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CLIFFORD’S THEOREM 89

THEOREM (Riemann-Roch). Let C be a projective nonsingular algebraic
curve. The genus of C is a nonnegative integer g. For all divisors D
on C,

dim|D| > degD — g.
If the strict inequality holds, D is special. For all special divisors D,

dim | D | :,degD+1—~g+dim|J{—D|.

COROLLARY. deg A" = 2g — 2;dim | A | = g — 1; and all divisors D
of degree > 2g — 2 are nonspecial.

3. CLIFFORD’S THEOREM — THE ELEMENTARY PROOF

Clifford’s Theorem complements Riemann-Roch by providing information
about special divisors, which of necessity are of small degree. The theorem
also gives a sufficient condition that the curve C is hyperelliptic. (The
theorem owes its name to the appearance of its first part in [1].) The
proof I give here i1s elementary; more typical modern proofs [e.g. 4, Ch. IV,
section 5 and 3, Ch. 2, section 3] involve considering whether the canonical
morphism C — P,_, defined by the canonical divisor & is an embedding.

Definition. C is a hyperelliptic curve if its genus g is at least 2, and
if C admits a g3.

Remarks.

1. C is hyperelliptic if and only if there is a rational map C — P,
of degree 2.

2. This happens if and only if C has an (affine) equation of the form
vt = f(x).

3. Part ‘(3) of Clifford’s Theorem shows that a hyperelliptic curve has a
unique g;. Contrast this to the case of an elliptic curve, where g =1
Here any divisor of degree 2 defines a g}. Yet choosing distinct points P,

Q one sees easily that the divisors 2P and P + Q are not linearly equivalent,
and so define distinct g3 ’s.

THEOREM (Clifford). Let C be a curve of genus g, and let D be an
effective special divisor on C. Then
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1
(1) dm|D| < E‘degD.

(2) Equality holds in only 3 cases: (a) D = 0; or
(b) D = A; or
(c) C is a hyperelliptic curve.

(3) If Case 2c holds then C admits a unique g, degD = 2r for
some integer r > 1, and D ~ r-g}.

Proof of (1). Since D is effective special, the vector spéces L(D) and
L(A"— D) are both of positive dimension. Define a map p: L(D) x L(# —D)

- L(A) by wWf,9) = f-g. Since (f/)+ D >0 and (99 + A& — D > 0,

(f9) + & = (f) +(9) + A = [(f)+D] + [(9)+A —D] > O0so fg e L(X).)
This map is bi-injective, so dim L(x#") > dim L(D) + dim L(#"—D) — 1 by
Clifford’s Lemma. Since (D) = dim | D | — 1, one has

(1) dim|# | >dim|D|+ dim| X4 — D]|.
On the other hand, Riemann-Roch guarantees that

) degD +1—g=dim|D|—dim|X* — D|.

Adding these, and recalling that dim | | = g — 1, one gets degD

> 2dim | D]. ]
Implicit in the proof is a result T will need later.

1
LEMMA 1. For the effective special divisor D, dim|D| = Edeg D if

and only if dim| % | = dim|D| + dim | # — D|. This holds if and only
if g—1<dim|D|+ dim|J — D|. Further, equality holds for D if and
only if it holds for (any effective divisor linearly equivalent to) # — D. [

Proof of (2). Assume that equality holds, and that D is neither O nor %"
Notice that if deg D = 2, or deg A — D = 2, then D, or A4 — D, defines a
g3 and C is hyperelliptic. Thus, I may assume that deg D and deg " — D
are both at least 4, so dim | D | and dim | 4~ — D | are both at least 2. Fix
a point P in C. Since dim|# — D| > 2 I can choose a divisor E = P
+ XegR in | A — D|. Now fix a point Q on C but not in the support of
E (i.e. eg=0). Because dim|D| > 2 I can choose a divisor (sloppily I call
it D) in | D | whose support contains both P and Q,
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Set I = inf(D, E) and S = sup (D, E). Then
I = Ymin(dp,ep)- P and S = Zmax (dp,ep)" P.
Since' P is in I, and Q is not, we have 0 < degl < deg D. Once 1 show
that dim | [ | = %deg I, by descent I will have shown that C is hyperelliptic.

Notice that L(I) = L(D) () L(E). The inclusion L(I) = L(D) () L(D) holds
because I < D and I < E. On the other hand, if f € L(D) () L(E), (f) + D
and (f) + E are both effective. Then, for all points R, ordg(f) = —dg and
ordg(f) = —eg, so ordg(f) + min (dg, eg) = 0 and f € L(I). Similarly, one
sees that L(D) + L(E) = L(S). Since D < S and E < S both L(D) and- L(E)
are subspaces of L(S). If § € L(D) and ¢ € L(E), then for all R, ordg(d+e)
> min (ordg(8), ordg(e)) = min (—dg, —eg) = —max (dg,eg). This shows
that 0 + € € I(S).

