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62 F. PHAM

En fait Kashiwara et Kawai placent d’emblée le probléme dans le cadre
« microdifférentiel », c’est-a-dire que I'anneau 2, difficile a manier, est rem-
placé par un anneau plus grand dans lequel I'opérateur 0, est inversible,
et dans lequel I'idéal engendré par .# est plus commode a étudier.

Ce qui suit est un exposé élémentaire d’une partie des résultats de
Kashiwara et Kawai, suivi d'une relecture (n° 1.5 & 2.5) de ces résultats
en termes de transformées de Laplace. ‘

1. ETUDE DES MICROSOLUTIONS,
DANS LE CAS D’UNE SEULE VARIABLE (n=0)

1.0. L’ANNEAU & DES OPERATEURS MICRODIFFERENTIELS est défini comme ’en-

semble des séries formelles P = ) a, 0¥, ou les a, € C{t} ont un disque
keZ

de convergence commun, verifiant les deux conditions suivantes:
1) ordre fini: a, = 0 pour k > m (« lordre » de P);

k

ii) « convergence de Borel »: la série Y. a_,(t) ol est absolument convergente
keN .

pour | t|, | 6| assez petits.

La loi de composition dans & (que nous n’écrirons pas ici) est une exten-
sion naturelle de la loi de composition dans & (sous-anneau des Pe &
tels que a, = 0 pour tous k < 0); cf. par exemple [14] (Microlocalisation)
pour plus de détails. On note &(m) 'espace des opérateurs microdifférentiels
d’ordre (<) m. En particulier £(0) est un sous-anneau de &, et la multi-
plication a droite ou a gauche par 0;" (meZ) établit une bijection entre
&(0) et &(m).

PROPOSITION: & est un anneau principal. (Notons que cette proposition
est fausse pour 'anneau 92).

Idée de ‘la démonstration: Comme 0, est inversible dans &, tout idéal .#
de & peut étre engendré par des opérateurs d’ordre exactement 0, c’est-
a-dire, aprés division par un ¢élément inversible de C{t}, de la forme
P=1t"+ P, Peé&(—1); lentier m est la «valuation» de P (ne pas
confondre avec l'ordre!). Jaffirme alors qu'un élément P de .# -dont la
valuation est minimale engendre nécessairement .#: cela résulte immédia-
tement d’un théoréme de division dans &(0), qui nous dit que tout élément
de &(0) peut étre divisé par P, avec un reste de valuation strictement
inférieure.
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(Comme sous-produit du méme théoréme de division, nous obtenons
une propriété¢ fondamentale, utilisée traditionnellement pour motiver I'intro-
duction des opérateurs microdifférentiels: un opérateur microdifférentiel est
inversible si et seulement si son symbole principal est non nul a lorigine).

Grace a la proposition ci-dessus, notre probléme devient le suivant:

étudier les microsolutions d’un opérateur P = t™ + Y a,(t) 8, *.
=1

1.1. ACTION DE P SUR LES FONCTIONS HOLOMORPHES

o)

A la série formelle ) at)9,* on associe le noyau intégral K(t, u)
k=1
k—l

= z a,(t) ( k o qui grace a la condition de convergence ii) est holo-
=1

morphe pour |t|, |u| assez petits. Soit donc D un disque ouvert assez
petit pour que K soit holomorphe dans un voisinage de D x D. Pour tout
ouvert simplement econnexe U < D, et pour tout t, € U, on définit P, : O(U)
— O(U) par la formule

(Pol) (1) = t™(0) + [, K(t, u) W(u) du .

En particulier (9, '),, est l'opérateur qui a toute fonction holomorphe
associe sa primitive nulle en .

1.2.  MICROSOLUTIONS DE P

Commengons par définir, sur D* = D\{0}, le faisceau Sol® des solutions
mod. @(D), ou (D) désigne désormais 'algébre de Banach des fonctions
continues sur D et holomorphes sur D: pour tout ouvert simplement
connexe U < D* on pose

SolP(U) = {yr € O(U) | P, € O(D) pour un ¢, e U};
remarquons que cette définition ne dépend pas du choix de t,, car
P — P,V = [ K(t, u) (u) du
est holomorphe dans un voisinage du disque D.
THEOREME :

1) Tout germe de solution mod. OD) se prolonge sur tout D* en
fonction analytique multiforme.
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ii) Le faisceau quotient Sol?/O(D), que nous noterons solP, est un sys-
téme local d’espaces vectoriels de dimension m (Tespace des « microsolutions »
de P mod. O(D)).

