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TRANSFORMEES DE LAPLACE DES MICROSOLUTIONS
DE SYSTEMES HOLONOMES

par F. PHAM

Le but du présent article est d’exposer des outils mathématiques géné-
raux permettant de clarifier 'étude locale des « points tournants » de la
méthode semi-classique en dimension quelconque. Il y sera question (comme
chez Balian-Bloch [1], Voros [18] [19]) d’intégrales de Laplace de la
forme

B0, 1) = [T, 0

ou | est une fonction analytique multiforme de (x,t)e C" x C dont le
lieu dé ramification & est de trace discréte dans chaque droite complexe
x = Cte (tout au moins «localement sur la surface de Riemann » de \,
en un sens a preéciser); pour un contour d’intégration y comme celui de
la figure 1, l'intégrale va converger pour Ret > 0 pourvu que Y soit a
croissance modérée a l'infini en t, de sorte que ¢ sera une fonction ana-
lytique de (x, 1) sauf peut-étre au-dessus des « points de bifurcation », valeurs
de x pour lesquelles deux points S,(x), S,(x) de &, = & N ({x} x C) viennent
a se confondre et risquent de « pincer » le contour d’intégration .

ro.

S,(x) >
* xS 1(x)
X S3(X) B

-

FIGURE 1

Nous nous proposons ici d’étudier localement une classe trés générale de
fonctions  dont les transformées de Laplace ne seront jamais singuliéres,
méme en cas de pincement du contour d’intégration: il s’agira des fonc-
tions  qui sont localement solution de systémes holonomes (au sens de
Sato) non caractéristiques pour le feuilletage vertical de C” x C (celui dont
les feuilles sont les droites x = Cte; cf, §0).

Alors la transformée de Laplace ¢ sera Holomorphe au-dessus du point
de bifurcation bien que, s'il sagit d'un point tournant ( déf. 2.6), chacun des
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termes de son développement asymptotique formel en 1 soit singulier! 11 s’agit
l1a d’un phénomeéne bien connu des physiciens (la fonction d’onde est réguliére,
bien que ses développements BK'W *) soient singuliers), dont la relation avec
le « phénomene de Stokes » de la théorie des équations différentielles a sin-
gularités irréguliéres avait été remarquée depuis longtemps dans le cas
n = 1, mais qui ne m’est devenu clair quapres lecture de Iarticle de
Voros [18]. En fait, la seule prétention du présent article est de généraliser
en dimension n quelconque l'étude de la structure des points tournants
donnée par Voros (dans le cas particulier des points tournants de type
« Airy ») au §6 de son article [18]. Il se trouve que tout le travail tech-
nique ¢tait déja fait dans un article fondamental de Kashiwara-Kawai[ 6],
et ma seule contribution (peut-étre) originale a été d’utiliser la transformation
de Laplace comme un dictionnaire pour traduire leurs résultats; pour tout
ce qui concerne Laplace (absént des préoccupations de [6]) je me suis
inspiré d’idées non publiées de Malgrange (cf. cependant [12]), elles-mémes
influencées par les travaux de Voros; pour 'exposé des résultats de Kashi-
wara-Kawai (difficiles a lire dans I'article original, en raison du gros outillage
cohomologique utilisé), j’ai été trés aidé par un exposé¢ de J. E. Bjork au
séminaire Goulaouic-Schwartz [3]. Le présent exposé doit donc beaucoup a
B. Malgrange qui depuis plusieurs années m’explique ses idées sur Laplace,
“ainsi qua J. E. Bjork qui m’a aide a comprendre Particle de Kashiwara-
Kawai. Il aurait pu étre beaucoup plus bref si je n’avais voulu le rendre
lisible sans connaissance préalable du calcul microdifférentiel.

Dans un article ultérieur (dont [16] est une premicre esquisse) jabor-
derai plus spécifiquement les problémes de physique concernés par la méthode
semi-classique complexe (états liés dans le cas ou le systéme classique est
complétement intégrable; états de diffusion...).

0. LA CONDITION « NON CARACTERISTIQUE »

On se place désormais dans un voisinage de l'origine dans C” x C muni
~des coordonnées (x;,.., X,, 1) = (x,1). O = C{x,t} désigne lanneau des

*) « BKW » = Brillouin Kramers Wentzel. Les développements BKW sont des
développements en puissances de 5 (= notre parametre t) des fonctions d’onde de

la mécanique ondulatoire. Ces développements sont divergents, de plus leurs termes
pris individuellement sont singuliers (avec ramification) aux points dits « points
tournants » (turning points) ou est singuliere la solution de I'’équation de Hamilton-
Jacobi. L’article de Voros mentionné ici exploite joliment I'idée de Balian et Bloch [1]
de chercher a resommer les développements BKW sous forme intégrale de Laplace.

o

]

|
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germes de fonctions holomorphes, et 9 = 0 <0,,d,> désigne 'anneau
(noethérien) des germes d’opérateurs différentiels a coefficients holomorphes.

Soit & < C" x C un germe d’hypersurface analytique complexe, et soit s
une fonction analytique multiforme dans C* x C\&, de classe de Nilsson le
long de &, cest-a-dire de type de détermination fini et & croissance modérée
au voisinage de .. On sait (cf. par exemple [2], chap. IV) que { est alors
solution d’un germe de systéme holonome d’équations aux dérivées partielles
linéaires, Cest-a-dire qu’il existe dans 2 un idéal a gauche # tel que
Py = 0 pour tout Pe.#, et tel que les symboles principaux des éléments
de .4 définissent dans le fibré T*(C"xC) un sous-ensemble analytique
(conique) holonome (= lagrangien, c’est-a-dire involutif et de codimension
n+1), la «variété caractéristique du systéeme », notée V(Z/#). De plus ce
systéme holonome est « a singularité réguliere » (mais ce fait ne sera guere
utilisé dans la suite). .

Comme nous nous intéresserons avant tout aux singularités de , nous
serons en realité amenés a étudier des germes de systemes holonomes dont
est solution modulo 0, c’est-a-dire que Py € O pour tout P € .#. Le quotient
par O de lespace des solutions modulo @ constitue ce que nous appel-
- lerons l'espace des « microsolutions ». |

Exemples
1) ¥ = t%(aeC) est solution de (t,—o)y = 0, 0,¥ = .. =0,V =0.
V(@/9) = {x ;1)1 = 0, = .. =&, = 0},

union de la section nulle du fibré cotangent, et du fibré conormal é I’hyper-
plan t = 0;

V = tP Logt (peN) est solution mod. O de (t6,—p)y = 0 mod. 0, o,V

= .. = 0,y = 0 (méme variété caractéristique que ci-dessus).

. 1
) (r=1)y = pPa— est solution mod. O de

2—x3y =0 (mod. O)
% (3x20,+ 2t )y = 0
dont la variété caractéristique est donnée par les équations
2 — x3 _ 0
3 3x2T + 2 = 0,

et a donc deux composantes:
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la premiere, T%(C xC), est le fibré conormal 4 la courbe & d’équation
2
t? —x>=0 (1?2_—)c3:0,r;~é0,§ = — ix~>,
T 2 1T
la seconde, T(C x C), est le fibré conormal a l'origine: (x=t=0, £, 1 quel-
conques).

