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L'Enseignement Mathématique, t. 30 (1984), p. 57-84

TRANSFORMÉES DE LAPLACE DES MICROSOLUTIONS
DE SYSTÈMES HOLONOMES

par F. Pham

Le but du présent article est d'exposer des outils mathématiques généraux

permettant de clarifier l'étude locale des « points tournants » de la

méthode semi-classique en dimension quelconque. Il y sera question (comme

chez Balian-Bloch [1], Yoros [18] [19]) d'intégrales de Laplace de la

forme

cj>(x, x) j e~Tf\|/(x, t)dt,

où \Jt est une fonction analytique multiforme de (x, t) e Cn x C dont le

lieu de ramification Sf est de trace discrète dans chaque droite complexe
.x Cte (tout au moins « localement sur la surface de Riemann » de v|f,

en un sens à préciser); pour un contour d'intégration y comme celui de

la figure 1, l'intégrale va converger pour Re x > 0 pourvu que \|/ soit à

croissance modérée à l'infini en t, de sorte que (j) sera une fonction
analytique de (x, x) sauf peut-être au-dessus des « points de bifurcation », valeurs
de x pour lesquelles deux points S fx), S2(x) de 9*x n ({x} x C) viennent
à se confondre et risquent de « pincer » le contour d'intégration y.

S2(x) ^ *

*5iM
(*S3(x)

-y

Figure 1

Nous nous proposons ici d'étudier localement une classe très générale de
fonctions \|/ dont les transformées de Laplace ne seront jamais singulières,
même en cas de pincement du contour d'intégration: il s'agira des fonctions

\|/ qui sont localement solution de systèmes holonomes (au sens de
Sato) non caractéristiques pour le feuilletage vertical de C" x C (celui dont
les feuilles sont les droites x Cte ; cf. §0).

Alors la transformée de Laplace § sera holomorphe au-dessus du point
de bifurcation bien que, s'il s'agit d'un point tournant (déf 2.6), chacun des
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termes de son développement asymptotique formel en x soit singulier! Il s'agit
là d'un phénomène bien connu des physiciens (la fonction d'onde est régulière,
bien que ses développements BKW *) soient singuliers), dont la relation avec
le « phénomène de Stokes » de la théorie des équations différentielles à

singularités irrégulières avait été remarquée depuis longtemps dans le cas

n 1, mais qui ne m'est devenu clair qu'après lecture de l'article de

Voros [18]. En fait, la seule prétention du présent article est de généraliser
en dimension n quelconque l'étude de la structuré des points tournants
donnée par Voros (dans le cas particulier des points tournants de type
« Airy ») au §6 de son article [18]. Il se trouve que tout le travail
technique était déjà fait dans un article fondamental de Kashiwara-Kawai[6],
et ma seule contribution (peut-être) originale a été d'utiliser la transformation
de Laplace comme un dictionnaire pour traduire leurs résultats; pour tout
ce qui concerne Laplace (absent des préoccupations de [6]) je me suis

inspiré d'idées non publiées de Malgrange (cf. cependant [12]), elles-mêmes

influencées par les travaux de Voros; pour l'exposé des résultats de Kashi-
wara-Kawai (difficiles à lire dans l'article original, en raison du gros outillage
cohomologique utilisé), j'ai été très aidé par un exposé de J. E. Björk au
séminaire Goulaouic-Schwartz [3]. Le présent exposé doit donc beaucoup à

B. Malgrange qui depuis plusieurs années m'explique ses idées sur Laplace,
ainsi qu'à J. E. Björk qui m'a aidé à comprendre l'article de Kashiwara-
Kawai. Il aurait pu être beaucoup plus bref si je n'avais voulu le rendre
lisible sans connaissance préalable du calcul microdifférentiel.

Dans un article ultérieur (dont [16] est une première esquisse) j'aborderai

plus spécifiquement les problèmes de physique concernés par la méthode

semi-classique complexe (états liés dans le cas où le système classique est

complètement intégrable ; états de diffusion...).

