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72 F. PHAM

2. Etude des microsolutions dans le cas général

2.0. Microlocalisation « verticale »

Nous noterons cô le feuilletage vertical de C" x C, et S^ Vanneau des

opérateurs microdifférentiels « verticaux », c'est-à-dire l'ensemble des séries

formelles P £ akdt, où les ak e C{x, t} ont un polydisque de convergence
k<= z

commun et vérifient les deux conditions suivantes :

i) ordre fini: ak — 0 pour k > m (« Vordre » de P);
Qfc

ii) «convergence de Borel»: la série Y u_fc(x, t)— est absolument
ten k

convergente pour || x ||, | 11, | 0 | assez petits.

On note l'espace des opérateurs microdifférentiels verticaux d'ordre

^ m. En particulier <^ö(0) est un sous-anneau de Sö, et la multiplication
à droite ou à gauche par d(meZ) établit une bijection entre <^ö(0) et

Soit maintenant ^ < dxi,..., dXn > l'anneau des opérateurs poly-
nomiaux en ôXl,..., dXn à coefficients dans Sö : on pourra convenir d'écrire
ces coefficients à gauche des ôx\ ôxnn, mais il faudra de toutes façons tenir

compte des relations de commutation [dx,, xj 1 au moment d'écrire la loi
de composition. Ainsi 01 contient 0) comme sous-anneau, dont il est en

quelque sorte le « microlocalisé vertical ». Tout comme etc., 01 est un
anneau noethérien. Tout comme eux il peut être considéré comme la fibre à

l'origine d'un faisceau cohérent d'anneaux sur C" x C.

2.1. Action de 01 sur les fonctions holomorphes
Se^ule l'action de pose problème, et comme tout élément de est

la somme d'un opérateur différentiel et d'un élément de <^ö(0), il nous suffira de

définir l'action de éVJO) ; Soit donc P e SJff) :

00

P p(x, t) +L ak<X> t) Y" •

k= 1

00

A la série formelle £ ak d fk on associera le noyau intégral
k i

oo U — u)*'1K{x;t,u) at)>

qui grâce à la condition de convergence ii) est holomorphe pour || x ||,

| 11, | u | assez petits. Soient donc B une boule de C" et D un disque de C,

assez petits pour que p [resp. K~\ soit holomorphe dans un voisinage de
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B x D [resp. SxDxD]. Pour tout ouvert V x U cz B x D, avec U

simplement connexe, et pour tout t0 e U, on définit Pto : 0(V x U) -> 6{V x (/)

par la formule

(P,0v|/) (x, t) p(x, t)\|/(x, f) + j('u ; u)y\i(x,

En particulier (dt~~ ')(0 est l'opérateur qui à toute fonction holomorphe associe

sa « primitive verticale » nulle sur l'hyperplan t t0.
On en déduit pour tout R e 01 un opérateur

Rto:(9{VxU) ^ (9(VxU)

bien défini pourvu que V x U soit assez petit (et U simplement connexe).

Remarque. Il sera parfois utile d'étendre l'action des opérateurs Rt0 aux
fonctions analytiques multiformes dans le complémentaire d'une hyper-
surface Sf. Mais on prendra garde que cette action n'est pas définie dans

les « feuilles singulières », c'est-à-dire les droites verticales où plusieurs points
de 9* viennent à confluer, risquant de pincer le contour d'intégration. Le
résultat d'une telle action sera donc une fonction analytique multiforme dans
le complémentaire de 9 u où l'hypersurface est l'union des droites
verticales « en position singulière par rapport à Sf ».

2.2. Microsolutions d'un idéal c= 01

On prend B, D assez petits pour que J admette des générateurs R±,..., Rv
dont l'action sur les fonctions holomorphes est bien définie dans B x D.

Solutions mod. &(- x D). Pour V x U c B x D comme au n°2.1, on
définit l'espace

SoP(K x U){4» g &(V x U) | (Rv|/e x X 1,v}
dont il convient de remarquer qu'il ne dépend pas du choix du point t0 e U.
Il ne dépend pas non plus du choix des générateurs de l'idéal J pourvu que
ceux-ci convergent dans VxD(on prendra garde en vérifiant ce point que
l'égalité R,0(R',0 *J/) (R R')„,ii n'est pas vraie ; toutefois elle l'est mod. &(V x D),
ce qui nous suffit).

