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72 F. PHAM

2. ETUDE DES MICROSOLUTIONS DANS LE CAS GENERAL

2.0. MICROLOCALISATION « VERTICALE »

Nous noterons ® le feuilletage vertical de C" x C, et &, l'anneau des
opérateurs microdifférentiels « verticaux », ¢’est-a-dire I’ensemble des séries for-

melles P = ) a, %, ou les a, e C{x, t} ont un polydisque de convergence
keZ

commun et vérifient les deux conditions suivantes:

1) ordre fini: a, = 0 pour k > m (« lordre » de PY;
k

ii) « convergence de Borel»: la série ) a_x, t)ﬁ est absolument
keN .

convergente pour || x ||, | t|, | | assez petits.

On note &4(m) 'espace des opérateurs microdifférentiels verticaux d’ordre
(<) m. En particulier &40) est un sous-anneau de &, et la multiplication
a droite ou a gauche par 0"(meZ) établit une bijection entre &4(0) et &4(m).
Soit maintenant £ = &5 < 0,,, .., 0,, > l'anneau des opérateurs poly-
nomiaux en 0, ,.., 0, a coefficients dans &;: on pourra convenir d’écrire
ces coefficients a gauche des 04! ... 0%, mais il faudra de toutes fagons tenir
compte des relations de commutation [0, x;] = 1 au moment d’écrire la loi
de composition. Ainsi # contient 2 comme sous-anneau, dont il est en |
quelque sorte le « microlocalisé vertical ». Tout comme &, &, etc., Z est un
anneau noethérien. Tout comme eux il peut étre considéré comme la fibre a

I'origine d’un faisceau cohérent d’anneaux sur C" x C.

2.1. ACTION DE Z SUR LES FONCTIONS HOLOMORPHES

Seule I'action de &; pose probléme, et comme tout élément de &, est
la somme d’un opérateur différentiel et d’'un élément de &£4(0), il nous suffira de
définir I’action de &4(0); Soit donc P € &5(0):

P=pxt)+ > alxt)d *.
k=1

A la série formelle Y a, 3, * on associera le noyau intégral

k=1 ‘
2 (t—u)1

K(x;t,u) = kZ1 a(x, t) —(k——_l)_'— 3

qui grace a la condition de convergence ii) est holomorphe pour | x |,
| t], | u| assez petits. Soient donc B une boule de C" et D un disque de C, -
assez petits pour que p [resp. K] soit holomorphe dans un voisinage de |
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B x D [resp. Bx D x D]. Pour tout ouvert ¥ x U = B x D, avec U sim-
plement connexe, et pour tout t, € U, on définit P, : OV xU) — OV x U)
par la formule

(PoV) (x, £) = plx, (%, 0) + [, K(x; t, upb(x, u)du .

En particulier (8, !),, est 'opérateur qui a toute fonction holomorphe associe
sa « primitive verticale » nulle sur ’hyperplan ¢t = ¢,.
On en déduit pour tout R € £ un opérateur

R,,: OV xU) - OV x U)
bien défini pourvu que V x U soit assez petit (et U simplement connexe).

Remarque. 11 sera parfois utile d’étendre I’action des opérateurs R, aux
fonctions analytiques multiformes dans le complémentaire d’une hyper-
surface <. Mais on prendra garde que cette action n’est pas définie dans
les « feuilles singuliéres », c’est-a-dire les droites verticales ou plusieurs points
de & viennent a confluer, risquant de pincer le contour d’intégration. Le
résultat d’une telle action sera donc une fonction analytique multiforme dans
le complémentaire de & U ., ou I'hypersurface J est 'union des droites
verticales « en position singuliére par rapport a & ».

2.2. MICROSOLUTIONS D’UN IDEAL ¥ — %

On prend B, D assez petits pour que .# admette des générateurs R, ..., R,
dont Paction sur les fonctions holomorphes est bien définie dans B x D.

Solutions mod. O(- x D). Pour V x U < B x D comme au n°2.1, on
définit I'espace

Sol?(V x U) = {y e OV x U) | (Ry),, ¥ € O(V x D), A= 1.V},

dont il convient de remarquer qu’il ne dépend pas du choix du point ¢, € U.
Il ne dépend pas non plus du choix des générateurs de I'idéal .# pourvu que
ceux-ci convergent dans V' x D (on prendra garde en vérifiant ce point que
Pégalité R, (R;, V) = (R R'), ¥ n’est pas vraie ; toutefois elle 'est mod. OV x D),
ce qui nous suffit).