En fait, cet énoncé est valable dans une situation plus générale qui nous
sera utile au paragraphe suivant:

Situation « semi-locale » : dans la définition de I'opérateur P, t™ peut étre
remplaceé par un polynéme unitaire p(t) de degré m, ayant toutes ses racines
Sy, .., S; dans le disque D (de multiplicités relatives m,, ..., m;, avec m; + ...
+ m; = m); on note alors D* = D\{S,,.., S, }.

Avant de démontrer le théoréme (dans la situation semi-locale) énongons
deux lemmes:

LEMME 1. Pour tout tqe D*, [lopérateur P,:0, — O, est bijectif.

Preuve. P, = p(t) + | zo K, ou p(t) est un isomorphisme et j;o K une
perturbation de norme aussi petite qu’on veut dans I'espace de Banach des
fonctions holomorphes sur un disque assez petit de centre t.

" Lemme 2. Pour tout disque Dy, = D (de centre t, arbitraire), opé-
rateur de O(D,) dans O(D,) défini par

Y(e) — [, Kt upb(w) du
est un opérateur compact.

Preuve Appliquer le critere d’Ascoli.

Preuve du theoreme (d’apres J. E. Bjork [3]).

i) Soit ¥ un germe de solution mod. O(D), admettant un prolongement
analytique dans un ouvert U < D¥* et soit D, un disque de centre toe U,
non inclus dans U, mais d’adhérence D, = D*. Posant 6 = P, \y € O(D),
on va montrer que l'équation P, ' = 0 admet dans O(D,) une solution
unique, qui sera donc le prolongement analytique de V. Il suffit pour cela
de remarquer que lopérateur P de O(D,) dans O(D,) est d’une part injectif
(en vertu du lemme 1 et du principe de prolongement analytique), d’autre
part d’indice 0 car déduit de l'opérateur p (évidemment bijectif) par une
perturbation compacte (lemme 2). '

ii) Comme opérateur de (D) dans O(D), P,, se déduit par perturbation
compacte (lemme 2) de 'opérateur p qui est d’1nd1ce — m (injectif, de conoyau

R g ‘
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de dimension m). P, est donc d’indice —m, et pour t, e D* il est injectif
en vertu du lemme 1 et du principe de prolongement analytique. Son
conoyau est donc de dimension m. Soit 0,, ..., 0, € O(D) des fonctions défi-
nissant une base de ce conoyau. D’aprés le lemme 1 les équations P, \,
= 0y, .., PV, = 0, se résolvent de fagon unique dans O, , et 'on vérifie
immeédiatement que V,, .., \,, définissent une base de Sole/(O(D).

1.3, EXEMPLE: MICROSOLUTIONS AU VOISINAGE D’UN POINT SIMPLE (m=1)

Si P est de valuation m = 1 a l'origine, tout ¢élément de &(0) peut €tre
divis¢ par P avec un reste a coefficients constants (cf. par exemple [14]
Microloc. §3). En particulier, la division t = QP + R permet ainsi dé se
ramener au cas ou le générateur de l'idéal est de la forme P = t — R,
R e &(—1) a coefficients constants.

Ecrivant donc P = ¢t + 2 0, ' + ... (2eC), on peut démontrer le

LEMME. Il existe un opérateur d’ordre 0 d coefficients constants.
Q=1+c¢0; " +¢c,0,%2+ ..,
tel que PQ = Q(t+ad; ).

COROLLAIRE. L’opérateur Q™' transforme les microsolutions \ de P
en les microsolutions  de (t+0d; ') = 0 (mod. 0).

Remarquons que l'action des opérateurs microdifférentiels sur les micro-
solutions est bien définie, car 'ambiguité du choix du point tz, dans 1.1
disparait quand on passe au quotient modulo 0. ‘

Microsolutions de (t+ad,” ) = 0 (mod. 0).
Si o #* — 1, —2, .., I'espace a 1 dimension des microsolutions est engendré

1 (_t)—a—l
par Y, = — d. O;
Pl = T Mot
st = —1—j,jeN, il est engendré par

—1 ¢/ Logt
Uy = — — 5! mod. 0
2ni !

Pé

tles coefficients de normalisation sont choisis pour la commodité).

Dans un cas comme dans I'autre, nous noterons 8{) la microsolution

. . , . 0 . . .
ainsi définie. 8§ = §, est la « microfonction de Dirac », et” avec les nor-

malisations choisies 9f 8 = 3{%*¥ pour tout k € Z.

Microsolutions de (t+ad, ' +..) y = 0 (mod. 0)
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D’apres le corollaire du lemme précédent I'espace des microsolutions est
engendré par la « microfonction »:
@ _ §¢ 1 2
Q8 =08@F + 18V + 85V +

c’est-a-dire par la classe mod. @ de la fonction analytique ga\ﬂa, ou \, a été
définie précédemment, et g, est le germe de fonction holomorphe définie par

% I'(o). ) : .
¢ ——(—t st o # —1,—2,..
,;0 kF(oc—k)( )
golt) =
) ]!
Y ¢ t* sia = —1—j,jeN

o “(j+k)!