Microsolutions. Pour V x U comme ci-dessus, on définit

sol°(F xU) SolD(K x x D).

En passant à la limite inductive sur les petits ouverts V x U nous avons
ainsi défini deux faisceaux Soi® et solD, que nous étudierons sur l'espace
(BxD)* B x D\ycomplémentaire du lieu singulier y du système
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M — 0tjJ. Ce dernier sera supposé holonome, non caractéristique pour le

feuilletage vertical (toutes les notions introduites au §0 se transfèrent sans

modification aux ^-modules, avec la simplification supplémentaire que la
variété caractéristique ne contient jamais la section nulle du fibré cotangent).

Le lieu singulier 0* est donc une hypersurface transverse au feuilletage (à

trace finie dans chaque feuille), et nous pouvons choisir B, D de telle sorte

que 0 n(BxD) ne rencontre pas B x dD (ôD bord du disque).

Théorème. Avec les hypothèses ci-dessus, et si B, D sont assez petits,

i) pour tout ouvert V x U c (B x D)* B x D\0, avec V, U
simplement connexes, toute \|/ g Solö(F xU) se prolonge en fonction analytique
multiforme sur (VxD)* V x D\0 ;

ii) le faisceau so\D des microsolutions est localement constant sur (B x D)*,
où il définit un système local d'espaces vectoriels de dimension finie.

Preuve de la partie i). Il s'agit d'un résultat de « prolongement analytique

vertical » dont la démonstration peut être ' calquée sur le cas n 0

(théorème 1.2 i)), après quelques préparatifs algébriques dont voici l'esquisse:

grâce à un théorème de division dans l'anneau des opérateurs micro-
différentiels (cf. par exemple [14] Microloc. §3), l'hypothèse non caractéristique

implique que M peut être considéré comme la fibre à l'origine d'un

^-Module cohérent de support 0 ; on en déduit l'existence dans 0 n <^ö(0)

d'un opérateur P dont le symbole principal p(x, t) est une équation (non
nécessairement réduite) de 0.

Alors un argument de « perturbation compacte » analogue à celui de 1.2

montre que P, tout comme p, est un isomorphisme sur tous les B0 x D0

a V x D\0, ce qui démontre l'existence du prolongement analytique multiforme

sur V x D\0 de toute solution de P mod. (9(V x D).

Quant à la partie ii) du théorème, nous en dirons quelques mots au n° 2.4,

où seront donnés des énoncés plus précis.

2.3. Microsolutions locales au voisinage d'un point générique de 0
Plaçons-nous maintenant au voisinage d'un point générique de 0, c'est-

à-dire un point S au voisinage duquel 0 est lisse et transverse aux feuilles

x Cte; prenons pour B x D un voisinage assez petit de S, dans lequel

0 sera donnée par l'équation t 0 (on peut toujours se ramener à ce cas

par un changement de coordonnées locales respectant le feuilletage). Pour
étudier la structure des microsolutions, on essaye de se ramener au cas d'une
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seule variable en cherchant un changement d'inconnue. \J/ ß\(/ qui mette le

système sous la forme

P{t,=0, dx$0.

En fait, cela n'est possible en général qu'en prenant Q dans un anneau plus

grand, l'anneau des opérateurs microdifférentiels d'ordre infini, qui heureusement

agit lui aussi sur les microfonctions. Le cas où l'on peut prendre Q

d'ordre fini est le cas où le système est « à singularité régulière » (Kashiwara-
Oshima [9]; une démonstration élémentaire est esquissée dans [15], et

détaillée dans [4]).

Conclusion. Le faisceau so\D (avec D comme ci-dessus) définit sur (B x D)*
un système local d'espaces vectoriels de dimension m « multiplicité » du

système microdifférentiel au point S valuation de l'opérateur P ci-dessus).

