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G((al 3t er)a (Bl > ety Bs)) = (alBl 3 e ale a2B1 LIRS a26s7 awey erBs)

is a projective morphism establishing an isomorphism between P,_; x P,
and the image & = o(P,_; xP,_,). [4, Ex 1.2.14] Once I label the coor-
dinates of P, ; S (211, s Z1g> 2215 - Z2ss - Zps)s & can be identified with
the algebraic subset of P,,_, cut out by the polynomials

121 2pg — ZigZpi | L < ip<randl <j,q <s}.

& is an algebraic subvariety of P,;_,, of dimension r + s — 2.
In P,,_, we can also consider the algebraic subvariety Z cut out by the
polynomials {) z;A/ |1 < k <t}. Since J is cut out by t <r + s — 2
ij

equations and dim & = r + s — 2, ¥ and J have a nonempty intersection,
all of whose components have dimension at least (r+s—2) — t, which 1is
> 0. [4, p. 48] However, any intersection point of & and 9 corresponds to a
pair of points (o, ..,%)eP,_,, (B¢, .., By) €P,_, satisfying (*). The corre-
sponding points a = X o,a;€ A, b = X B,;b; € B are nonzero, yet ¢(a, b) = 0.
Since this contradicts the bi-injectivity of @, I have shown that

dimC>r+s—1. ]

The assumption that K is algebraically closed was only needed to
guarantee that & () 7, which by dimension theory corresponds locally to a
proper ideal, was nonempty. Hilbert’s Nullstellensaltz shows that any proper

ideal in a polynomial ring over an algebraically closed field cuts out at least
one point.

2. A BRIEF RESUME OF DIVISORS ON CURVES

In this section, I will establish notation for divisors, and state the
Riemann-Roch theorem. Let C be a nonsingular projective algebraic curve
defined over an algebraically closed field K. C is contained in some pro-
jective space Py over K, and a (closed) point of C is any closed point
{Po, ., Py) of Py at which all the polynomials cutting out C vanish. The

group of divisors on C is the free abelian group generated by the points
of C. Any divisor can be written in the form

N =ZXZn,-P

where the np are integers, almost all zero. The degree of N is the integef
deg N = X np. The divisor N is effective if all the np are > 0; this is written
a8 N > 0.1 write D > Etomean D — E > 0.
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To any function f on C one can associate a divisor (f) = X ordp(f) - P,
where ordp(f) is the order of zero or pole of f at P. For any function f,
the divisor (f) has. degree 0. The divisors D, E are linearly equivalent,
denoted by D ~ E, if for some function f, D — E = (f). To a divisor D
on C one can associate a set of functions on C,

L(D) = {functions f on C |(f) + D > 0} {J {0}.

Then L(D) is a K-vector space of dimension [(D); the set | D| = {divisors
E ~ D|E > 0} of the divisors' (f) + D corresponding to functions f in
L(D) is the linear system associated to D. If {f,,.. f,} is a basis of
L(D), then | D| can be identified with P, by associating the divisor

(agfo+..+a,f,) + D

to the triple (aq, .., a,); one writes dim| D | for the dimension of this
projective space. To define dim | D | intrinsically, notice that dim|D| > r
if and only if, for all points P, .., P, in C, there is a divisor E in | D |
of the form E = P; + .. + P, + Q, with Q effective. Any such divisor E
is necessarily effective and linearly equivalent to D, and has support containing
each P;. (In fact, since dim|D| > r there is a linearly independent set
{fo, - f,} of functions in L(D). One can choose E of the form E = D
+ (oo fo + ..+, f,) for some oy, ..., 0,eK.)

If D~E, then |[D| = |E|, so dim|D| = dim| E|, and I(D) is iso-
morphic to I(E). Since for any function f on C deg(f) = 0, also deg D
= deg E. In particular, if deg D < O then | D| is empty, and L(D) = (0).

Definition. The curve C admits a g, if there exists a divisor D on C of
degree n, and with dim | D | = r. We call | D| the g}, defined by D.

Notice that if D defines a g, and E ~ D, then E defines the same g/,
Yet a curve may admit several distinct g;’s if it contains non-linearly
equivalent divisors all defining g}’s. To explain the notation, assume that
IL(D) has basis (fy, ..., f,)- Then the map

P - (fo(P), ..., £(P))

is a rational map from C into P,, defined except at the common zeros of
all the f; (the “fixed points” of | D|); via this map, the pullback of every
hyperplane in P, is a divisor on C of degree n. [4, II: 7.7 and 7.8.1]

The Riemann-Roch Theorem defines for each curve two invariants—a
nonnegative integer g, the genus, and a divisor 4", the canonical divisor
(détermined only up to linear equivalence). [For a modern proof, cf. 4,
Ch. IV.1; an elementary proof is given in 2].
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THEOREM (Riemann-Roch). Let C be a projective nonsingular algebraic
curve. The genus of C is a nonnegative integer g. For all divisors D
on C,

dim|D| > degD — g.
If the strict inequality holds, D is special. For all special divisors D,

dim | D | :,degD+1—~g+dim|J{—D|.

COROLLARY. deg A" = 2g — 2;dim | A | = g — 1; and all divisors D
of degree > 2g — 2 are nonspecial.

3. CLIFFORD’S THEOREM — THE ELEMENTARY PROOF

Clifford’s Theorem complements Riemann-Roch by providing information
about special divisors, which of necessity are of small degree. The theorem
also gives a sufficient condition that the curve C is hyperelliptic. (The
theorem owes its name to the appearance of its first part in [1].) The
proof I give here i1s elementary; more typical modern proofs [e.g. 4, Ch. IV,
section 5 and 3, Ch. 2, section 3] involve considering whether the canonical
morphism C — P,_, defined by the canonical divisor & is an embedding.

Definition. C is a hyperelliptic curve if its genus g is at least 2, and
if C admits a g3.

Remarks.

1. C is hyperelliptic if and only if there is a rational map C — P,
of degree 2.

2. This happens if and only if C has an (affine) equation of the form
vt = f(x).

3. Part ‘(3) of Clifford’s Theorem shows that a hyperelliptic curve has a
unique g;. Contrast this to the case of an elliptic curve, where g =1
Here any divisor of degree 2 defines a g}. Yet choosing distinct points P,

Q one sees easily that the divisors 2P and P + Q are not linearly equivalent,
and so define distinct g3 ’s.

THEOREM (Clifford). Let C be a curve of genus g, and let D be an
effective special divisor on C. Then
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