo Xpgs Zht 15 vees ZN) - TUX 5 veey Xpy U 15 ooy Uy — 1) -

En répétant le procédé on trouve une suite ty,;, tyiq, .. tes; telle que

kv = lerr = o = Ly — G- = Xy
Nous sommes alors dans le cas a), donc (d’aprés (6)) |
1 X4
T(X;, X0,y Xy) < Y. — + 2(—)
XN m XN

Deuxiéme cas: la suite x;,x, — X, .., Xy — Xy_; €st croissante. Alors
d’apres le lemme 4, il existe n tel que

X)p = X — Xy = o = Xy = Xpog < Xpyp — X < Xpya Xn+1

<... <XN—XN_1.

Soit k tel quen + 1 < k < N — 1.

oT . 0 | X — Xp—q1 | Xppr — X Xk —1 1

- (xl 9 asey xk, aevy XN) — 6 + ) —

0%, Xk Xk Xk+1 Xk Xk +1

. . ' Xk_l xk
Et si T est maximum on a donc = ,
: X Xk +1
XN~1 XN-2 Xn+1 X L

et donc = = . .="-=_"1 =A<l
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X 1 _
Soit A4 = -~ onadonc — = AN
X A

n

1 1
T(X15 ey Xy Xy) = 1 + = 4+ .. + - + (N—n)(1—2).

2

Notons §; = (N—n)(1—-2) = — Log4
‘ Logh

varier A (on suppose A fixe):
— 87 — Logh — (1-MA™1
Logd (Logh)? ’

1
etcomme—LogK—x—i-1<OonaS'1>O.

X, nx, n
D’autre part A = < = , donc
P Xp+1 (A 1)x; n+ 1
5, < — LogA .<1__n_>: B LogA |
Log (" ntl (n+1) Log [
. n+1 8 n+1

S, < LogA

LogA

_2n+2

= LogA .
2n + 3 He
1 1 1
Soit S, = + + .. ,
2Tt mt2) 7 Tk oM@
X1
1+ [x—”]
X
S, + —> Log - ! = Log— = Log 4

Distinguons deux cas:

2n + 3
n

1) LogAd>5> . Alors

1 1 1 h
. l:(n-l—l) Tt Tamre ] b

1
2(n+1)

107

“(I—=2) et dérivons S; en faisant
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1
S, —8; =2 ——+LogA —LogAd + LogA4 > 0.
n 2n + 3
: 1
donc T(xy, .., xy) < Y —.
gy m
2) LogA < 5. Alors 4 < &3, donc
1 e’

LEMME 6. Soit (x,) ., une suite réelle strictement croissante s et t

deux entiers tels que s > t,

T(oy X_ 15 X0y X1y o) = .
’ ’ ’ ’ r=-—o (xr - xs)z(xr —- xt)2
r¥s r¥t

r

“Alors

T(ceey Xy 15 Xys Xptq ey Xs— 15 Xgs Xgb 15 ore)
< w8, 48,1 3(8,+8,)
3(xs—xt)2 (xs_xt)4 '

Définissons (y,) >, par

Yn = X + (n_S)as si n>s,
Yn = X, si t<n<s,
Y, = X, — (t—n)d, si n<t.

D’apreés (5) on a
T(’ yt—i ’ yta yt+1 > ey ys’ ys+1 H ) > T(’ Xe—15 xt’ ey Xs, xs+1 H )

Il suffit de vérifier que I'inégalité du lemme est vérifiée pour la suite (y,,).
Soit N tel que ' '

® SoN<i Lz[y_:;;]
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Remarquons que pour r, s, t distincts on a

1 1 1 T E 1
2 2 + 2
bV, =y =) Vo=V, V=Yl s—¥)

[ 1 N 1 ] 1 N 2 [ 1 N 1 ]
T Oe—=3)* T 0= U=y =) s Ve W

On trouve que

s+L 6
g = r
N r=sz—zv Vs— V)20, — )
r¥s, r¥t
siL[6,<1+1>+25,<1 1)]
2R (YT WS LR TR N TR ) AN A A B (s

r¥s, r¥t

Or, par application du lemme 5, on a:

s+ L Sr s—1 Sr
— _Z - z — —

-N Yr — Vs r=s—N Vs — Wr Ys — Wt r=s+1 Yr — Vs

r¥s, r¥t
— Voo 1 1 )
co(f)y Loy Lot
Vs—Vs—nN m< YsTYsoN m m<L M Vs — Wt
Vs~ Vs-1
Comme [y_ys__] < [w] = L, on a donc
Ys—Vs—-1 6s
s+ L 8 - _ 6
o N S <0<1s_zg_1>_ o
r=s—-N Yr — Vs Vs—Vs—n Vs = Wt
r¥s,r¥t
D’autre part
s+L Sr s+ L 6r s—N 8r Bs