Cas particulier. S est un point « simple », c'est-à-dire que m 1.

C'est le cas le plus simple de singularité régulière. L'opérateur P peut alors
être mis sous la forme P t + ccôp1, comme au n° 1.3, et l'on en déduit

que l'espace des microsolutions est engendré par une « microfonction » de la
forme

Q(x, dr1) 8$ c0(x) 8$ + c±(x) Sgf1* + c2(x) 5fo"2) +

où 5 est la « dérivée a-ième » (aeC) de la microfonction de Dirac, définie
comme en 1.3 (indépendante de x).

2.4. Décomposition « de Stokes » des microsolutions
Reprenons maintenant B et D comme en 2.2, et posons (BxD)f
B x D\C, où C désigne la «coupure» C u S -h R+, en notant

Sey
S + R+ {x, s +1) | (x, s) S, t g R*}. Nous voulons définir une décomposition

de l'espace solD((BxD)f) en somme directe finie d'espaces de
microsolutions locales du type 2.3 :

sols sol Ds((BsxDs)'),

où S est un point générique de y (au sens 2.3), Bs x Ds est un voisinage
assez petit de S, et (BsxDs)' désigne ce même voisinage privé de la cou-
pure locale correspondante :

(Bsx Ds)'BsxDS\CS, u R+
SeS?n(Bs x Ds)

Notons que les espaces vectoriels sols ainsi définis ne dépendent pas de
la taille des voisinages (pourvu que ceux-ci soient assez petits: cf. lemme
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ci-après) et se recollent de façon évidente quand S parcourt Sf*, ensemble
des points génériques au sens 2.3, en un système local sur Sf* d'espaces
vectoriels de dimension finie (cf. 2.3).

Si de plus on prend S dans Sf', ouvert dense de Sf* formé des points
qui ne sont sur aucune demi-droite S' + R+ issue d'un autre point S'

de Sf, il est clair qu'on a comme en 1.4 une application linéaire de

« spécialisation »

sps : solD((B x D)') - sols

localement constante quand S parcourt Sf'.
Posons B* B\À, où À est l'hypersurface complexe « de bifurcation »

(projection de la partie non générique de Sf). Pour x e B*, Sfx Sf

n ({x} x D) consiste en l points distincts, d'où sont issues l coupures
St 4- R+(i= 1,...,/); nous noterons B' l'ouvert dense des x e B* pour
lesquelles ces / coupures sont disjointes. Les composantes connexes de B'

seront appelées « régions de Stokes ». Au-dessus de chaque région de Stokes,

Sf Sf' est un revêtement trivial à l feuillets (car en interdisant aux

coupures de se recouvrir on interdit à leurs origines de s'échanger). Soient

Sl9S2,... Si des points choisis sur chacun des / feuillets de ce revêtement

(pour une région de Stokes donnée).

i i

Proposition. L'application linéaire © sps. : solD((B x D)') -> © sols. est
i 1 i 1

un isomorphisme (constant sur chaque région de Stokes).

Preuve. L'injectivité est évidente, car une détermination sur (BxD)' de

fonction analytique multiforme sur (B x D)* (théorème 2.2 i)) se prolonge à

tout B x D si elle se prolonge au voisinage de chaque branche de Sf.

La preuve de la surjectivité peut se décomposer en deux étapes.

i
lre étape: surjectivité de l'application sold((FxD)')-> © sols. pour tout

i 1

ouvert V inclus dans une région de Stokes.

Elle découle immédiatement du lemme plus général suivant, qui montre dans

quelle mesure le faisceau soP des microsolutions est indépendant du choix
de D.

Lemme. Sous les hypothèses du théorème 2.2, soit D0 cz D un disquë

de centre arbitraire tel que Sf n (V x dD0) 0 (dD0 désigne le bord de

D0). Alors l'homomorphisme de spécialisation des microsolutions
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solD{(VxD0)')-+solD°((VxD0y)

est surjectif (et évidemment bijectif si ^ n (V x D0) ^ n(FxD).