(on a posé cy=1).

1.4. COMPARAISON DES MICROSOLUTIONS « LOCALES » ET « SEMI-LOCALES »

Dans la situation semi-locale 1.2, posons D' = D\C, u .. u C;, ou les
« coupures » Cy, .., C, sont des demi-droites paralleles disjointes issues res-
pectivement des points singuliers S, .., S; (disons, pour fixer les idées, les
demi-droites t — S; € R™, en supposant Im S; # Im S; pour i # j). Pour
i = 1,.. 1 soit D; un disque de centre S;, assez petit pour que D; = D;\C;
< D’ (cf. Fig. 3).

FIGURE 3

b
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On peut alors considérer les applications linéaires Sp; (resp. sp;) de
« spécialisation » des (micro)-solutions définies pour tout i = 1,2, ..,1lparla
restriction des fonctions holomorphes:

o(D) restrict'ion ~  0D)
N | N
Sol?(D) i - Sol(D)

sing sing;
sol2(D) P = sol”(D})

ol sing, sing; sont les applications qui & chaque solution associent la micro-
solution correspondante (« singularité » de cette solution).

l _ 1 B A
PROPOSITION. @ sp;: sol?(D) - @ solP(Dj) est un isomorphisme d’es-
i=1 i=1
paces vectoriels.

Preuve: 1l s’agit d’espaces vectoriels de méme dimension m = m; + ...
+ m, d’aprés la partie ii) du théoréme 1.2. Par ailleurs la partie 1) du méme
théoréme implique immédiatement l'injectivité, car une détermination dans D’
de fonction analytique multiforme dans D* est évidemment holomorphe dans
tout D si elle I'est au voisinage des points Sy, ..., S;.

Remarques

i) Notons que la proposition implique en particulier que toute micro-
solution locale (p,-esoll_"'(D’i) peut €tre représentée par une solution semi-
locale \y holomorphe non seulement dans D' mais dans D\C; (c’est-a-dire non
singuliere aux points S;,j # i)! '

i1) Notons aussi que les applications de « spécialisation » qui définissent
'isomorphisme de la proposition dépendent de fagon cruciale de la direction
choisie pour les coupures (cela sera précis¢é un peu plus loin).

Monodromies. Etant section d’un systéme local d’espaces vectoriels sur
D*, sol’(D’) est muni d’une action du groupe fondamental de D* (qui est
libre non commutatif a [ générateurs) et il est naturel de se demander
comment cette action (la « monodromie » de sol?) se lit dans la somme directe
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@ sol?(D’). La seule donnée de la monodromie de chaque sol?(D’) (action

i

de Z, groupe fondamental de D} = D;\S,) est évidemment une information
beaucoup plus pauvre. En fait on récupere toute I'information en se donnant
les « variations » des microsolutions locales, définies ci-apres:

Variations. Soit \; € Sol®(D!) une solution locale, et soit 7, la mono-
dromie de Sol?(D’) (action d’un lacet tournant une fois autour de S; dans
le sens trigonométrique). Il est clair que la fonction varyy; = T, — ; ne
dépend que de la microsolution sing\y;, ce qui définit une application

var;: sol?(D}) — SolD?(D A
appelée « variation locale autour de S; ».

Comme en vertu de la remarque i) ci-dessus toute microsolution locale peut

étre représentée par une fonction Y; € O(D’) (et méme O(D\C;)), on voit que

la variation locale var; se factorise a travers une « variation semi-locale »
Var;: sol?(D}) - Sol®(D) (et méme Sol?(D\C))).
On en déduit des « microvariations »
var{ = sing; o Sp; o Var;: sol®(D}) — sol®/(D’)

qui sont trés utiles pour expliciter la fagon dont 'isomorphisme de la pro-
position dépend de la direction choisie pour les coupures.

De fagon précise, si 'on fait tourner les coupures en faisant croitre leur
argument 6, et si pour un certain argument 0, le point S; est « balayé »
par une coupure C,(k# j) et par aucune autre, alors le spécialisé sp’; pour
0 > 0, se déduit du spécialisé sp; pour 8 < 6, par la formule

spj W = sp; ¥ — var{ sp, ¥

(quant aux autres sp; V, ils sont tous égaux a sp; I si aucun autre S; n’est
balayé par une coupure).