FIGURE 2 :
Les deux composantes de la variété caractéristique de I’exemple ii).

iii)° (n=1) Considérons le systéme

2 2
<t6,+§xax+§>\ll =0

(ag—zxaf)\p: 0.

Sa variété caractéristique, donnée par les équations

(Btt+2xE=0, 4E2—9x12=0),
se compose de la section nulle et de la composante T%(CxC) de
I’exemple 1i).

Ce systéme admet 2 solutions linéairement indépendantes, que 'on peut
écrire

v s < Lr(2 431, ¢
=233 2 T o

ou F est la fonction hypergéométrique. Bien que cela ne transparaisse pas’

immediatement dans I’écriture ci-dessus, ces fonctions ne sont pas singuliéres
~ sur la droite x = 0.

\



TRANSFORMEES DE LAPLACE DES MICROSOLUTIONS 61

Définition. On dit que le systetme %/ est non caractéristique pour le
feuilletage vertical de C" x C si sa variété caractéristique ne contient aucun
covecteur horizontal non nul. '

Ici « horizontal » [resp. « vertical »] signifie paralléle a la 17 [resp. 2°]
composante de C" x C; le feuilletage vertical est donc celui dont les feuilles
sont les droites x = Cte, et un covecteur (§, t) est horizontal si T = 0.

Exemples. La condition «non caractéristique » est vérifiée par les
exemples 1) et iii) ci-dessus, mais pas par 'exemple ii).

REMARQUE. Comme les fibres de la variété caractéristique sont des cones,
le fait d’interdire les codirections horizontales entraine que chacun de ces
cones ne peut consister qu'en un nombre fini de codirections (car une
variété projective complexe ne peut éviter un hyperplan que si elle est de
dimension 0).

Dans le cas — qui nous occupe — ou la variété caractéristique est
holonome (= lagrangienne) on en déduit que la condition non caractéris-
tique équivaut a la condition apparemment plus forte que voici:

1° Le lieu singulier ¥ de 2/.# (ensemble des points
ou il existe un covecteur caractéristique non nul)
est fini (localement) en restriction d chaque feuille;

Condition _
o 2° Le feuilletage est transverse a &, c’est-a-dire qu’il
caractéristique est transverse a toutes les directions limites d’hy-
pour perplans tangents a la partie lisse de & ;
les systémes
holonomes 3° L’ensemble V*(2/#) des covecteurs caractéris-

tiques non nuls correspond a I’ensemble des
directions limites ci-dessus, autrement dit
V*2/5)

= T%(C"xC).

Cette deéfinition étant posée, nous trouvons dans Kashiwara-Kawai [6],
chap. IV, une réponse a la question suivante:

« etant donné un germe de systéme holonome .# = 9/.#, non caracté-
ristique pour le feuilletage en droites verticales, que peut-on dire de
espace des « microsolutions » de ce systéme, c’est-i-dire de I'espace
quotient par O de 'espace des solutions mod. ¢ ? »
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En fait Kashiwara et Kawai placent d’emblée le probléme dans le cadre
« microdifférentiel », c’est-a-dire que I'anneau 2, difficile a manier, est rem-
placé par un anneau plus grand dans lequel I'opérateur 0, est inversible,
et dans lequel I'idéal engendré par .# est plus commode a étudier.

Ce qui suit est un exposé élémentaire d’une partie des résultats de
Kashiwara et Kawai, suivi d'une relecture (n° 1.5 & 2.5) de ces résultats
en termes de transformées de Laplace. ‘

1. ETUDE DES MICROSOLUTIONS,
DANS LE CAS D’UNE SEULE VARIABLE (n=0)

1.0. L’ANNEAU & DES OPERATEURS MICRODIFFERENTIELS est défini comme ’en-

semble des séries formelles P = ) a, 0¥, ou les a, € C{t} ont un disque
keZ

de convergence commun, verifiant les deux conditions suivantes:
1) ordre fini: a, = 0 pour k > m (« lordre » de P);

k

ii) « convergence de Borel »: la série Y. a_,(t) ol est absolument convergente
keN .

pour | t|, | 6| assez petits.

La loi de composition dans & (que nous n’écrirons pas ici) est une exten-
sion naturelle de la loi de composition dans & (sous-anneau des Pe &
tels que a, = 0 pour tous k < 0); cf. par exemple [14] (Microlocalisation)
pour plus de détails. On note &(m) 'espace des opérateurs microdifférentiels
d’ordre (<) m. En particulier £(0) est un sous-anneau de &, et la multi-
plication a droite ou a gauche par 0;" (meZ) établit une bijection entre
&(0) et &(m).

PROPOSITION: & est un anneau principal. (Notons que cette proposition
est fausse pour 'anneau 92).

Idée de ‘la démonstration: Comme 0, est inversible dans &, tout idéal .#
de & peut étre engendré par des opérateurs d’ordre exactement 0, c’est-
a-dire, aprés division par un ¢élément inversible de C{t}, de la forme
P=1t"+ P, Peé&(—1); lentier m est la «valuation» de P (ne pas
confondre avec l'ordre!). Jaffirme alors qu'un élément P de .# -dont la
valuation est minimale engendre nécessairement .#: cela résulte immédia-
tement d’un théoréme de division dans &(0), qui nous dit que tout élément
de &(0) peut étre divisé par P, avec un reste de valuation strictement
inférieure.
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(Comme sous-produit du méme théoréme de division, nous obtenons
une propriété¢ fondamentale, utilisée traditionnellement pour motiver I'intro-
duction des opérateurs microdifférentiels: un opérateur microdifférentiel est
inversible si et seulement si son symbole principal est non nul a lorigine).

Grace a la proposition ci-dessus, notre probléme devient le suivant:

étudier les microsolutions d’un opérateur P = t™ + Y a,(t) 8, *.
=1

1.1. ACTION DE P SUR LES FONCTIONS HOLOMORPHES

o)

A la série formelle ) at)9,* on associe le noyau intégral K(t, u)
k=1
k—l

= z a,(t) ( k o qui grace a la condition de convergence ii) est holo-
=1

morphe pour |t|, |u| assez petits. Soit donc D un disque ouvert assez
petit pour que K soit holomorphe dans un voisinage de D x D. Pour tout
ouvert simplement econnexe U < D, et pour tout t, € U, on définit P, : O(U)
— O(U) par la formule

(Pol) (1) = t™(0) + [, K(t, u) W(u) du .

En particulier (9, '),, est l'opérateur qui a toute fonction holomorphe
associe sa primitive nulle en .

1.2.  MICROSOLUTIONS DE P

Commengons par définir, sur D* = D\{0}, le faisceau Sol® des solutions
mod. @(D), ou (D) désigne désormais 'algébre de Banach des fonctions
continues sur D et holomorphes sur D: pour tout ouvert simplement
connexe U < D* on pose

SolP(U) = {yr € O(U) | P, € O(D) pour un ¢, e U};
remarquons que cette définition ne dépend pas du choix de t,, car
P — P,V = [ K(t, u) (u) du
est holomorphe dans un voisinage du disque D.
THEOREME :

1) Tout germe de solution mod. OD) se prolonge sur tout D* en
fonction analytique multiforme.