Remarque préliminaire. Commençons par considérer les « variations »

d'une microsolution cp e sol^°o ro), c'est-à-dire les fonctions analytiques
multiformes dans (V x D0)*, différences de 2 déterminations d'un représentant \|/

de (p. On vérifie facilement que ces variations sont des solutions de

/ mod. 0(- x D), car si l'on compare au point (x0, t0) les germes de fonctions

PtQ\J/i et Pf0\|/2î où xj/i et \|/2 sont deux déterminations de \|/ en ce

point, on trouve (par exemple pour un opérateur P de la forme 2.1)

Pt<$i "" pt<$2 J K(x;t, u) \|/(x, u)du

(intégrale prise sur le lacet qui fait passer d'une détermination à l'autre),
et cette intégrale se prolonge en fonction holomorphe dans tout le domaine

d'holomorphie du noyau K.
Par conséquent, d'après la partie i) du théorème 2.2, les variations de

microsolutions mod. (9{- x D0) se prolongent en fonctions analytiques
multiformes dans (V x D)*.

Preuve du lemme. L'hypersurface ^ n (VxD) se décompose en deux

parties disjointes y0 et Sf ± avec ^0 SP n (V xD0) (et Sf ± éventuellement

vide). Nous noterons C0 + R+ et Ci $PX -h R+ les coupures
correspondantes. En prenant pour V une boule (par exemple), l'ouvert de Stein

(V x D0)' V x D0\^o sera l'intersection des deux ouverts de Stein
V x D\C0 et V x D0. Soit alors \[/0 e SolD°((F x D0)'). D'après Cousin, la
fonction \|/0 e 0((V x D0)') peut s'écrire v(/0 v|/ + 0, où \J/ e (9(V x D\C0) et
0 e (9(V x D0). Pour tout R e J la fonction RtQy\f sera donc, comme \|/,

holomorphe dans V x D\C0, et comme RtQy\f 0 holomorphe dans V x D0. Donc
Rt0\|/ est holomorphe dans V x D à l'exception peut-être de la partie C'0
de la coupure C0 située hors de F x D0.

Par ailleurs la remarque préliminaire nous dit que les variations de la
microsolution cp, c'est-à-dire les différences de déterminations de \|/ dans
(V x D0)\ se prolongent en fonctions analytiques multiformes dans (VxD)*.
On en déduit que les différences de déterminations de RtQ\\f sont analytiques
multiformes dans V x D\(Sf0u2T0), où 3T0 désigne l'union des droites
verticales en position singulière par rapport à ^0 (cf. remarque 2.1). Le fait
que l'une de ces déterminations soit holomorphe dans V x D\C'0 implique
alors qu'elle est holomorphe dans tout VxD.
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2e étape: surjectivité de l'application solD((B x D)') solö((L x D)').

Il s'agit là d'un problème de « prolongement .horizontal des microsolutions »,

dans lequel l'hypothèse non caractéristique doit jouer un rôle essentiel.

J'aimerais beaucoup en lire une démonstration élémentaire convaincante (une

possibilité est indiquée à la fin du n° 2.5). La démonstration de Kashiwara-
Kawai dans [6] (chap. III, §6, Prop. 4.6.1) fait appel aux outils sophistiqués

de Kashiwara et Schapira sur le problème de Cauchy « microhyperbolique

» [10].
Rappelons que modulo cette deuxième étape, nous avons achevé la

démonstration de la partie ii) du théorème 2.2.

2.5. Transformées de Laplace des microsolutions
On prend la boule B assez petite pour que Vx g B, ^x soit inclus dans

le disque de rayon r, en notant r yJl le rayon du disque D. La situation
est donc celle de 1.5 avec paramètres (avec confluences possibles de points
de x pour certaines valeurs des paramètres). On se reportera à la figure 4

de 1.5 pour y voir la définition du chemin y, qui maintenant dépend
continûment de x pour x g B, ainsi que la définition des chemins qui eux

ne peuvent tous dépendre continûment de x que sur une région de Stokes Ba,

et seront donc notés yf (l'indice a numérote les régions de Stokes, définies

en 1.4).