Microsolutions. Pour V x U comme ci-dessus, on définit
sol®(V x U) = Sol®(V x U)/O(V x D).

En passant a la limite inductive sur les petits ouverts ¥ x U nous avons
ainsi défini deux faisceaux Sol? et sol?, que nous étudierons sur I’espace
(BxD)* = B x D\& complémentaire du lieu singulier & du systéme




74 o F. PHAM

M = R/F. Ce dernier sera supposé holonome, non caractéristique pour le
feuilletage vertical (toutes les notions introduites au §0 se transférent sans
modification aux #-modules, avec la simplification supplémentaire que la
variété caractéristique ne contient jamais la section nulle du fibré cotangent).
Le lieu singulier & est donc une hypersurface transverse au feuilletage (a
trace finie dans chaque feuille), et nous pouvons choisir B, D de telle sorte
que & N (B x D) ne rencontre pas B x 0D (0D = bord du disque). R

THEOREME. Avec les hypothéses ci-dessus, et si B, D sont assez petits,

1) pour tout ouvert V x U <« (BxD)* = B x D\&, avec V, U sim-
plement connexes, toute \y € Sol’(V x U) se prolonge en fonction analytique
multiforme sur (V xD)* = V x D\Y;

ii) le faisceau sol® des microsolutions est localement constant sur (B x D)*,
ou il définit un systeme local d’espaces vectoriels de dimension finie.

Preuve de la partie i). 1l s’agit d’'un résultat de « prolongement analy-
tique vertical » dont la démonstration peut étre calquée sur le cas n = 0
(théoréme 1.2 1)), aprés quelques préparatifs algébriques dont voici I'esquisse:
graice a un théoreme de division dans Panneau des opérateurs micro-
différentiels (cf. par exemple [14] Microloc. §3), ’hypothése non caracté-

' ristique implique que .# peut étre considéré comme la fibre a 'origine d’un
& ;-Module cohérent de support % ; on en déduit I'existence dans & N &;(0)
d’un opérateur P dont le symbole principal p(x,t) est une équation (non
nécessairement réduite) de <.

Alors un argument de « perturbation compacte » analogue a celui de 1.2
montre que P, tout comme p, est un isomorphisme sur tous les By, x D,
c V x D\, ce qui démontre P'existence du prolongement analytiqué multi-
forme sur ¥V x D\& de toute solution de P mod. O(V x D).

Quant a la partie ii) du théoréme, nous en dirons quelques mots au n° 2.4,
ou seront donnés des énoncés plus precis.

2.3. MICROSOLUTIONS LOCALES AU VOISINAGE D'UN POINT GENERIQUE DE &

Plagons-nous mainténant au voisinage d’un point générique de &, c’est-
a-dire un point S au voisinage duquel & est lisse et transverse aux feuilles
x = Cte; prenons pour B x D un voisinage assez petit de S, dans lequel
& sera donnée par I'équation t = O (on peut toujours se ramener a ce cas
par un changement de coordonnées locales respectant le feuilletage). Pour
étudier la structure des microsolutions, on essaye de se ramener au cas d’une

’
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seule variable en cherchant un changement d’inconnue [y = Q¥ qui mette le
systéme sous la forme

Pt,o;, W =0, 06, ¥=.=0,0=0.

En fait, cela n’est possible en général qu’en prenant Q dans un anneau plus
grand, I'anneau des opérateurs microdifférentiels d’ordre infini, qui heureu-
sement agit lui aussi sur les microfonctions. Le cas ou 'on peut prendre Q
d’ordre fini est le cas ou le systéme est « a singularité réguliere » (Kashiwara-
Oshima [9]; une démonstration élémentaire est esquissée dans [15], et
détaillée dans [4]).

Conclusion. Le faisceau sol? (avec D comme ci-dessus) définit sur (B x D)*
un systéme local d’espaces vectoriels de dimension m = « multiplicité » du
systeme microdifférentiel au point S (= valuation de 'opérateur P ci-dessus).