> - % ) -

=s—-N Yr = W r=t+1 yr—‘yt4 r=t—1 Yy — Y Vs = Wt

r¥s,rtt
_68 1 /;1
Ys = Wt ys+L Ve m M mom
avec, pour Y : 1 <m<£ili—:£, etpour ) : 1 <m<N+t—s,
t+1 — Wi

en appliquant a nouveau le lemme 5 et remarquant que y,_;, y,—5, ., Vs

sont équidistants. La différence entre les deux derniéres sommes est (si elle
n’est pas négative):
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1 1 ys+L_yt >
— < — (N+t—ys)
meiﬁgﬁm Nat=s 6&1
1 Ld +ys
< — (N+t—s
1 Vs— Vs N+ys
< — (N+t—
N +t— ( ( 9
1 2
N+t —

en utilisant (8) et I’équidistance de y,_,, ..., ys_n. D’apres (9) et (10) on a:

s+L 6,. 1 1 2(6s + St)
Sy < + 4
Y ;Z_iv (Vs—y,)? [( —yy)* (y,—yt)z] Vs—y)*

2 ym—yt) (ys—ys_1> 2(ys— ) ]
+—— Jo( L ) ol 4 2 TE
(ys—yt)“‘[ <ys+L—yt Vs—Vs—N (N +t—5)3,

Quand N tend vers l'infini le dernier crochet tend vers zéro, donc:

+ 6"' 2(6s+ 6 )
Z e Vw12 S - _ il
r=—ow (yr ys) (yr yt) (ys yt)
r¥s, r¥t
+ o0 6»' 1 1
+ + -
,’ESZ‘;’: (ys—y)? [(yr—ys)2 (y,—yt)z]

D’apreés (3) on sait que

+ o0 S 2 o
D e A Ry d
rr$—s,_ro#ot yr ys yt ys
+f & < —8 1! _ 0 d’ou le 1
< — — , d’ou le lemme.
o —y)* 3 (Vs— y2)?

r¥s,r¥t

PREUVE DU THEOREME,

Sans perte de généralite, on peut supposer

R
Xp <X, <.<xg et Y |ul|*=1
=1

i
e

;

Notons ¢, = \/a pour r.= 1,2, .., R et définissons la matrice M par:

e
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M), , =0 si r =3¢,
M), s = ——— si r # s.

La matrice i M est hermitienne, c’est pourquoi ses vecteurs propres sont
orthogonaux et

r.s Xp — Xg
r¥s

est donc maximal si (4,)%; est un vecteur propre de M dont la valeur
propre est maximale en valeur absolue. Admettons que c’est le cas et soit
i n la valeur propre (qui est donc purement imaginaire), on a donc

2 2

& c,C
2 rts - 2 rs —
W = ——uu < X|u,| —
g; (xr_ixg w0 h ' 2: Z; (xr_"xg ’
r¥s s¥r
(2 cause de l'inégalité¢ de Cauchy)
cZee i,

2<Z;Z(x

SFrt¥Fr

xs) (xr - xt) .

Le membre de droite peut étre partagé en deux parties selon que s = ¢
ou non, et remarquons que si § # t, on a |

1 1 1 1
(xr_xs) (xr_xt) (xs_xt) Xy — Xs Xy — X ’

’ s-:)s':r % rﬁzssrtitt Yo 7 X [N T Xs Xy = X
sFt
D’aprés (3) on a
| 8,8, | u, |2 2
(11) gz ="
Zs: Zr: (x,—x)* \Z l |

r §

et la seconde somme devient
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s— ¥ cieeuu, N Z cle, qu2
r,s,t (xs_xt) (xr_xs) ) S ( r)
r¥s,s¥t #s
5 clec i, Z cle iy,
r,s,t (xs_xt) (xr—- b X — t)z
r¥t, st #t
. CsCelly .
Dans la premiére somme, on a:-), ——— = juu,,
Xg — Xy
t¥s
c ct 1, 5
et dans la troisiéme, on a: Z (——) = iug, ,
X
s#:t t
d’ou
3 ey
cleiu
S=2Re ) ——,
r,s (xs_xr)
r¥s
S cleslugllu, |
(12) "< U = rbs s r
2 h ",ZS (xs_‘xr)2
r¥s )

D’apres I'inégalité de Cauchy, on a:

I PALAEDND)
r r s
sFr
1<y ¥ 63c;”c?|us||u,l,
’

S%t Xp— xs)z(xr - xt)2
+

SHEA

(X,. - xs)z

2

-~ W
N~

8,67 | ug|? ciedel lugl | ul

+ .

\"‘L—: g Xp— s) r,g,t (X,.— s)z(xr_xt)2 :
sFr r¥s, r¥Ft

sSFt

Par application de (4) et du lemme 6, on trouve:

' oy ey lug | u
U? < A FE IO JRE I S Wl R el
+ Y, el 48 (s
s#=t
U2<7t4+2n2
450 3
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(@)

n?
US>+~ |-
3+3

De (11) et (12) on déduit
n? 2 n* /6
2<_ 2 - o _ ,
ST [3 * 3#}
L2
F ENEAE

Le point faible de la démonstration est sans doute la non utilisation du terme
3(8,+6)

( @ du lemme 6.
Xs ™ Xt
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