64 F. PHAM

ii) Le faisceau quotient Sol?/O(D), que nous noterons solP, est un sys-
téme local d’espaces vectoriels de dimension m (Tespace des « microsolutions »
de P mod. O(D)).

En fait, cet énoncé est valable dans une situation plus générale qui nous
sera utile au paragraphe suivant:

Situation « semi-locale » : dans la définition de I'opérateur P, t™ peut étre
remplaceé par un polynéme unitaire p(t) de degré m, ayant toutes ses racines
Sy, .., S; dans le disque D (de multiplicités relatives m,, ..., m;, avec m; + ...
+ m; = m); on note alors D* = D\{S,,.., S, }.

Avant de démontrer le théoréme (dans la situation semi-locale) énongons
deux lemmes:

LEMME 1. Pour tout tqe D*, [lopérateur P,:0, — O, est bijectif.

Preuve. P, = p(t) + | zo K, ou p(t) est un isomorphisme et j;o K une
perturbation de norme aussi petite qu’on veut dans I'espace de Banach des
fonctions holomorphes sur un disque assez petit de centre t.

" Lemme 2. Pour tout disque Dy, = D (de centre t, arbitraire), opé-
rateur de O(D,) dans O(D,) défini par

Y(e) — [, Kt upb(w) du
est un opérateur compact.

Preuve Appliquer le critere d’Ascoli.

Preuve du theoreme (d’apres J. E. Bjork [3]).

i) Soit ¥ un germe de solution mod. O(D), admettant un prolongement
analytique dans un ouvert U < D¥* et soit D, un disque de centre toe U,
non inclus dans U, mais d’adhérence D, = D*. Posant 6 = P, \y € O(D),
on va montrer que l'équation P, ' = 0 admet dans O(D,) une solution
unique, qui sera donc le prolongement analytique de V. Il suffit pour cela
de remarquer que lopérateur P de O(D,) dans O(D,) est d’une part injectif
(en vertu du lemme 1 et du principe de prolongement analytique), d’autre
part d’indice 0 car déduit de l'opérateur p (évidemment bijectif) par une
perturbation compacte (lemme 2). '

ii) Comme opérateur de (D) dans O(D), P,, se déduit par perturbation
compacte (lemme 2) de 'opérateur p qui est d’1nd1ce — m (injectif, de conoyau

R g ‘
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de dimension m). P, est donc d’indice —m, et pour t, e D* il est injectif
en vertu du lemme 1 et du principe de prolongement analytique. Son
conoyau est donc de dimension m. Soit 0,, ..., 0, € O(D) des fonctions défi-
nissant une base de ce conoyau. D’aprés le lemme 1 les équations P, \,
= 0y, .., PV, = 0, se résolvent de fagon unique dans O, , et 'on vérifie
immeédiatement que V,, .., \,, définissent une base de Sole/(O(D).

1.3, EXEMPLE: MICROSOLUTIONS AU VOISINAGE D’UN POINT SIMPLE (m=1)

Si P est de valuation m = 1 a l'origine, tout ¢élément de &(0) peut €tre
divis¢ par P avec un reste a coefficients constants (cf. par exemple [14]
Microloc. §3). En particulier, la division t = QP + R permet ainsi dé se
ramener au cas ou le générateur de l'idéal est de la forme P = t — R,
R e &(—1) a coefficients constants.

Ecrivant donc P = ¢t + 2 0, ' + ... (2eC), on peut démontrer le

LEMME. Il existe un opérateur d’ordre 0 d coefficients constants.
Q=1+c¢0; " +¢c,0,%2+ ..,
tel que PQ = Q(t+ad; ).

COROLLAIRE. L’opérateur Q™' transforme les microsolutions \ de P
en les microsolutions  de (t+0d; ') = 0 (mod. 0).

Remarquons que l'action des opérateurs microdifférentiels sur les micro-
solutions est bien définie, car 'ambiguité du choix du point tz, dans 1.1
disparait quand on passe au quotient modulo 0. ‘

Microsolutions de (t+ad,” ) = 0 (mod. 0).
Si o #* — 1, —2, .., I'espace a 1 dimension des microsolutions est engendré

1 (_t)—a—l
par Y, = — d. O;
Pl = T Mot
st = —1—j,jeN, il est engendré par

—1 ¢/ Logt
Uy = — — 5! mod. 0
2ni !

Pé

tles coefficients de normalisation sont choisis pour la commodité).

Dans un cas comme dans I'autre, nous noterons 8{) la microsolution

. . , . 0 . . .
ainsi définie. 8§ = §, est la « microfonction de Dirac », et” avec les nor-

malisations choisies 9f 8 = 3{%*¥ pour tout k € Z.

Microsolutions de (t+ad, ' +..) y = 0 (mod. 0)
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D’apres le corollaire du lemme précédent I'espace des microsolutions est
engendré par la « microfonction »:
@ _ §¢ 1 2
Q8 =08@F + 18V + 85V +

c’est-a-dire par la classe mod. @ de la fonction analytique ga\ﬂa, ou \, a été
définie précédemment, et g, est le germe de fonction holomorphe définie par

% I'(o). ) : .
¢ ——(—t st o # —1,—2,..
,;0 kF(oc—k)( )
golt) =
) ]!
Y ¢ t* sia = —1—j,jeN

o “(j+k)!

(on a posé cy=1).

1.4. COMPARAISON DES MICROSOLUTIONS « LOCALES » ET « SEMI-LOCALES »

Dans la situation semi-locale 1.2, posons D' = D\C, u .. u C;, ou les
« coupures » Cy, .., C, sont des demi-droites paralleles disjointes issues res-
pectivement des points singuliers S, .., S; (disons, pour fixer les idées, les
demi-droites t — S; € R™, en supposant Im S; # Im S; pour i # j). Pour
i = 1,.. 1 soit D; un disque de centre S;, assez petit pour que D; = D;\C;
< D’ (cf. Fig. 3).

FIGURE 3

b
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On peut alors considérer les applications linéaires Sp; (resp. sp;) de
« spécialisation » des (micro)-solutions définies pour tout i = 1,2, ..,1lparla
restriction des fonctions holomorphes:

o(D) restrict'ion ~  0D)
N | N
Sol?(D) i - Sol(D)

sing sing;
sol2(D) P = sol”(D})

ol sing, sing; sont les applications qui & chaque solution associent la micro-
solution correspondante (« singularité » de cette solution).

l _ 1 B A
PROPOSITION. @ sp;: sol?(D) - @ solP(Dj) est un isomorphisme d’es-
i=1 i=1
paces vectoriels.

Preuve: 1l s’agit d’espaces vectoriels de méme dimension m = m; + ...
+ m, d’aprés la partie ii) du théoréme 1.2. Par ailleurs la partie 1) du méme
théoréme implique immédiatement l'injectivité, car une détermination dans D’
de fonction analytique multiforme dans D* est évidemment holomorphe dans
tout D si elle I'est au voisinage des points Sy, ..., S;.

Remarques

i) Notons que la proposition implique en particulier que toute micro-
solution locale (p,-esoll_"'(D’i) peut €tre représentée par une solution semi-
locale \y holomorphe non seulement dans D' mais dans D\C; (c’est-a-dire non
singuliere aux points S;,j # i)! '

i1) Notons aussi que les applications de « spécialisation » qui définissent
'isomorphisme de la proposition dépendent de fagon cruciale de la direction
choisie pour les coupures (cela sera précis¢é un peu plus loin).