Cas particulier. S est un point «simple», cest-a-dire que m = 1.
Cest le cas le plus simple de singularité réguliére. L’opérateur P peut alors
étre mis sous la forme P = t + ad, !, comme au n° 1.3, et 'on en déduit
que I'espace des microsolutions est engendré par une « microfonction » de la
forme

Q(x, 0, ") 6%?)) = Co(x) 62?)) + ¢1(x) 8(t) Yt ocy(x) 8% Y+

ou 3{ est la « dérivée a-iéme » (aeC) de la microfonction de Dirac, définie
comme en 1.3 (indépendante de x).

2.4. DECOMPOSITION « DE STOKES » DES MICROSOLUTIONS

Reprenons maintenant B et D comme en 2.2, et posons (Bx D)

= B x D\C, ou C désigne la «coupure» C = U S + R, en. notant
Se¥

S+R" = {x,5+1)|(x,s) = S, teR*}. Nous voulons définir une décompo-
sition de I'espace sol”((B x D)) en somme directe finie d’espaces de micro-
solutions locales du type 2.3:

solg = sol®S((Bg x Dg)),

ou S est un point générique de &% (au sens 2.3), By x Dg est un voisinage
assez petit de S, et (Bgx Dg) de51gne ce méme voisinage privé de la cou-
pure locale correspondante:

(BsxDg) = Bs x Ds\Cs, Cs = U S+ R,

Se¥ A(Bs x Ds)

Notons que les espaces vectoriels solg ainsi définis ne dépendent pas de
la taille des voisinages (pourvu que ceux-ci soient assez petits: cf. lemme
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ci-apres) et se recollent de fagon évidente quand S parcourt &*, ensemble
des points génériques au sens 2.3, en un systéme local sur &¥* d’espaces
vectoriels de dimension finie (cf. 2.3). '

Si de plus on prend S dans &', ouvert dense de &* formé des points
qui ne sont sur aucune demi-droite S’ + R™ issue d’un autre point S’
de &, il est clair quUon a comme en 1.4 une application linéaire de
« spécialisation »

sps: sol®((B x DY) — solg,

localement constante quand S parcourt &'.

Posons B* = B\A, ou A est ’hypersurface complexe « de bifurcation »
(projection de la partie non générique de ). Pour xe B*, ¥, =%
N ({x} x D) consiste en [ points distincts, d’ou sont issues ! coupures
S; + R™(i=1,..,1); nous noterons B’ I'ouvert dense des x € B* pour les-
quelles ces | coupures sont disjointes. Les composantes connexes de B’
seront appelées « régions de Stokes ». Au-dessus de chaque région de Stokes,
S = & est un revétement trivial a | feuillets (car en interdisant aux
coupures de se recouvrir on interdit a leurs origines de s’échanger). Soient
S,,S,,..S, des points choisis sur chacun des I feuillets de ce revétement
(pour une région de Stokes donnée).

! !
PROPOSITION.  L’application linéaire @ spg,: sol®((B x D)) —» @ solg, est
i=1 i=1
un isomorphisme (constant sur chaque région de Stokes ).

Preuve. L’injectivité est évidente, car une détermination sur (B x D) de
fonction analytique multiforme sur (B x D)* (théoréme 2.2 1)) se prolonge a

tout B x D si elle se prolonge au voisinage de chaque branche de &.
La preuve de la surjectivité peut se décomposer en deux étapes.

l
17 étape: surjectivité de lapplication sol®((V x DY) - @ sols, pour tout
i=1
ouvert V inclus dans une région de Stokes.

Elle découle immédiatement du lemme plus général suivant, qui montre dans
quelle mesure le faisceau sol® des microsolutions est indépendant du choix
. de D.

LEMME. Sous les hypothéses du théoréme 2.2, soit D, < D un disque
de centre arbitraire tel que & N (Vx0Dy) = @ (0D, désigne le bord de
D, ). Alors '’homomorphisme de spécialisation des microsolutions
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sol’((V x D)) — solP((V x Dy))
est surjectif (et évidemment bijectif si. & N (VxDy) = & n(VxD).

