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En fait Kashiwara et Kawai placent d'emblée le problème dans le cadre

« microdifférentiel », c'est-à-dire que l'anneau 2), difficile à manier, est

remplacé par un anneau plus grand dans lequel l'opérateur ôt est inversible,
et dans lequel l'idéal engendré par J est plus commode à étudier.

Ce qui suit est un exposé élémentaire d'une partie des résultats de

Kashiwara et Kawai, suivi d'une relecture (nos 1.5 & 2.5) de ces résultats

en termes de transformées de Laplace.

1. Etude des microsolutions,
DANS LE CAS D'UNE SEULE VARIABLE (n 0)

1.0. L'anneau S des opérateurs microdifférentiels est défini comme
l'ensemble des séries formelles P £ akdf, °ù ^es ak E ont un disque

keZ

de convergence commun, vérifiant les deux conditions suivantes :

i) ordre fini: ak 0 pour k > m (« l'ordre » de P);

0k
ii) « convergence de Borel » : la série Y a_k(t) — est absolument convergente

keN k

pour | 11, | 0 | assez petits.

La loi de composition dans ê (que nous n'écrirons pas ici) est une extension

naturelle de la loi de composition dans Çè (sous-anneau des Pel
tels que ak 0 pour tous k < 0); cf. par exemple [14] (Microlocalisation)

pour plus de détails. On note <o(m) l'espace des opérateurs microdifférentiels
d'ordre (^)m. En particulier <f(0) est un sous-anneau de S, et la

multiplication à droite ou à gauche par d (meZ) établit une bijection entre

<f(0) et <f(m).

Proposition: ê est un anneau principal (Notons que cette proposition
est fausse pour l'anneau Q)\

Idée de la démonstration : Comme ôt est inversible dans ê, tout idéal J
de ê peut être engendré par des opérateurs d'ordre exactement 0, c'est-

à-dire, après division par un élément inversible de C{t}, de la forme

p tm -h P', P' eS(— 1); l'entier m est la «valuation» de P (ne pas
confondre avec l'ordre J'affirme alors qu'un élément P de J dont la

valuation est minimale engendre nécessairement cela résulte immédiatement

d'un théorème de division dans <^(0), qui nous dit que tout élément

de <^(0) peut être divisé par P, avec un reste de valuation strictement

inférieure.
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(Comme sous-produit du même théorème de division, nous obtenons

une propriété fondamentale, utilisée traditionnellement pour motiver
l'introduction des opérateurs microdifférentiels: un opérateur microdifférentiel est

inversible si et seulement si son symbole principal est non nul à l'origine).

Grâce à la proposition ci-dessus, notre problème devient le suivant:
oo

étudier les microsolutions d'un opérateur P — f1 -h X ak(t) dt~k.
k=l

1.1. Action de P sur les fonctions holomorphes
oo

A la série formelle X ak(t) dfk on associe le noyau intégral K(t,u)
k=i

CO

X ~Ti—TUT ' ^ êrâce à la condition de convergence ii) est holo-
k=l (k—1)1

morphe pour 111, \u \ assez petits. Soit donc D un disque ouvert assez
petit pour que K soit holomorphe dans un voisinage de D x D. Pour tout
ouvert simplement connexe U a D, et pour tout t0 e U, on définit Pt0 : (9(U)
->• (9(U) par la formule

(Pf>) (;t) « r^/(0 + j|o K(t, u) i(f(u) du

En particulier (dt~\ est l'opérateur qui à toute fonction holomorphe
associe sa primitive nulle en t0.

1.2. Microsolutions de P

Commençons par définir, sur D* - D\{0}, le faisceau SoP des solutions
mod. (9{D\ où (9(D) désigne désormais l'algèbre de Banach des fonctions
continues sur D et holomorphes sur D : pour tout ouvert simplement
connexe U a D* on pose

SolD(U) {\|/ e (9(U) | PtQ \(/ e (9(D) pour un t0e U};

remarquons que cette définition ne dépend pas du choix de t0, car

P,o*- P„*K(t, v|/(u) du

est holomorphe dans un voisinage du disque D.

Théorème :

i) Tout germe de solution mod. (9(D) se prolonge sur tout D* en
fonction analytique multiforme.
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ii) Le faisceau quotient So\d/(9(D), que nous noterons sol5, est un
système local d'espaces vectoriels de dimension m (l'espace des « microsolutions »

de P mod. (9(D)).