Monodromies. Etant section d’un systéme local d’espaces vectoriels sur
D*, sol’(D’) est muni d’une action du groupe fondamental de D* (qui est
libre non commutatif a [ générateurs) et il est naturel de se demander
comment cette action (la « monodromie » de sol?) se lit dans la somme directe
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@ sol?(D’). La seule donnée de la monodromie de chaque sol?(D’) (action

i

de Z, groupe fondamental de D} = D;\S,) est évidemment une information
beaucoup plus pauvre. En fait on récupere toute I'information en se donnant
les « variations » des microsolutions locales, définies ci-apres:

Variations. Soit \; € Sol®(D!) une solution locale, et soit 7, la mono-
dromie de Sol?(D’) (action d’un lacet tournant une fois autour de S; dans
le sens trigonométrique). Il est clair que la fonction varyy; = T, — ; ne
dépend que de la microsolution sing\y;, ce qui définit une application

var;: sol?(D}) — SolD?(D A
appelée « variation locale autour de S; ».

Comme en vertu de la remarque i) ci-dessus toute microsolution locale peut

étre représentée par une fonction Y; € O(D’) (et méme O(D\C;)), on voit que

la variation locale var; se factorise a travers une « variation semi-locale »
Var;: sol?(D}) - Sol®(D) (et méme Sol?(D\C))).
On en déduit des « microvariations »
var{ = sing; o Sp; o Var;: sol®(D}) — sol®/(D’)

qui sont trés utiles pour expliciter la fagon dont 'isomorphisme de la pro-
position dépend de la direction choisie pour les coupures.

De fagon précise, si 'on fait tourner les coupures en faisant croitre leur
argument 6, et si pour un certain argument 0, le point S; est « balayé »
par une coupure C,(k# j) et par aucune autre, alors le spécialisé sp’; pour
0 > 0, se déduit du spécialisé sp; pour 8 < 6, par la formule

spj W = sp; ¥ — var{ sp, ¥

(quant aux autres sp; V, ils sont tous égaux a sp; I si aucun autre S; n’est
balayé par une coupure).

1.5. TRANSFORMEES DE LAPLACE LOCALES ET SEMI-LOCALES
Dans la situation 1.4, supposons que les points S, .., S; soient & une

distance de l'origine inférieure a un nombre r égal a l/ﬁ fois le rayon
du disque D. Cela nous permettra de considérer dans D’ des chemins d’inté-
gration v, Yy, Y2, .- Y (cf. Fig. 4) dont lorigine et I'extrémité auront leurs
parties réelles supérieures a r.
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FIGURE 4

Pour \ € Sol®(D’), définissons la « transformée de Laplace semi-locale »
par

(LV) (1) = [ e ™VY(t)dt .

Cest une fonction holomorphe de © dans le demi-plan Re t > 0, vérifiant
une condition de croissance que nous noterons ainsi:
L\ e o, espace vectoriel des fonctions ¢ holomorphes dans Ret > 0

T T o .

admettant dans tout secteur — 5 +e<Argt < 5~ € une majoration du

type | & | < c.e”. En notant de méme &/ _, l'espace des ¢ admettant dans
- Y T . . .

tout secteur — 3 + e < Argt < 5~ e des majorations | ¢ | < c,e” " (r < r

arbitrairement proche de r), on déduit immédiatement du théoréme de
Cauchy que la classe de £\ mod. &/ _, ne change ni quand on déforme
le chemin y en astreignant son origine et son extrémité a rester dans la
lunule D'~ {Ret > r}, ni quand on remplace { par une fonction équi-
valente mod. ¢(D). Autrement dit, la transformée de Laplace semi-locale définit
une application linéaire |

L :s01P(D) » oL/ _, .

Notons que cette application est injective (on adapte un argument de Mal-
grange [11], qui définit la transformation de Laplace inverse en intégrant




70 : F. PHAM

sur n’importe quelle demi-droite non verticale du demi-plan Re t > 0 dont
lorigine a une partie réelle > 0 arbitrairement petite).

Définissons maintenant les « transformations de Laplace locales » par les
formules |

(L) (1) = j e ()t = 1,2, ..,1.

Par le méme raisonnement quc plus haut, mais en utilisant de plus' la
remarque 1.4 1), on voit que les &; définissent des applications linéaires

L.osolP(D) » st (i=1,2,..1])
l
De plus, I'homologie vy ~ Y v; (dans D’ mod. D' n {Ret > r}) implique
i=1

!
= ) LV, Cest-a-dire £ = ) L, osp;.
i=1 ' i

Conclusion: On a le diagramme commutatif

£

sol?(D’)

- A,
© sp; v Z
> 2, |
® sol™(D}) ——— o,

i

par lequel P'espace vectoriel a m dimensions des microsolutions semi-locales
s’identifie 2 un sous-espace vectoriel de &/"/o/ _,, qui admet une décompo-
sition en somme directe de sous-espaces vectoriels de .«/"/o/ _,, image de la
décomposition 1.4.

Exemple. Cas ou tous les points S; sont simples. Dans le cas ou tous
les points S; sont simples (m;=1), on sait (n° 1.3) que les microsolutions
locales sont de la forme @; = (ch+c’ 8, 1 +..)8,, de sorte que leurs
transformées de Laplace admettent les développements asymptotiques formels

Lp; o< (ch+ch 71+ )tHe™ ™S,

Les transformées de Laplace semi-locales admettront donc formellement des
développements asymptotiques (non convergents)

l
PYoc Y (ch+cy 1™+ )re
i=1
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tout-a-fait semblables aux développements « BKW complexes » des phy-
siciens. Tout le travail que nous venons de faire a pour effet de donner
une signification exacte mod. of _, a de tels développements.

Remarque. Nos transformées de Laplace n’ont di étre tronquées
(mod. &/ _,) que parce que nous ne savons pas jusqu’ou les fonctions consi-
dérées peuvent étre prolongées analytiquement en dehors de D. Mais consi-
dérons ’hypothese suivante: '

Hypothése. Pour tout i = 1,..,1, la variation Var;p de toute micro-
solution se prolonge analytiquement dans E\C,; U ... u C,, ou E est la bande
horizontale, union des demi-droites paralléles a R issues de D.

Sous cette hypotheése toutes les transformées de Laplace peuvent étre
définies mod. &/ _x pour tout R > 0, et méme exactement (comme vraies
fonctions) si les Var;o sont a croissance modérée a l'infini.

Par exemple #;¢ pourra étre définie par la formule suivante, a l'aide
des chemins v; et B; de la figure 5:

(Z:0) () = [ e ™()dr — [ e " (Var,) (ds

ou ¥ est un représentant (analytique multiforme dans D*) de la micro-
solution @; la demi-droite B; et le «lacet» v; ont leur origine commune
dans D' un peu au-dessus de la coupure C;, et 'on a représenté en pointillé
sur la figure la partie de vy, située dans le «2° feuillet » (voir fig. 5).

y o>

FIGURE 5
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2. ETUDE DES MICROSOLUTIONS DANS LE CAS GENERAL

2.0. MICROLOCALISATION « VERTICALE »

Nous noterons ® le feuilletage vertical de C" x C, et &, l'anneau des
opérateurs microdifférentiels « verticaux », ¢’est-a-dire I’ensemble des séries for-

melles P = ) a, %, ou les a, e C{x, t} ont un polydisque de convergence
keZ

commun et vérifient les deux conditions suivantes:

1) ordre fini: a, = 0 pour k > m (« lordre » de PY;
k

ii) « convergence de Borel»: la série ) a_x, t)ﬁ est absolument
keN .

convergente pour || x ||, | t|, | | assez petits.