Remarque préliminaire. Commengons par considérer les « variations »
d’une microsolution @ € sol2? , ., c’est-a-dire les fonctions analytiques multi-
formes dans (V x D,)*, différences de 2 déterminations d’un représentant ¥
de @. On vérifie facilement que ces variations sont des solutions de
4 mod. O( x D), car si l'on compare au point (x,, ty) les germes de fonc-
tions P, U, et P, V,, ou Y, et |, sont deux déterminations de \ en ce
point, on trouve (par exemple pour un opérateur P de la forme 2.1)

Pto\lfl - Pto\ljz = j K(x;t, u) W(x, uydu

(intégrale prise sur le lacet qui fait passer d’une détermination a lautre),
et cette intégrale se prolonge en fonction holomorphe dans tout le domaine
d’holomorphie du noyau K.

Par conséquent, d’aprés la partie 1) du théoréme 2.2, les variations de
microsolutions mod. ¢(- x D,) se prolongent en fonctions analytiques multi-
formes dans (V x D)*.

Preuve du lemme. L’hypersurface & n (V x D) se décompose en deux
parties disjointes &, et &, avec £, = & N (V xD,) (et &, éventuellement
vide). Nous noterons C, = %, + RT et C; = &, + R™ les coupures cor-
respondantes. En prenant pour V une boule (par exemple), 'ouvert de Stein
(VxDy) =V x Do\¥, sera lintersection des deux ouverts de Stein
V- x D\C, et V x D,. Soit alors Y, € Sol®((V x Dy)). D’aprés Cousin, la
fonction Yy € O((V x Do)') peut sécrire Vo = ¥ + 6, ou Y e O(V x D\C,) et
8 e O(V x D). Pour tout R e .# la fonction R,  sera donc, comme v, holo-
morphe dans V x D\C,, et comme R, \/, holomorphe dans V x D,. Donc
R,V est holomorphe dans V x D & l'exception peut-étre de la partie C|
de la coupure C, située hors de V' x D,.

Par ailleurs la remarque préliminaire nous dit que les variations de la
microsolution ¢, cest-a-dire les différences de déterminations de { dans
(V'x Dy)’, se prolongent en fonctions analytiques multiformes dans-(V x D)*.
On en déduit que les différences de déterminations de R, sont analytiques
multiformes dans V' x D\(¥,UJ o), ou I , désigne l'union des droites ver-
ticales en position singuliére par rapport a &, (cf. remarque 2.1). Le fait
que I'une de ces déterminations soit holomorphe dans V x D\C/{, implique
alors qu’elle est holomorphe dans tout ¥V x D.
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2° étape: surjectivité de I'application sol®((B x DY) — sol®((V x DY).

Il s’agit 1a d’'un probléme de « prolongement. horizontal des microsolutions »,
dans lequel I’hypothése non caractéristique doit jouer un rdle essentiel.
Jaimerais beaucoup en lire une démonstration élémentaire convaincante (une
possibilité est indiquée a la fin du n° 2.5). La démonstration de Kashiwara-
Kawai dans [6] (chap. III, §6, Prop. 4.6.1) fait appel aux outils sophis-
tiqués de Kashiwara et Schapira sur le probléme de Cauchy « microhyper-
bolique » [10].

Rappelons que modulo cette deuxiéme étape, nous avons achevé la
démonstration de la partie ii) du théoréme 2.2.

2.5. TRANSFORMEES DE LAPLACE DES MICROSOLUTIONS

On prend la boule B assez petite pour que Vx € B, %, soit inclus dans

le disque de rayon r, en notant r\/i le rayon du disque D. La situation
est donc celle de 1.5 avec paramétres (avec confluences possibles de points
de &, pour certaines valeurs des parametres). On se reportera a la figure 4
de 1.5 pour y voir la définition du chemin y, qui maintenant dépend conti-
niment de x pour x € B, ainsi que la définition des chemins y;, qui eux
ne peuvent tous dépendre continiment de x que sur une région de Stokes B°,
et seront donc notés y¢ (I'indice o numérote les régions de Stokes, définies
en 1.4).

L’intégration sur y permet comme en 1.5 de définir la transformation

de Laplace
& :sol’((B x D)) —» /"(B)/</ _,(B)

ou /"(B) resp. </ _,(B) désigne l'espace des fonctions holomorphes dans
B x Cf(ou C; ={1eC|Ret>0}) vérifiant localement au-dessus de B des condi-
tions de croissance analdgues a celles introduites en 1.5.