0. La condition « non caractéristique »

On se place désormais dans un voisinage de l'origine dans C x C muni
des coordonnées (xl5..., xn,t) (x,t). (9 C{x, t} désigne l'anneau des

*) « BKW » Brillouin Kramers Wentzel. Les développements BKW sont des
1

développements en puissances de — notre paramètre x) des fonctions d'onde de
h

la mécanique ondulatoiré. Ces développements sont divergents, de plus leurs termes
pris individuellement sont singuliers (avec ramification) aux points dits « points
tournants » (turning points) où est singulière la solution de l'équation de Hamilton-
Jacobi. L'article de Voros mentionné ici exploite joliment l'idée de Balian et Bloch [1]
de chercher à resommer les développements BKW sous forme intégrale de Laplace.
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germes de fonctions holomorphes, et Q) — G < ôx, ôt > désigne l'anneau

(noethérien) des germes d'opérateurs différentiels à coefficients holomorphes.

Soit ^cC" x Cun germe d'hypersurface analytique complexe, et soit \|/

une fonction analytique multiforme dans O x C\SP, de classe de Nilsson le

long de Sf, c'est-à-dire de type de détermination fini et à croissance modérée

au voisinage de Sf. On sait (cf. par exemple [2], chap. IV) que v|/ est alors

solution d'un germe de système holonome d'équations aux dérivées partielles

linéaires, c'est-à-dire qu'il existe dans @ un idéal à gauche «/ tel que
P\\f 0 pour tout P e «/, et tel que les symboles principaux des éléments

de J définissent dans le fibré T*(C" x C) un sous-ensemble analytique
(conique) holonome lagrangien, c'est-à-dire involutif et de codimension

n +1), la «variété caractéristique du système», notée De plus ce

système holonome est « à singularité régulière » (mais ce fait ne sera guère
utilisé dans la suite).

Comme nous nous intéresserons avant tout aux singularités de \|/, nous
serons en réalité amenés à étudier des germes de systèmes holonomes dont i|/

est solution modulo G, c'est-à-dire que Pv|/ e G pour tout Fe/. Le quotient
par G de l'espace des solutions modulo G constitue ce que nous appellerons

l'espace des « microsolutions ».

Exemples

i) v|/ ta(aeC) est solution de {tôt — a)\|/ 0, dx$ 0

V {(x, t; Ç, x)\tx 0, ^ 0}

union de la section nulle du fibré cotangent, et du fibré conormal à l'hyper-
plan t 0;

\j/ tpLogt (peN) est solution mod. G de (tôt — p)\|/ 0 mod. G,

ôXry\f 0 (même variété caractéristique que ci-dessus).

ii) (n= 1) \\f -z est solution mod. G der — xJ

j {t2 — x3)y\f 0 (mod. G)

I (3x2dt + 2tdx)\\f 0

dont la variété caractéristique est donnée par les équations

t2 — x3 0

3X2t + 2t^ 0,

et a donc deux composantes :
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la première, T %(C x C), est le fibré conormal à la courbe d'équation

2 % ^ ^ ^ 3 x2\
t2-x3 <W0,- — — '— ;

T 2 T /
la seconde, T $(C x C), est le fibré conormal à l'origine : (x t 0, £, t quel¬

conques).

Figure 2

Les deux composantes de la variété caractéristique de l'exemple ii).

iii) (n—l) Considérons le système

+ J x + |\) ^ ^

/ -|xd^v|/ 0.

Sa variété caractéristique, donnée par les équations

(3tx + 2x^ 0 4^2 - 9xx2 0),

se compose de la section nulle et de la composante T %(C x C) de

l'exemple ii).
Ce système admet 2 solutions linéairement indépendantes, que l'on peut

écrire

x
1 /2 4 3 1 t \

x
^

\3 ' 3 ' 2 ' 2 ~2x3'2)
où F est la fonction hypergéométrique. Bien que cela ne transparaisse pas
immédiatement dans l'écriture ci-dessus, ces fonctions ne sont pas singulières

sur la droite x 0.
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Définition. On dit que le système est non caractéristique pour le

feuilletage vertical de C" x C si sa variété caractéristique ne contient aucun

covecteur horizontal non nul.