On note &4(m) 'espace des opérateurs microdifférentiels verticaux d’ordre
(<) m. En particulier &40) est un sous-anneau de &, et la multiplication
a droite ou a gauche par 0"(meZ) établit une bijection entre &4(0) et &4(m).
Soit maintenant £ = &5 < 0,,, .., 0,, > l'anneau des opérateurs poly-
nomiaux en 0, ,.., 0, a coefficients dans &;: on pourra convenir d’écrire
ces coefficients a gauche des 04! ... 0%, mais il faudra de toutes fagons tenir
compte des relations de commutation [0, x;] = 1 au moment d’écrire la loi
de composition. Ainsi # contient 2 comme sous-anneau, dont il est en |
quelque sorte le « microlocalisé vertical ». Tout comme &, &, etc., Z est un
anneau noethérien. Tout comme eux il peut étre considéré comme la fibre a

I'origine d’un faisceau cohérent d’anneaux sur C" x C.

2.1. ACTION DE Z SUR LES FONCTIONS HOLOMORPHES

Seule I'action de &; pose probléme, et comme tout élément de &, est
la somme d’un opérateur différentiel et d’'un élément de &£4(0), il nous suffira de
définir I’action de &4(0); Soit donc P € &5(0):

P=pxt)+ > alxt)d *.
k=1

A la série formelle Y a, 3, * on associera le noyau intégral

k=1 ‘
2 (t—u)1

K(x;t,u) = kZ1 a(x, t) —(k——_l)_'— 3

qui grace a la condition de convergence ii) est holomorphe pour | x |,
| t], | u| assez petits. Soient donc B une boule de C" et D un disque de C, -
assez petits pour que p [resp. K] soit holomorphe dans un voisinage de |
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B x D [resp. Bx D x D]. Pour tout ouvert ¥ x U = B x D, avec U sim-
plement connexe, et pour tout t, € U, on définit P, : OV xU) — OV x U)
par la formule

(PoV) (x, £) = plx, (%, 0) + [, K(x; t, upb(x, u)du .

En particulier (8, !),, est 'opérateur qui a toute fonction holomorphe associe
sa « primitive verticale » nulle sur ’hyperplan ¢t = ¢,.
On en déduit pour tout R € £ un opérateur

R,,: OV xU) - OV x U)
bien défini pourvu que V x U soit assez petit (et U simplement connexe).

Remarque. 11 sera parfois utile d’étendre I’action des opérateurs R, aux
fonctions analytiques multiformes dans le complémentaire d’une hyper-
surface <. Mais on prendra garde que cette action n’est pas définie dans
les « feuilles singuliéres », c’est-a-dire les droites verticales ou plusieurs points
de & viennent a confluer, risquant de pincer le contour d’intégration. Le
résultat d’une telle action sera donc une fonction analytique multiforme dans
le complémentaire de & U ., ou I'hypersurface J est 'union des droites
verticales « en position singuliére par rapport a & ».

2.2. MICROSOLUTIONS D’UN IDEAL ¥ — %

On prend B, D assez petits pour que .# admette des générateurs R, ..., R,
dont Paction sur les fonctions holomorphes est bien définie dans B x D.

Solutions mod. O(- x D). Pour V x U < B x D comme au n°2.1, on
définit I'espace

Sol?(V x U) = {y e OV x U) | (Ry),, ¥ € O(V x D), A= 1.V},

dont il convient de remarquer qu’il ne dépend pas du choix du point ¢, € U.
Il ne dépend pas non plus du choix des générateurs de I'idéal .# pourvu que
ceux-ci convergent dans V' x D (on prendra garde en vérifiant ce point que
Pégalité R, (R;, V) = (R R'), ¥ n’est pas vraie ; toutefois elle 'est mod. OV x D),
ce qui nous suffit).

Microsolutions. Pour V x U comme ci-dessus, on définit
sol®(V x U) = Sol®(V x U)/O(V x D).

En passant a la limite inductive sur les petits ouverts ¥ x U nous avons
ainsi défini deux faisceaux Sol? et sol?, que nous étudierons sur I’espace
(BxD)* = B x D\& complémentaire du lieu singulier & du systéme
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M = R/F. Ce dernier sera supposé holonome, non caractéristique pour le
feuilletage vertical (toutes les notions introduites au §0 se transférent sans
modification aux #-modules, avec la simplification supplémentaire que la
variété caractéristique ne contient jamais la section nulle du fibré cotangent).
Le lieu singulier & est donc une hypersurface transverse au feuilletage (a
trace finie dans chaque feuille), et nous pouvons choisir B, D de telle sorte
que & N (B x D) ne rencontre pas B x 0D (0D = bord du disque). R

THEOREME. Avec les hypothéses ci-dessus, et si B, D sont assez petits,

1) pour tout ouvert V x U <« (BxD)* = B x D\&, avec V, U sim-
plement connexes, toute \y € Sol’(V x U) se prolonge en fonction analytique
multiforme sur (V xD)* = V x D\Y;

ii) le faisceau sol® des microsolutions est localement constant sur (B x D)*,
ou il définit un systeme local d’espaces vectoriels de dimension finie.

Preuve de la partie i). 1l s’agit d’'un résultat de « prolongement analy-
tique vertical » dont la démonstration peut étre calquée sur le cas n = 0
(théoréme 1.2 1)), aprés quelques préparatifs algébriques dont voici I'esquisse:
graice a un théoreme de division dans Panneau des opérateurs micro-
différentiels (cf. par exemple [14] Microloc. §3), ’hypothése non caracté-

' ristique implique que .# peut étre considéré comme la fibre a 'origine d’un
& ;-Module cohérent de support % ; on en déduit I'existence dans & N &;(0)
d’un opérateur P dont le symbole principal p(x,t) est une équation (non
nécessairement réduite) de <.

Alors un argument de « perturbation compacte » analogue a celui de 1.2
montre que P, tout comme p, est un isomorphisme sur tous les By, x D,
c V x D\, ce qui démontre P'existence du prolongement analytiqué multi-
forme sur ¥V x D\& de toute solution de P mod. O(V x D).

Quant a la partie ii) du théoréme, nous en dirons quelques mots au n° 2.4,
ou seront donnés des énoncés plus precis.

2.3. MICROSOLUTIONS LOCALES AU VOISINAGE D'UN POINT GENERIQUE DE &

Plagons-nous mainténant au voisinage d’un point générique de &, c’est-
a-dire un point S au voisinage duquel & est lisse et transverse aux feuilles
x = Cte; prenons pour B x D un voisinage assez petit de S, dans lequel
& sera donnée par I'équation t = O (on peut toujours se ramener a ce cas
par un changement de coordonnées locales respectant le feuilletage). Pour
étudier la structure des microsolutions, on essaye de se ramener au cas d’une

’
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seule variable en cherchant un changement d’inconnue [y = Q¥ qui mette le
systéme sous la forme

Pt,o;, W =0, 06, ¥=.=0,0=0.