L'intégration sur y permet comme en 1.5 de définir la transformation
de Laplace

$£ : solD({B x D)') -+ sér(B)!sé _ r(B)

où sé\B) resp. sé _r(R) désigne l'espace des fonctions holomorphes dans

B x ÇT+ (où CT+ {TGC|Rex>0}) vérifiant localement au-dessus de B des conditions

de croissance analogues à celles introduites en 1.5.

On montre comme en 1.5 que i? est une application injective, qui
identifie l'espace des microsolutions à un sous-espace vectoriel Y de sér(B)l
sé -r(B). De même l'intégration sur les yf permet de définir des transformations

de Laplace locales iff: au-dessus d'une région de Stokes Bc, où

l'on a numéroté les feuillets de y, et noté solf(i= 1,...,/) les

espaces de microsolutions locales correspondant aux on pourra définir

pour tout cp g soif

(*) iff9 e~Th|/(x, t)dt mod ja/ _r(BCT)

où v|/ est n'importe quel représentant de (p holomorphe dans Ba x D\^. En

fait on peut même prendre \|/ holomorphe dans B° x D\^t (d'après le
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lemme 2.4), et dans ce cas le chemin d'intégration y,dans (*) peut être

remplacé par y (théorème de Cauchy). Une fois ce remplacement fait, 1 intégrale

ne dépend que de la classe de v|/ dans sol0((B0 x Z))'), ce qui permet de

se ramener au cas où xj/ est holomorphe dans (B x D) (grâce à la

résolution de la 2e étape de la proposition 2.4).

Conclusion. Les iffcp, pour (p e soif, admettent des représentants

holomorphes dans tout Bx Ct+ (vérifiant les conditions de croissance ^r{B)) et

définissent donc mod. ^-r{B)unsous-espace vectoriel ir1 de V.De plus

on a une décomposition de en somme directe

r =* © rji 1

qui au-dessus de la région de Stokes Ba n'est autre que l'image par
i i

if V iff de la décomposition solD((BaxD)') © soif (cf. la propo-
1=1 i= 1

sition 2.4, dont tout ce qui précède n'est qu'une paraphrase).

Exemple. Cas où le système est simple aux points génériques de iC
Dans ce cas les espaces iCf sont à 1 dimension, engendrés par des fonctions

4>f(x, t) qui dans la région de Stokes Ba admettent des développements

asymptotiques formels

(**) <i>?(x, x) oc

qui doivent se comprendre comme transformés de Laplace des développements

2.3 des microsolutions en un point simple (en prenant garde dans 2.3

de remplacer la microfonction de Dirac 5 par 8jf2sf(jc)), où t — Sf(x) est

l'équation de la branche i^f).
Rappelons encore que les fonctions c(> f sont holomorphes dans tout

B x CT+, bien que les coefficients cffc de leur développement asymptotique
(**) soient en général singuliers sur l'hypersurface de bifurcation A (et se

prolongent en fonctions analytiques multiformes dans le complémentaire de

cette hypersurface). En dehors de la région de Stokes Ba, le prolongement
analytique du 2nd membre de (**) ne peut en aucune façon être compris
comme un développement asymptotique formel de 4> f.

En fait, le développement asymptotique formel de cj>f dans une autre
région de Stokes B°' se calcule à l'aide de la « matrice de raccordement »

2 ,£01,(0):
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<i)?(x, x) X Cl'f 4)f(x, X),
j

qui ne fait qu'exprimer l'isomorphisme de « changement de décomposition »

© © tT?',
,i j

et ne dépend donc que du choix de la normalisation des générateurs 4)? des

espaces vectoriels

Remarquons que l'isomorphisme de changement de décomposition est

attaché de façon intrinsèque au système microdifférentiel, c'est-à-dire qu'il ne

dépend que du ^-module M et pas de la façon dont celui-ci est

présenté comme quotient de 0t (en effet l'espace vectoriel des microsolutions

peut être défini de façon intrinsèque : sol Hom^.J, microfonctions)). Ainsi

par exemple le cas d'un point tournant de type « pli », étudié au §6 de

l'article [17] de Voros, se réduit au cas de l'exemple iii) de notre §0 (ici M
est le système de Gauss-Manin de la catastrophe « pli », déploiement
universel de la fonction t z3).