On montre comme en 1.5 que ¥ est une application injective, qui
identifie I'espace des microsolutions a un sous-espace vectoriel ¥~ de /"(B)/
o/ _,(B). De méme l'intégration sur les y7 permet de définir des transfor-
mations de Laplace locales #¢: au-dessus d’une région de Stokes B°, ou
'on a numéroté &9, .., ¢ les feuillets de &, et noté solf(i=1,..,1) les
espaces de microsolutions locales correspondant aux % ¢, on pourra définir
pour tout @ € sol{

*) L7o = [ eT™(x,0)dt  mod o/ _(BY)

ou Y est n'importe quel représentant de ¢ holomorphe dans B® x D\¥. En
fait on peut méme prendre Y holomorphe dans B° x D\&; (d’apres le
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lemme 2.4), et dans ce cas le chemin d’intégration Y, dans (*) peut étre
remplacé par v (théoréme de Cauchy). Une fois ce remplacement fait, I'inte-
grale ne dépend que de la classe de | dans solP((B° x DY), ce qui permet de
se ramener au cas ou \ est holomorphe dans (Bx D) (grice a la réso-
lution de la 2¢ étape de la proposition 2.4).

Conclusion. Les ¥ %o, pour ¢ € sol{, admettent des représentants holo-
morphes dans tout B x C. (vérifiant les conditions de croissance .« ,(B)) et
définissent donc mod. &7 _(B) un sous-espace vectoriel ¥'¢ de ¥". De plus
on a une décomposition de en somme directe

!
= p ¥
i=1

qui au-dessus de la région de Stokes B° n’est autre que l'image par
l l

¥ =Y °? de la décomposition sol®(B°x D)) = & sol{ (cf. la propo-
i=1 i=1

sition 2.4, dont tout ce qui précéde n’est qu'une paraphrase).

Exemple. Cas ou le systéme est simple aux points génériques de .
- Dans ce cas les espaces ¥°¢ sont a 1 dimension, engendrés par des fonc-
tions ¢ 9(x, t) qui dans la région de Stokes B° admettent des développements
asymptotiques formels

e} g ‘
(%) dI(x,T) o <Z c? k(x)r"‘) g~
. k=0
qui doivent se comprendre comme transformés de Laplace des dévelop-
pements 2.3 des microsolutions en un point simple (en prenant garde dans 2.3

de remplacer la microfonction de Dirac 3( par (253, o t — S7(x) est
'équation de la branche & ?). ‘

Rappelons encore que les fonctions &¢ sont holomorphes dans tout
B x C., bien que les coefficients ¢, de leur développement asymptotique
(**) soient en général singuliers sur ’hypersurface de bifurcation A (et se
prolongent en fonctions analytiques multiformes dans le complémentaire de
cette hypersurface). En dehors de la région de Stokes B°, le prolongement
analytique du 2" membre de (**) ne peut en aucune fagon étre compris
comme un developpement asymptotique formel de ¢¢.

En fait, le développement asymptotique formel de ¢$¢ dans une autre .

région de Stokes B® se calcule a l'aide de la « matrice de raccordement »
(C?f ii=1,2,..,1€ G1(C):




80 F. PHAM

$fx, 1) = Y CI7 ¢7(x, 1),

J

qui ne fait qu'exprimer I'isomorphisme de « changement de décomposition »

®YViedry,
i J

et ne dépend donc que du choix de la normalisation des générateurs ¢7 des
espaces vectoriels 7 ¢. R |

Remarquons que I'isomorphisme de changement de décomposition est
attaché de fagon intrinseque au systéme microdifférentiel, c’est-a-dire qu’il ne
dépend que du #-module # = %/F et pas de la fagon dont celui-ci est
présenté comme quotient de 2 (en effet 'espace vectoriel des microsolutions
peut étre défini de fagon intrinséque: sol = Homgy(.#, microfonctions)). Ainsi
par exemple le cas d’'un point tournant de type « pli», étudi¢ au §6 de
'article [17] de Voros, se réduit au cas de I'exemple iii) de notre §0 (ici A4
est le systtme de Gauss-Manin de la catastrophe « pli », déploiement uni-
versel de la fonction t=2z3). '