En fait, cela n’est possible en général qu’en prenant Q dans un anneau plus
grand, I'anneau des opérateurs microdifférentiels d’ordre infini, qui heureu-
sement agit lui aussi sur les microfonctions. Le cas ou 'on peut prendre Q
d’ordre fini est le cas ou le systéme est « a singularité réguliere » (Kashiwara-
Oshima [9]; une démonstration élémentaire est esquissée dans [15], et
détaillée dans [4]).

Conclusion. Le faisceau sol? (avec D comme ci-dessus) définit sur (B x D)*
un systéme local d’espaces vectoriels de dimension m = « multiplicité » du
systeme microdifférentiel au point S (= valuation de 'opérateur P ci-dessus).

Cas particulier. S est un point «simple», cest-a-dire que m = 1.
Cest le cas le plus simple de singularité réguliére. L’opérateur P peut alors
étre mis sous la forme P = t + ad, !, comme au n° 1.3, et 'on en déduit
que I'espace des microsolutions est engendré par une « microfonction » de la
forme

Q(x, 0, ") 6%?)) = Co(x) 62?)) + ¢1(x) 8(t) Yt ocy(x) 8% Y+

ou 3{ est la « dérivée a-iéme » (aeC) de la microfonction de Dirac, définie
comme en 1.3 (indépendante de x).

2.4. DECOMPOSITION « DE STOKES » DES MICROSOLUTIONS

Reprenons maintenant B et D comme en 2.2, et posons (Bx D)

= B x D\C, ou C désigne la «coupure» C = U S + R, en. notant
Se¥

S+R" = {x,5+1)|(x,s) = S, teR*}. Nous voulons définir une décompo-
sition de I'espace sol”((B x D)) en somme directe finie d’espaces de micro-
solutions locales du type 2.3:

solg = sol®S((Bg x Dg)),

ou S est un point générique de &% (au sens 2.3), By x Dg est un voisinage
assez petit de S, et (Bgx Dg) de51gne ce méme voisinage privé de la cou-
pure locale correspondante:

(BsxDg) = Bs x Ds\Cs, Cs = U S+ R,

Se¥ A(Bs x Ds)

Notons que les espaces vectoriels solg ainsi définis ne dépendent pas de
la taille des voisinages (pourvu que ceux-ci soient assez petits: cf. lemme




76 F. PHAM

ci-apres) et se recollent de fagon évidente quand S parcourt &*, ensemble
des points génériques au sens 2.3, en un systéme local sur &¥* d’espaces
vectoriels de dimension finie (cf. 2.3). '

Si de plus on prend S dans &', ouvert dense de &* formé des points
qui ne sont sur aucune demi-droite S’ + R™ issue d’un autre point S’
de &, il est clair quUon a comme en 1.4 une application linéaire de
« spécialisation »

sps: sol®((B x DY) — solg,

localement constante quand S parcourt &'.

Posons B* = B\A, ou A est ’hypersurface complexe « de bifurcation »
(projection de la partie non générique de ). Pour xe B*, ¥, =%
N ({x} x D) consiste en [ points distincts, d’ou sont issues ! coupures
S; + R™(i=1,..,1); nous noterons B’ I'ouvert dense des x € B* pour les-
quelles ces | coupures sont disjointes. Les composantes connexes de B’
seront appelées « régions de Stokes ». Au-dessus de chaque région de Stokes,
S = & est un revétement trivial a | feuillets (car en interdisant aux
coupures de se recouvrir on interdit a leurs origines de s’échanger). Soient
S,,S,,..S, des points choisis sur chacun des I feuillets de ce revétement
(pour une région de Stokes donnée).

! !
PROPOSITION.  L’application linéaire @ spg,: sol®((B x D)) —» @ solg, est
i=1 i=1
un isomorphisme (constant sur chaque région de Stokes ).

Preuve. L’injectivité est évidente, car une détermination sur (B x D) de
fonction analytique multiforme sur (B x D)* (théoréme 2.2 1)) se prolonge a

tout B x D si elle se prolonge au voisinage de chaque branche de &.
La preuve de la surjectivité peut se décomposer en deux étapes.

l
17 étape: surjectivité de lapplication sol®((V x DY) - @ sols, pour tout
i=1
ouvert V inclus dans une région de Stokes.

Elle découle immédiatement du lemme plus général suivant, qui montre dans
quelle mesure le faisceau sol® des microsolutions est indépendant du choix
. de D.

LEMME. Sous les hypothéses du théoréme 2.2, soit D, < D un disque
de centre arbitraire tel que & N (Vx0Dy) = @ (0D, désigne le bord de
D, ). Alors '’homomorphisme de spécialisation des microsolutions
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sol’((V x D)) — solP((V x Dy))
est surjectif (et évidemment bijectif si. & N (VxDy) = & n(VxD).

Remarque préliminaire. Commengons par considérer les « variations »
d’une microsolution @ € sol2? , ., c’est-a-dire les fonctions analytiques multi-
formes dans (V x D,)*, différences de 2 déterminations d’un représentant ¥
de @. On vérifie facilement que ces variations sont des solutions de
4 mod. O( x D), car si l'on compare au point (x,, ty) les germes de fonc-
tions P, U, et P, V,, ou Y, et |, sont deux déterminations de \ en ce
point, on trouve (par exemple pour un opérateur P de la forme 2.1)

Pto\lfl - Pto\ljz = j K(x;t, u) W(x, uydu

(intégrale prise sur le lacet qui fait passer d’une détermination a lautre),
et cette intégrale se prolonge en fonction holomorphe dans tout le domaine
d’holomorphie du noyau K.

Par conséquent, d’aprés la partie 1) du théoréme 2.2, les variations de
microsolutions mod. ¢(- x D,) se prolongent en fonctions analytiques multi-
formes dans (V x D)*.

Preuve du lemme. L’hypersurface & n (V x D) se décompose en deux
parties disjointes &, et &, avec £, = & N (V xD,) (et &, éventuellement
vide). Nous noterons C, = %, + RT et C; = &, + R™ les coupures cor-
respondantes. En prenant pour V une boule (par exemple), 'ouvert de Stein
(VxDy) =V x Do\¥, sera lintersection des deux ouverts de Stein
V- x D\C, et V x D,. Soit alors Y, € Sol®((V x Dy)). D’aprés Cousin, la
fonction Yy € O((V x Do)') peut sécrire Vo = ¥ + 6, ou Y e O(V x D\C,) et
8 e O(V x D). Pour tout R e .# la fonction R,  sera donc, comme v, holo-
morphe dans V x D\C,, et comme R, \/, holomorphe dans V x D,. Donc
R,V est holomorphe dans V x D & l'exception peut-étre de la partie C|
de la coupure C, située hors de V' x D,.