En fait, cet énoncé est valable dans une situation plus générale qui nous
sera utile au paragraphe suivant :

Situation « semi-locale » : dans la définition de l'opérateur P, tm peut être

remplacé par un polynôme unitaire p(t) de degré m, ayant toutes ses racines

Si dans le disque D (de multiplicités relatives ml9m/? avec mY +
4- mt m); on note alors D* Z>\{Si,..., St}.

Avant de démontrer le théorème (dans la situation semi-locale) énonçons
deux lemmes :

Lemme 1. Pour tout t0eD*, l'opérateur Pto: (9t0 - (9t0 est bijectif.

Preuve. PtQ — p(t) + ÇtQK, où p(t) est un isomorphisme et K une

perturbation de norme aussi petite qu'on veut dans l'espace de Banach des

fonctions holomorphes sur un disque assez petit de centre t0.

Lemme 2. Pour tout disque D0 a D (de centre t0 arbitraire),
l'opérateur de (9(D0) dans (9(D0) défini par

\|/(t) i— j|o K(t, w)v|/(w) du

est un opérateur compact.

Preuve. Appliquer le critère d'Ascoli.
s?

Preuve du théorème (d'après J. E. Björk [3]).

i) Soit v|/ un germe de solution mod. (9(D), admettant un prolongement
analytique dans un ouvert U c= Df, et soit D0 un disque de centre t0 g U,

non inclus dans U, mais d'adhérence D0 c= D*. Posant 0 PtQ\|/ e (9(D),

on va montrer que l'équation PtQy\f' 0 admet dans (9(D0) une solution

unique, qui sera donc le prolongement analytique de \|/. Il suffit pour cela

de remarquer que l'opérateur P de (9(D0) dans (9(D0) est d'une part injectif
(en vertu du lemme 1 et du principe de prolongement analytique), d'autre

part d'indice 0 car déduit de l'opérateur p (évidemment bijectif) par une

perturbation compacte (lemme 2).

ii) Comme opérateur de (9(D) dans (9(D), Pt0 se déduit par perturbation
compacte (lemme 2) de l'opérateur p qui est d'indice — m (injectif, de conoyau
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de dimension m). Pt0 est donc d'indice —m, et pour t0eD* il est injectif
en vertu du lemme 1 et du principe de prolongement analytique. Son

conoyau est donc de dimension m. Soit 0!,0m e (9(D) des fonctions
définissant une base de ce conoyau. D'après le lemme 1 les équations Pt0\|/i

0X,..., Ptov|/m 0m se résolvent de façon unique dans (9t0, et l'on vérifie

immédiatement que y\t1,..., v|/m définissent une base de Sol fJ(9(D).

1.3. Exemple: microsolutions au voisinage d'un point simple (m= 1)

Si P est de valuation m là l'origine, tout élément de <f(0) peut être
divisé par P avec un reste à coefficients constants (cf. par exemple [14]
Microloc. §3). En particulier, la division t QP -F R permet ainsi dé se

ramener au cas où le générateur de l'idéal est de la forme P t — R,
R e 8(— 1) à coefficients constants.

Ecrivant donc P t + a ô f1 -F (aeC), on peut démontrer le

Lemme. Il existe un opérateur d'ordre 0 à coefficients constants.

Q1 + Ci dr1+ c2 d~2 +

tel que PQ Q(t + adf1).

Corollaire. L'opérateur Q_1 transforme les microsolutions v|/ de P
en les microsolutions \[/ de (t-j-ad,-1) $ 0 (mod. (9).

Remarquons que l'action des opérateurs microdifférentiels sur les
microsolutions est bien définie, car l'ambiguité du choix du point t0 dans 1.1

disparaît quand on passe au quotient modulo 0.

Microsolutions de (t + adf1) $ 0 (mod. (9).

Si a ^ -1,-2,..., l'espace à 1 dimension des microsolutions est engendré
T

1 (~0~a_1
Par mod. 0;27il r(a)

si a — 1 —j, j e N, il est engendré par

T — 1 ri Log t
M'a ttt ——— mod. (9

2m j î

(les coefficients de normalisation sont choisis pour la commodité).
Dans un cas comme dans l'autre, nous noterons 5 g la microsolution

ainsi définie, ôg ô(0 est la « microfonction de Dirac », et" avec les
normalisations choisies dkt 5g ôg+fc) pour tout k e Z.

Microsolutions de (t + ocd,-1+ v|/ 0 (mod. (9)
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D'après le corollaire du lemme précédent l'espace des microsolutions est

engendré par la « microfonction » :

c'est-à-dire par la classe mod. (9 de la fonction analytique où \]/a a été

définie précédemment, et ga est le germe de fonction holomorphe définie par

(on a posé c0 1).