As subspaces of L(S), we see that

dim (D) + dim L(E) = dim L(I) + dim (L(D)+ L(E)) .
Rewriting this in terms of linear systems gives
dim|D| + dim|E| < dim|I| + dim|S].
Since E ~ A — D, Lemma 1 applied to D gives
dm| X4 | <dm|I[|+ dim|S].
Yet [ + S=D+E~X,s0 S~X4 — 1 Lemma 1, now applied to I,
shows that dim | I | = %deg I. | H

To prove the third part of the theorem I need some technical lemmas.
We may assume that the curve C is hyperelliptic and so comes equipped
with a given g3. On any such curve I can define a function n: C — C,
by defining m(P) to be the unique point ‘Q such that P + Q is a divisor in
the given g3. To verify that m(P) is well defined, notice that if P + Q
and P + R both belong to the given g}, then Q ~ R. Since g > 0, Q must
equal R [4, IL. 6.10.1]; this shows that w(P) is well-defined. Notice that since
nP + Pisin the g3, n(nP) = P.

LEMMA 2. For any point P,L(A# —P) = L(# —P—nP) and KA —P)
=Ix) — L

Proof. P + n(P) is a g3 so dim|P + nP| =1 and by Lemma I,
14+dm|A# —P—nP|=dm|xX|. Since # —P—nP <X —P
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< A, one sees that (A —P—nP) ¢ (A —P) = L(X"). To prove I{A — P)
= L(A — P—nP) it suffices to show that I(# — P) # L('). Yet if these were
equal, the divisor P would be an effective special divisor of degree 1 with
dim|# — P| = dim| %" |. By Lemma 1, then dim|P| would equal

1
3 deg P, which is absurd! (]

Definition. The points Py, ..., P, on C form a disjoint set of points if for
each i, P; # mn(P;) and if the divisors P; + mP; are pairwise disjoint.

LemmAa 3. Let {P,,..,P,} be a disjoint set of points, with n < g.
Then

dim (VLA —P) =UA)—n=g —n.
1
Proof. Since A —P;) = (A") — 1, the intersection has dimension
= (") — n. Choose points P, ., ..., P, such that {P,, .., P} is a disjoint set.

Then

ALt —P) = () L# —Pi—nP) = L(# —Y (P, +7Py).
1 . 1
If dim () (X — Py > I() — n, then

dim L(# —S(P,+nPy) = dim () L(# —P) > I(#) — g = 0.

This shows that there is an effective divisor E ~ ¢ — Z(P;+ nP;); but this is
impossible since deg (4 —Z(P;+1P;)) < 0. O

COROLLARY. Let {Pl, P,, .., P,} be disjoint. Then
dim (L(#" —2P) () L(X —P)) = g — n.
3

Proof. Since L(A —2P,) «¢ (X —P;), by the lemma L(# —2P) ()
() L(#"—P)) is contained in the vector space L(A4 —Py) (| () L(A# —P) of
3 : 3

dimension g — n + L.
If these vector spaces were equal, then they would both equal

L(# —2P, —nPy) () () L(X —Pi—nP)).
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Choosing more points P, .y, .., P, as in the proof of the lemma would give,
similarly,

g
dim L(# —2P, —nP,) () () L(H# —P;—mP) > 1
3

Again, we get a contradiction since this shows that the divisor A — 2P,

— P, Z (P,—nP;) of negative degree is linearly equivalent to an eﬁ"ectlve

divisor. ' ]
Now I can finally prove (3). '

Proof of (3). Given an effective special divisor D of degree 2r and with
dim | D | = r, choose points Py, .., P, forming a disjoint set. Notice that since
2 < deg D and 2 < deg (# —D), then1 < r < g — 2. Then thereisa divisor,
call it D, in | D | of the form

D=P +.+P +A.
[ claim A = ®P; + .. + ©P,. This could fail in two ways.
Case 1: If A contains some point Q which is not equal to any of
P,...P, or nP,,..nP,, then L(# —D)c (jL(x,—P,.) N LO¥ —0Q). Yet

(# —D) = dim|# — D|+ 1 = g — r while, by Lemma 3, the intersection
has dimension g — (r+1). This shows that Case 1 cannot occur.

Case 2: If A contains some P;, or contains some nP; twice, (after
interchanging P; and nP; if necessary and renumbering) we can write

D=2P, +P,+..+P, +B
where B is effective, of degree r — 1. Here, L(# —D) < L(# —2P)) ()
(\ (A4 —P,). Again, (#"—D) = g — r, and by the corollary the dimension
2 .

of the intersection 1s ¢ — (r+1). Case 2 cannot occur either.

Thus, D ~ P, + .. + P, + tP; + .. + nP, so D ~ r- g}. In particular,
if D is any divisor on C of degree 2 with dim|D| = 1, D is linearly
equivalént to a divisor in the given g}. Thus a hyperelliptic curve has a
unique ¢g3. O

It is interesting to compare the results of Clifford’s theorem with those
of the Riemann-Roch theorem, for hyperelliptic curves. Clifford’s theorem

shows that any special effective divisor D with dim | D | = %deg D is linearly
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equivalent to a multiple of the unique g3. In particular, for the canonical
divisor A we have A ~ (g—1)- g1. Conversely, the Riemann-Roch theorem
shows that any divisor D ~ r-gl, .where 1 < r < g — 1, satisfies dim | D |

1
= Edeg D. To see this, note that the proof of part (3) shows -that if
D ~ r-g3 1 can write
D ~ (Py+nP,) + (P,+nP,) + .. + (P,+mP,)

for a disjoint set of points {P,, .., P,}. Then

r

L(# —D) = L(f—i (Pt nPY) = () L —P).

1

By lemma 3 this set has dimension g — r; in other words, dim | 4" — D |

1 1
=—g—r—1= Edeg(&if—D). By lemma 1, dim | D | zzdegD.
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