Par ailleurs la remarque préliminaire nous dit que les variations de la
microsolution ¢, cest-a-dire les différences de déterminations de { dans
(V'x Dy)’, se prolongent en fonctions analytiques multiformes dans-(V x D)*.
On en déduit que les différences de déterminations de R, sont analytiques
multiformes dans V' x D\(¥,UJ o), ou I , désigne l'union des droites ver-
ticales en position singuliére par rapport a &, (cf. remarque 2.1). Le fait
que I'une de ces déterminations soit holomorphe dans V x D\C/{, implique
alors qu’elle est holomorphe dans tout ¥V x D.
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2° étape: surjectivité de I'application sol®((B x DY) — sol®((V x DY).

Il s’agit 1a d’'un probléme de « prolongement. horizontal des microsolutions »,
dans lequel I’hypothése non caractéristique doit jouer un rdle essentiel.
Jaimerais beaucoup en lire une démonstration élémentaire convaincante (une
possibilité est indiquée a la fin du n° 2.5). La démonstration de Kashiwara-
Kawai dans [6] (chap. III, §6, Prop. 4.6.1) fait appel aux outils sophis-
tiqués de Kashiwara et Schapira sur le probléme de Cauchy « microhyper-
bolique » [10].

Rappelons que modulo cette deuxiéme étape, nous avons achevé la
démonstration de la partie ii) du théoréme 2.2.

2.5. TRANSFORMEES DE LAPLACE DES MICROSOLUTIONS

On prend la boule B assez petite pour que Vx € B, %, soit inclus dans

le disque de rayon r, en notant r\/i le rayon du disque D. La situation
est donc celle de 1.5 avec paramétres (avec confluences possibles de points
de &, pour certaines valeurs des parametres). On se reportera a la figure 4
de 1.5 pour y voir la définition du chemin y, qui maintenant dépend conti-
niment de x pour x € B, ainsi que la définition des chemins y;, qui eux
ne peuvent tous dépendre continiment de x que sur une région de Stokes B°,
et seront donc notés y¢ (I'indice o numérote les régions de Stokes, définies
en 1.4).

L’intégration sur y permet comme en 1.5 de définir la transformation

de Laplace
& :sol’((B x D)) —» /"(B)/</ _,(B)

ou /"(B) resp. </ _,(B) désigne l'espace des fonctions holomorphes dans
B x Cf(ou C; ={1eC|Ret>0}) vérifiant localement au-dessus de B des condi-
tions de croissance analdgues a celles introduites en 1.5.

On montre comme en 1.5 que ¥ est une application injective, qui
identifie I'espace des microsolutions a un sous-espace vectoriel ¥~ de /"(B)/
o/ _,(B). De méme l'intégration sur les y7 permet de définir des transfor-
mations de Laplace locales #¢: au-dessus d’une région de Stokes B°, ou
'on a numéroté &9, .., ¢ les feuillets de &, et noté solf(i=1,..,1) les
espaces de microsolutions locales correspondant aux % ¢, on pourra définir
pour tout @ € sol{

*) L7o = [ eT™(x,0)dt  mod o/ _(BY)

ou Y est n'importe quel représentant de ¢ holomorphe dans B® x D\¥. En
fait on peut méme prendre Y holomorphe dans B° x D\&; (d’apres le
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lemme 2.4), et dans ce cas le chemin d’intégration Y, dans (*) peut étre
remplacé par v (théoréme de Cauchy). Une fois ce remplacement fait, I'inte-
grale ne dépend que de la classe de | dans solP((B° x DY), ce qui permet de
se ramener au cas ou \ est holomorphe dans (Bx D) (grice a la réso-
lution de la 2¢ étape de la proposition 2.4).

Conclusion. Les ¥ %o, pour ¢ € sol{, admettent des représentants holo-
morphes dans tout B x C. (vérifiant les conditions de croissance .« ,(B)) et
définissent donc mod. &7 _(B) un sous-espace vectoriel ¥'¢ de ¥". De plus
on a une décomposition de en somme directe

!
= p ¥
i=1

qui au-dessus de la région de Stokes B° n’est autre que l'image par
l l

¥ =Y °? de la décomposition sol®(B°x D)) = & sol{ (cf. la propo-
i=1 i=1

sition 2.4, dont tout ce qui précéde n’est qu'une paraphrase).

Exemple. Cas ou le systéme est simple aux points génériques de .
- Dans ce cas les espaces ¥°¢ sont a 1 dimension, engendrés par des fonc-
tions ¢ 9(x, t) qui dans la région de Stokes B° admettent des développements
asymptotiques formels

e} g ‘
(%) dI(x,T) o <Z c? k(x)r"‘) g~
. k=0
qui doivent se comprendre comme transformés de Laplace des dévelop-
pements 2.3 des microsolutions en un point simple (en prenant garde dans 2.3

de remplacer la microfonction de Dirac 3( par (253, o t — S7(x) est
'équation de la branche & ?). ‘

Rappelons encore que les fonctions &¢ sont holomorphes dans tout
B x C., bien que les coefficients ¢, de leur développement asymptotique
(**) soient en général singuliers sur ’hypersurface de bifurcation A (et se
prolongent en fonctions analytiques multiformes dans le complémentaire de
cette hypersurface). En dehors de la région de Stokes B°, le prolongement
analytique du 2" membre de (**) ne peut en aucune fagon étre compris
comme un developpement asymptotique formel de ¢¢.

En fait, le développement asymptotique formel de ¢$¢ dans une autre .

région de Stokes B® se calcule a l'aide de la « matrice de raccordement »
(C?f ii=1,2,..,1€ G1(C):




80 F. PHAM

$fx, 1) = Y CI7 ¢7(x, 1),

J

qui ne fait qu'exprimer I'isomorphisme de « changement de décomposition »

®YViedry,
i J

et ne dépend donc que du choix de la normalisation des générateurs ¢7 des
espaces vectoriels 7 ¢. R |

Remarquons que I'isomorphisme de changement de décomposition est
attaché de fagon intrinseque au systéme microdifférentiel, c’est-a-dire qu’il ne
dépend que du #-module # = %/F et pas de la fagon dont celui-ci est
présenté comme quotient de 2 (en effet 'espace vectoriel des microsolutions
peut étre défini de fagon intrinséque: sol = Homgy(.#, microfonctions)). Ainsi
par exemple le cas d’'un point tournant de type « pli», étudi¢ au §6 de
'article [17] de Voros, se réduit au cas de I'exemple iii) de notre §0 (ici A4
est le systtme de Gauss-Manin de la catastrophe « pli », déploiement uni-
versel de la fonction t=2z3). '

Conclusion. Tout le travail qui précéde peut étre considéré comme une
méthode de resommation de développements asymptotiques formels du
type (*x) — par exemple les développements BKW des physiciens — qui
acquiérent ainsi une signification exacte modulo un reste exponentiellement
petit en 1, dont le taux de décroissance exponentielle est d’autant plus
fort que les microsolutions peuvent étre prolongées loin a droite dans le plan
complexe des t; comme indiqué a la fin de 1.5, on peut méme obtenir une
resommation exacte (a reste nul) si les microsolutions ont des propriétés de
prolongement analytique global dans le plan des ¢ avec croissance modérée a
I'infini, comme c’est le cas des « fonctions résurgentes » d’Ecalle [5], qui jus-
tement apparaissent dans les modeles semi-classiques étudiés par Voros [17].

Mise en garde au lecteur. Les développements asymptotiques dont il est
question ici' n’ont pas grand-chose a voir avec ceux qu’étudient Kashiwara
et Kawai dans [7]: ces derniers sont purement locaux, ce qui exclut la prise
en compte de termes exponentiellement petits, alors que les notres sont en
quelque sorte « semi-locaux ».