Conclusion. Tout le travail qui précède peut être considéré comme une
méthode de resommation de développements asymptotiques formels du

type (**) — par exemple les développements BKW des physiciens — qui
acquièrent ainsi une signification exacte modulo un reste exponentiellement

petit en t, dont le taux de décroissance exponentielle est d'autant plus
fort que les microsolutions peuvent être prolongées loin à droite dans le plan
complexe des t ; comme indiqué à la fin de 1.5, on peut même obtenir une

resommation exacte (à reste nul) si les microsolutions ont des propriétés de

prolongement analytique global dans le plan des t avec croissance modérée à

l'infini, comme c'est le cas des « fonctions résurgentes » d'Ecalle [5], qui
justement apparaissent dans les modèles semi-classiques étudiés par Voros [17].

Mise en garde au lecteur. Les développements asymptotiques dont il est

question ici n'ont pas grand-chose à voir avec ceux qu'étudient Kashiwara

et Kawai dans [7] : ces derniers sont purement locaux, ce qui exclut la prise

en compte de termes exponentiellement petits, alors que les nôtres sont en

quelque sorte « semi-locaux ».

Remarque technique. Il serait intéressant, suivant une suggestion de

Malgrange, d'utiliser la transformation de Laplace comme outil technique pour
démontrer la proposition 2.4 (2e étape de la preuve) de façon plus
élémentaire que dans Kashiwara-Kawai [6]. L'idée consisterait à démontrer que
les intégrales de Laplace <|>(x, t), définies au départ seulement au-dessus des
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régions de Stokes, admettent des prolongements analytiques au-dessus de tout

B, avec contrôle uniforme en x du comportement asymptotique en x (ce qui

permet de repasser aux \J/(x, t) par « Laplace inverse »). L'article [11] de

Malgrange me semble contenir tout ce qu'il faut pour faire ce travail (on y

étudie, au voisinage de x ce, le système différentiel en (x, x) « transformée

de Laplace » du système microdifférentiel considéré.

2.6. Qu'est-ce qu'un «point tournant»?
Nous avons appelé « points de bifurcation » les projections des points

singuliers de (relativement au feuilletage vertical). Certains points singuliers

sont d'un type trivial, et ne donnent pas lieu à des singularités des

développements asymptotiques : ce sont les points où le système M est

localement somme directe de systèmes du type 2.3 (par exemple les points où
2 nappes lisses de se coupent transversalement).

Il me semble conforme à l'usage des physiciens d'appeler « points tournants

» les points de bifurcation qui sont projections de points singuliers
non triviaux de Sf.

Notons que la trivialité d'un point singulier ne dépend pas seulement de

la géométrie de 5^; par exemple, en un point où deux nappes lisses de

ont un contact quadratique en codimension 1, il existe deux types de

systèmes holonomes simples aux points génériques; celui de ces deux types qui
n'est pas trivial est connu des physiciens sous le nom d'« intersection effective
de deux singularités de Landau» (cf. [8] et [15] pour une étude
mathématique de cet exemple).

3. Appendice sur le cas réel:
solutions microfonctions de Sato

Considérant C x C comme le complexifié de R" x R, nous nous
proposons d'étudier les solutions de notre système microdifférentiel dans le
faisceau #RnxR des microfonctions de Sato. Rappelons [17] que #RnXR est un
faisceau sur le fibré S*{R" x R) des directions de demi-droites cotangentes à

R" x R, et que le support du faisceau des solutions dans #RnXR est inclus dans
la variété caractéristique réelle du système (considérée comme sous-ensemble
de S*(Rn x R)). Avec notre hypothèse non caractéristique, ce support est donc
propre à fibres finies au-dessus de R", de sorte que les solutions dans
^RnxR s'identifient aux solutions dans (#£, <^_), faisceau des familles
analytiques en xeR" de microfonctions d'une variable réelle t (cf. par
exemple [14], Microlocalisation, §2).
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