1.4. Comparaison des microsolutions « locales » et « semi-locales »

Dans la situation semi-locale 1.2, posons D' D\C1 u u Cu où les

« coupures » C1,..., Cx sont des demi-droites parallèles disjointes issues

respectivement des points singuliers Sx,..., Sx (disons, pour fixer les idées, les

demi-droites t — Sxe R+, en supposant Im St ^ Im Sj pour i ^ j). Pour
i 1,..., I soit Di un disque de centre Sif assez petit pour que D - DAQ

Q 5<?» + CiSfo"1' + Sj",-2' +

9«(t)

si öl — 1 —j, je N

si a / — 1, —2,...

c D' (cf. Fig. 3).

D

Figure 3
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On peut alors considérer les applications linéaires Sp£ (resp. spt) de

« spécialisation » des (micro)-solutions définies pour tout i 1, 2,/ par la

restriction des fonctions holomorphes :

(9(D) -

n

SoP(D') -

sing

solß(D') -

restriction

SPi

sp,

n

Soi'Hod

sing,-

solJ

où sing, sing; sont les applications qui à chaque solution associent la micro-

solution correspondante (« singularité » de cette solution).

Proposition.

paces vectoriels.

© sp; : solD(D')
i 1

© solöi(D 9
î i

est un isomorphisme cTes-

Preuve: Il s'agit d'espaces vectoriels de même dimension m ml +
+ mt d'après la partie ii) du théorème 1.2. Par ailleurs la partie i) du même

théorème implique immédiatement l'injectivité, car une détermination dans D'

de fonction analytique multiforme dans D* est évidemment holomorphe dans

tout D si elle l'est au voisinage des points Sx,..., St.

Remarques

i) Notons que la proposition implique en particulier que toute
microsolution locale cpf e soP'(D9 peut être représentée par une solution semi-

locale \|/ holomorphe non seulement dans D' mais dans D\Ct- (c'est-à-dire non
singulière aux points Sj, j ^ i

ii) Notons aussi que les applications de « spécialisation » qui définissent

î'isomorphisme de la proposition dépendent de façon cruciale de la direction
choisie pour les coupures (cela sera précisé un peu plus loin).

Monodromies. Etant section d'un système local d'espaces vectoriels sur
D*, so\d(D') est muni d'une action du groupe fondamental de D* (qui est

libre non commutatif à / générateurs) et il est naturel de se demander
comment cette action (la « monodromie » de sol0) se lit dans la somme directe
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© so\Di(D •). La seule donnée de la monodromie de chaque solDi(D)) (action
i

de Z, groupe fondamental de Df A\Si) est évidemment une information
beaucoup plus pauvre. En fait on récupère toute l'information en se donnant
les « variations » des microsolutions locales, définies ci-après :

Variations. Soit \|/£ g SoPl(D J) une solution locale, et soit 7) la
monodromie de SoP'XD'i) (action d'un lacet tournant une fois autour de S{ dans

le sens trigonométrique). Il est clair que la fonction var£\)/£ 7]v|/£ — \|/£ ne

dépend que de la microsolution sing£\(/£, ce qui définit une application

var£: soP'(Z)-) -> So1Ö,'(Z>'£)

appelée « variation locale autour de St ».

Comme en vertu de la remarque i) ci-dessus toute microsolution locale peut
être représentée par une fonction \|/£ g (9(Dr) (et même 0(Z>\C£)), on voit que
la variation locale varf se factorise à travers une « variation semi-locale »

Var£: sol^(D-) -» SoP(D') (et même So1Ö(Z)\C£)).

On en déduit des « microvariations »

var{ sing; o Sp7 ° Var^ so\Di(D[) -> so\Dj(Dj)

qui sont très utiles pour expliciter la façon dont l'isomorphisme de la

proposition dépend de la direction choisie pour les coupures.
De façon précise, si l'on fait tourner les coupures en faisant croître leur

argument 0, et si pour un certain argument 0O le point Sj est « balayé »

par une coupure Ck(k^ j) et par aucune autre, alors le spécialisé sp} pour
0 > 0O se déduit du spécialisé spj pour 0 < 0O par la formule

sp} v|/ spj- *j/ - var spfc \|/

(quant aux autres sp) \|/, ils sont tous égaux à sp£ \|/ si aucun autre St n'est

balayé par une coupure).