Remarque technique. 1l serait intéressant, suivant une suggestion de Mal-
grange, d’utiliser la transformation de Laplace comme outil technique pour
démontrer la proposition 2.4 (2° étape de la preuve) de fagon plus élé-
mentaire que dans Kashiwara-Kawai [6]. L’idée consisterait a démontrer que
les intégrales de Laplace ¢(x, 1), définies au départ seulement au-dessus -des
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régions de Stokes, admettent des prolongements analytiques au-dessus de tout
B, avec controle uniforme en x du comportement asymptotique en T (ce qui
permet de repasser aux Y(x, ) par « Laplace inverse »). L’article [11] de Mal-
grange me semble contenir tout ce quiil faut pour faire ce travail (on y
¢tudie, au voisinage de T = o, le systéme différentiel en (x, 1) « transformée
de Laplace » du systéme microdifférentiel considére.

2.6. QU’EST-CE QU'UN « POINT TOURNANT »?

Nous avons appelé « points de bifurcation » les projections des points
singuliers de & (relativement au feuilletage vertical). Certains points singuliers
sont d’un type trivial, et ne donnent pas lieu a des singularités des déve-
loppements asymptotiques: ce sont les points ou le systeme # est loca-
lement somme directe de systémes du type 2.3 (par exemple les points ou
2 nappes lisses de & se coupent transversalement).

Il me semble conforme a I'usage des physiciens d’appeler « points tour-
nants » les points de bifurcation qui sont projections de points singuliers
non triviaux de &.

Notons que la trivialité d’un point singulier ne dépend pas seulement de
la géométrie de &¥; par exemple, en un point ou deux nappes lisses de &
ont un contact quadratique en codimension 1, il existe deux types de sys-
temes holonomes simples aux points génériques; celui de ces deux types qui
n'est pas trivial est connu des physiciens sous le nom d’« intersection effective
de deux singularités de Landau» (cf. [8] et [15] pour une étude mathé-
matique de cet exemple).

3. APPENDICE SUR LE CAS REEL:
SOLUTIONS MICROFONCTIONS DE SATO

Considérant C* x C comme le complexifié de R” x R, nous nous pro-
posons d’é¢tudier les solutions de notre systéme microdifférentiel dans le
jaisceau Ggn g des microfonctions de Sato. Rappelons [17] que @ rnxr €St UN
laisceau sur le fibré S*(R" x R) des directions de demi-droites cotangentes &
R" x R, et que le support du faisceau des solutions dans @g. g est inclus dans
la variété caractéristique réelle du systéme (considérée comme sous-ensemble
de S*(R" x R)). Avec notre hypothése non caractéristique, ce support est donc
propre a fibres finies au-dessus de R”, de sorte que les solutions dans
%rnxg Sidentifient aux solutions dans %, = 3 ; , € ), faisceau des familles
analytiques en x € R" de microfonctions d’une variable réelle t (cf. par
exemple [14], Microlocalisation, §2).
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Rappelons la définition de ¥ ; (celle de €~ est analogue): Cest le
faisceau sur R” x R dont les sections sur un ouvert U sont définies comme
limites inductives .

| %;(U) = li_rp oQN)o0Q") N LU,

Ot

ou &/(U) désigne I'espace des fonctions analytiques réelles sur U, et QF par-

court la famille des « demi-voisinages imaginaires positifs» de U dans
R" x C, c’est-a-dire: '

QT =QnC", C"=1{teC|Imt> 0},
Q voisinage de U dans R" x C contenant U comme sous-ensemble fermé.

Il résulte facilement de notre étude 2.2 que les solutions dans € ;" se
prolongent dans le domaine complexe, en microsolutions du type 2.2. Pour

éviter toute ambiguité dans les prolongements analytiques, il sera commode

de considérer que les coupures 2.4 ont été choisies dans la direction ima-
ginaire négative du plan des t (au lieu ‘de la direction réelle positive), de
sorte que la transformation de Laplace ¥ de 2.5 deviendra une « trans-
formation de Fourier » au sens de ([13], n°® 1.2).

Il est alors clair qu’une microsolution @ € sol”((B x D)) provient d’une
solution dans ¥ ; si et seulement si les spécialisées spg(¢) sont nulles pour tout
Se % n ((BNR") x D) dont la composante ¢ est de partie imaginaire positive.

Conclusion. L’espace des solutions dans € J s’identifie au sous-espace
vectoriel de sol®((B x D)) défini par les équations sp,(¢) = 0, ou lindice A
numérote les composantes connexes de &' N (BNR")x D*), avec D™ = D
N C™ (cf. 2.4 pour la définition de &").

Exemples
i) # = systtme de Gauss-Manin de la catastrophe «pli» (exemple iii)
du §0). '

& est la « parabole semi-cubique » t2 — x> = 0, et ¥ " (RxC%) a une
seule composante connexe {(t, x) | x < 0,¢t = i| x| *?}. L’espace des solutions
microfonctions de Sato est donc donné par 1 équation dans l'espace a
2 dimensions des microsolutions. Il est donc a 1 dimension.

i) 4 = systéme de Gauss-Manin de la catastrophe « fronce » (déploiement
universel de la fonction t=z%) ‘

& est la complexifiée de la « queue d’aronde » de R? x R. La courbe de

bifurcation dans R?> a deux composantes dont I'une est la « caustique»
x%2 — x3 = 0, lautre étant le « lieu de Maxwell » x, = 0. Au-dessus de I'in-

Ve

b
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térieur de la caustique (zone hachurée (1) sur la figure 6) les trois nappes
de & sont réelles, alors qu'au-dessus de la zone non hachurée deux de ces
nappes deviennent imaginaires conjuguées, en s'‘échangeant entre elles a la
traversée du lieu de Maxwell

X1

FIGURE 6

On voit ainsi que %’ N (R? x C*) a deux composantes connexes (nappes ima-
ginaires positives au-dessus des zones (2) et (2'), se raccordant transversa-
lement le long de la courbe de self-intersection de la queue d’aronde).
L’espace des solutions microfonctions de Sato est donc donné par 2 équations
sp2) = 0 et sp,, = 0 dans I'espace a 3 dimensions des microsolutions. Ces
deux équations sont linéairement indépendantes, car elles correspondent aux
deux composantes locales du systeme .# au voisinage de la courbe de self-
intersection de la queue d’aronde (au voisinage de cette courbe .# est une
somme directe de deux systemes simples). Par conséquent ’espace des solu-
tions microfonctions de Sato est & une dimension.

Remarque : En fait les deux exemples ci-dessus sont des systémes a carac-
téristique simple (comme tous les systemes de Gauss-Manin de déploiements
versels de fonctions: cf. [14] Microloc., §7), et 'on dispose d’arguments plus
clégants pour montrer que 'espace des solutions microfonctions de Sato est
toujours a 1 dimension pour de tels systémes (une « transformation de contact
quantifiée » permet de ramener tous ces systémes a la forme simple 2.3).

La methode illustrée ci-dessus a cependant 'avantage de s’appliquer aussi
bien aux systémes dont la variété caractéristique n’est pas lisse.
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