Conclusion. Tout le travail qui précéde peut étre considéré comme une
méthode de resommation de développements asymptotiques formels du
type (*x) — par exemple les développements BKW des physiciens — qui
acquiérent ainsi une signification exacte modulo un reste exponentiellement
petit en 1, dont le taux de décroissance exponentielle est d’autant plus
fort que les microsolutions peuvent étre prolongées loin a droite dans le plan
complexe des t; comme indiqué a la fin de 1.5, on peut méme obtenir une
resommation exacte (a reste nul) si les microsolutions ont des propriétés de
prolongement analytique global dans le plan des ¢ avec croissance modérée a
I'infini, comme c’est le cas des « fonctions résurgentes » d’Ecalle [5], qui jus-
tement apparaissent dans les modeles semi-classiques étudiés par Voros [17].

Mise en garde au lecteur. Les développements asymptotiques dont il est
question ici' n’ont pas grand-chose a voir avec ceux qu’étudient Kashiwara
et Kawai dans [7]: ces derniers sont purement locaux, ce qui exclut la prise
en compte de termes exponentiellement petits, alors que les notres sont en
quelque sorte « semi-locaux ».

Remarque technique. 1l serait intéressant, suivant une suggestion de Mal-
grange, d’utiliser la transformation de Laplace comme outil technique pour
démontrer la proposition 2.4 (2° étape de la preuve) de fagon plus élé-
mentaire que dans Kashiwara-Kawai [6]. L’idée consisterait a démontrer que
les intégrales de Laplace ¢(x, 1), définies au départ seulement au-dessus -des
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régions de Stokes, admettent des prolongements analytiques au-dessus de tout
B, avec controle uniforme en x du comportement asymptotique en T (ce qui
permet de repasser aux Y(x, ) par « Laplace inverse »). L’article [11] de Mal-
grange me semble contenir tout ce quiil faut pour faire ce travail (on y
¢tudie, au voisinage de T = o, le systéme différentiel en (x, 1) « transformée
de Laplace » du systéme microdifférentiel considére.

2.6. QU’EST-CE QU'UN « POINT TOURNANT »?

Nous avons appelé « points de bifurcation » les projections des points
singuliers de & (relativement au feuilletage vertical). Certains points singuliers
sont d’un type trivial, et ne donnent pas lieu a des singularités des déve-
loppements asymptotiques: ce sont les points ou le systeme # est loca-
lement somme directe de systémes du type 2.3 (par exemple les points ou
2 nappes lisses de & se coupent transversalement).

Il me semble conforme a I'usage des physiciens d’appeler « points tour-
nants » les points de bifurcation qui sont projections de points singuliers
non triviaux de &.

Notons que la trivialité d’un point singulier ne dépend pas seulement de
la géométrie de &¥; par exemple, en un point ou deux nappes lisses de &
ont un contact quadratique en codimension 1, il existe deux types de sys-
temes holonomes simples aux points génériques; celui de ces deux types qui
n'est pas trivial est connu des physiciens sous le nom d’« intersection effective
de deux singularités de Landau» (cf. [8] et [15] pour une étude mathé-
matique de cet exemple).

3. APPENDICE SUR LE CAS REEL:
SOLUTIONS MICROFONCTIONS DE SATO

Considérant C* x C comme le complexifié de R” x R, nous nous pro-
posons d’é¢tudier les solutions de notre systéme microdifférentiel dans le
jaisceau Ggn g des microfonctions de Sato. Rappelons [17] que @ rnxr €St UN
laisceau sur le fibré S*(R" x R) des directions de demi-droites cotangentes &
R" x R, et que le support du faisceau des solutions dans @g. g est inclus dans
la variété caractéristique réelle du systéme (considérée comme sous-ensemble
de S*(R" x R)). Avec notre hypothése non caractéristique, ce support est donc
propre a fibres finies au-dessus de R”, de sorte que les solutions dans
%rnxg Sidentifient aux solutions dans %, = 3 ; , € ), faisceau des familles
analytiques en x € R" de microfonctions d’une variable réelle t (cf. par
exemple [14], Microlocalisation, §2).
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