1.5. TRANSFORMEES DE LAPLACE LOCALES ET SEMI-LOCALES
Dans la situation 1.4, supposons que les points S, .., S; soient & une

distance de l'origine inférieure a un nombre r égal a l/ﬁ fois le rayon
du disque D. Cela nous permettra de considérer dans D’ des chemins d’inté-
gration v, Yy, Y2, .- Y (cf. Fig. 4) dont lorigine et I'extrémité auront leurs
parties réelles supérieures a r.
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FIGURE 4

Pour \ € Sol®(D’), définissons la « transformée de Laplace semi-locale »
par

(LV) (1) = [ e ™VY(t)dt .

Cest une fonction holomorphe de © dans le demi-plan Re t > 0, vérifiant
une condition de croissance que nous noterons ainsi:
L\ e o, espace vectoriel des fonctions ¢ holomorphes dans Ret > 0

T T o .

admettant dans tout secteur — 5 +e<Argt < 5~ € une majoration du

type | & | < c.e”. En notant de méme &/ _, l'espace des ¢ admettant dans
- Y T . . .

tout secteur — 3 + e < Argt < 5~ e des majorations | ¢ | < c,e” " (r < r

arbitrairement proche de r), on déduit immédiatement du théoréme de
Cauchy que la classe de £\ mod. &/ _, ne change ni quand on déforme
le chemin y en astreignant son origine et son extrémité a rester dans la
lunule D'~ {Ret > r}, ni quand on remplace { par une fonction équi-
valente mod. ¢(D). Autrement dit, la transformée de Laplace semi-locale définit
une application linéaire |

L :s01P(D) » oL/ _, .

Notons que cette application est injective (on adapte un argument de Mal-
grange [11], qui définit la transformation de Laplace inverse en intégrant
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sur n’importe quelle demi-droite non verticale du demi-plan Re t > 0 dont
lorigine a une partie réelle > 0 arbitrairement petite).

Définissons maintenant les « transformations de Laplace locales » par les
formules |

(L) (1) = j e ()t = 1,2, ..,1.

Par le méme raisonnement quc plus haut, mais en utilisant de plus' la
remarque 1.4 1), on voit que les &; définissent des applications linéaires

L.osolP(D) » st (i=1,2,..1])
l
De plus, I'homologie vy ~ Y v; (dans D’ mod. D' n {Ret > r}) implique
i=1

!
= ) LV, Cest-a-dire £ = ) L, osp;.
i=1 ' i

Conclusion: On a le diagramme commutatif

£

sol?(D’)

- A,
© sp; v Z
> 2, |
® sol™(D}) ——— o,

i

par lequel P'espace vectoriel a m dimensions des microsolutions semi-locales
s’identifie 2 un sous-espace vectoriel de &/"/o/ _,, qui admet une décompo-
sition en somme directe de sous-espaces vectoriels de .«/"/o/ _,, image de la
décomposition 1.4.

Exemple. Cas ou tous les points S; sont simples. Dans le cas ou tous
les points S; sont simples (m;=1), on sait (n° 1.3) que les microsolutions
locales sont de la forme @; = (ch+c’ 8, 1 +..)8,, de sorte que leurs
transformées de Laplace admettent les développements asymptotiques formels

Lp; o< (ch+ch 71+ )tHe™ ™S,

Les transformées de Laplace semi-locales admettront donc formellement des
développements asymptotiques (non convergents)

l
PYoc Y (ch+cy 1™+ )re
i=1
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tout-a-fait semblables aux développements « BKW complexes » des phy-
siciens. Tout le travail que nous venons de faire a pour effet de donner
une signification exacte mod. of _, a de tels développements.

Remarque. Nos transformées de Laplace n’ont di étre tronquées
(mod. &/ _,) que parce que nous ne savons pas jusqu’ou les fonctions consi-
dérées peuvent étre prolongées analytiquement en dehors de D. Mais consi-
dérons ’hypothese suivante: '

Hypothése. Pour tout i = 1,..,1, la variation Var;p de toute micro-
solution se prolonge analytiquement dans E\C,; U ... u C,, ou E est la bande
horizontale, union des demi-droites paralléles a R issues de D.

Sous cette hypotheése toutes les transformées de Laplace peuvent étre
définies mod. &/ _x pour tout R > 0, et méme exactement (comme vraies
fonctions) si les Var;o sont a croissance modérée a l'infini.

Par exemple #;¢ pourra étre définie par la formule suivante, a l'aide
des chemins v; et B; de la figure 5:

(Z:0) () = [ e ™()dr — [ e " (Var,) (ds

ou ¥ est un représentant (analytique multiforme dans D*) de la micro-
solution @; la demi-droite B; et le «lacet» v; ont leur origine commune
dans D' un peu au-dessus de la coupure C;, et 'on a représenté en pointillé
sur la figure la partie de vy, située dans le «2° feuillet » (voir fig. 5).

y o>

FIGURE 5
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