1.5. Transformées de Laplace locales et semi-locales

Dans la situation 1.4, supposons que les points Sx,..., soient à une

distance de l'origine inférieure à un nombre r égal à l/yfl fois le rayon
du disque D. Cela nous permettra de considérer dans D' des chemins

d'intégration y, yx, y2,Ji (cf. Fig. 4) dont l'origine et l'extrémité auront leurs

parties réelles supérieures à r.
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Pour \|/ g SolD(D'), définissons la « transformée de Laplace semi-locale »

par

(i?\|/) (t) |ye"T,vl

C'est une fonction holomorphe de t dans le demi-plan Re x > 0, vérifiant

une condition de croissance que nous noterons ainsi :

i?\|/ g sé\ espace vectoriel des fonctions cj) holomorphes dans Re x > 0

K
A

K •admettant dans tout secteur — — + e < Arg x < — — s une majoration du

type | <\> | < c£er\ En notant de même sé _r l'espace des .<$> admettant dans
TT K

tout secteur — — -h 8 < Arg x < — — 8 des majorations | § | < ce e rx (/ < r

arbitrairement proche de r), on déduit immédiatement du théorème de

Cauchy que la classe de ^f\)/ mod. sé -r ne change ni quand on déforme
le chemin y en astreignant son origine et son extrémité à rester dans la
lunule D' n {Ret > r}, ni quand on remplace \j/ par une fonction
équivalente mod. (9(D). Autrement dit, la transformée de Laplace semi-locale définit
une application linéaire

3? : soP(D') - j/7^_r.
Notons que cette application est injective (on adapte un argument de
Malgrange [11], qui définit la transformation de Laplace inverse en intégrant
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sur n'importe quelle demi-droite non verticale du demi-plan Re x > 0 dont
l'origine a une partie réelle > 0 arbitrairement petite).

Définissons maintenant les « transformations de Laplace locales » par les

formules

/) (x) e~"\\i(t)dt 1, 2,I.
Par le même raisonnement que plus haut, mais en utilisant de plus la

remarque 1.4 i), on voit que les Sft définissent des applications linéaires

sei\ sol^(DJ) _r (i 1, 2,/)
i

De plus, l'homologie y ~ £ yf (dans Z)7 mod. D' n {Ret > r}) implique
t i

i

SeAf £ ^ \J/, c'est-à-dire if Y^î° sPî-
i 1 i

Conclusion : On a le diagramme commutatif

solD(D')
se

© spf

0 X i

® sori(D-

par lequel l'espace vectoriel à m dimensions des microsolutions semi-locales

s'identifie à un sous-espace vectoriel de sérjsé_r, qui admet une décomposition

en somme directe de sous-espaces vectoriels de sér)sé_r, image de la

décomposition 1.4.

Exemple. Cas où tous les points St sont simples. Dans le cas où tous
les points St sont simples (m, l), on sait (n° 1.3) que les microsolutions
locales sont de la forme cpt- (cl0 + c\ df1 + ...)bifilSi], de sorte que leurs

transformées de Laplace admettent les développements asymptotiques formels

Se^i oc (c'o + c1! T~1 + ...)T*ie~xSi.

Les transformées de Laplace semi-locales admettront donc formellement des

développements asymptotiques (non convergents)

se^ oc Yu (c0 + cl T_1+...)Ta'fi"TS|
i 1
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tout-à-fait semblables aux développements « BKW complexes » des

physiciens. Tout le travail que nous venons de faire a pour effet de donner

une signification exacte mod. sé _r à de tels développements.

Remarque. Nos transformées de Laplace n'ont dû être tronquées

(mod. que parce que nous ne savons pas jusqu'où les fonctions considérées

peuvent être prolongées analytiquement en dehors de D. Mais
considérons l'hypothèse suivante :

Hypothèse. Pour tout i 1,..., I, la variation Var;cp de toute
microsolution se prolonge analytiquement dans E\C1 u u Cu où E est la bande

horizontale, union des demi-droites parallèles à R+ issues de D.

Sous cette hypothèse toutes les transformées de Laplace peuvent être

définies mod. sé -R pour tout R > 0, et même exactement (comme vraies

fonctions) si les Var,-cp sont à croissance modérée à (infini.
Par exemple pourra être définie par la formule suivante, à l'aide

des chemins yt et ßf de la figure 5 :

où \]/ est un représentant (analytique multiforme dans D*) de la
microsolution cp ; la demi-droite ßf et le « lacet » yt ont leur origine commune
dans D' un peu au-dessus de la coupure Q, et l'on a représenté en pointillé
sur la figure la partie de yt située dans le « 2e feuillet » (voir fig. 5).

(if» (t) x'\\i{t)dt-Jßi<? T!(Var,cp)

Figure 5
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