Ici « horizontal » [resp. « vertical »] signifie parallèle à la lre [resp. 2e]

composante de C" x C; le feuilletage vertical est donc celui dont les feuilles

sont les droites x Cte, et un covecteur (£, x) est horizontal si x 0.

Exemples. La condition « non caractéristique » est vérifiée par les

exemples i) et iii) ci-dessus, mais pas par l'exemple ii).

Remarque. Comme les fibres de la variété caractéristique sont des cônes,

le fait d'interdire les codirections horizontales entraîne que chacun de ces

cônes ne peut consister qu'en un nombre fini de codirections (car une
variété projective complexe ne peut éviter un hyperplan que si elle est de

dimension 0).

Dans le cas — qui nous occupe — où la variété caractéristique est

holonome lagrangienne) on en déduit que la condition non caractéristique

équivaut à la condition apparemment plus forte que voici :

1° Le lieu singulier de Qj/J (ensemble des points
où il existe un covecteur caractéristique non nul)
est fini (localement) en restriction à chaque feuille ;

2° Le feuilletage est transverse à c'est-à-dire qu'il
est transverse à toutes les directions limites d'hy-
perplans tangents à la partie lisse de Sf ;

3° L'ensemble des covecteurs caractéris¬

tiques non nuls correspond à l'ensemble des

directions limites ci-dessus, autrement dit

T*(C"xC).

Cette définition étant posée, nous trouvons dans Kashiwara-Kawai [6],
chap. IV, une réponse à la question suivante :

« étant donné un germe de système holonome M non caractéristique

pour le feuilletage en droites verticales, que peut-on dire de
l'espace des «microsolutions» de ce système, c'est-à-dire de l'espace
quotient par (9 de l'espace des solutions mod. Ol»

Condition
non

caractéristique

pour
les systèmes

holonomes
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En fait Kashiwara et Kawai placent d'emblée le problème dans le cadre

« microdifférentiel », c'est-à-dire que l'anneau 2), difficile à manier, est

remplacé par un anneau plus grand dans lequel l'opérateur ôt est inversible,
et dans lequel l'idéal engendré par J est plus commode à étudier.

Ce qui suit est un exposé élémentaire d'une partie des résultats de

Kashiwara et Kawai, suivi d'une relecture (nos 1.5 & 2.5) de ces résultats

en termes de transformées de Laplace.

1. Etude des microsolutions,
DANS LE CAS D'UNE SEULE VARIABLE (n 0)

1.0. L'anneau S des opérateurs microdifférentiels est défini comme
l'ensemble des séries formelles P £ akdf, °ù ^es ak E ont un disque

keZ

de convergence commun, vérifiant les deux conditions suivantes :

i) ordre fini: ak 0 pour k > m (« l'ordre » de P);

0k
ii) « convergence de Borel » : la série Y a_k(t) — est absolument convergente

keN k

pour | 11, | 0 | assez petits.

La loi de composition dans ê (que nous n'écrirons pas ici) est une extension

naturelle de la loi de composition dans Çè (sous-anneau des Pel
tels que ak 0 pour tous k < 0); cf. par exemple [14] (Microlocalisation)

pour plus de détails. On note <o(m) l'espace des opérateurs microdifférentiels
d'ordre (^)m. En particulier <f(0) est un sous-anneau de S, et la

multiplication à droite ou à gauche par d (meZ) établit une bijection entre

<f(0) et <f(m).

Proposition: ê est un anneau principal (Notons que cette proposition
est fausse pour l'anneau Q)\

Idée de la démonstration : Comme ôt est inversible dans ê, tout idéal J
de ê peut être engendré par des opérateurs d'ordre exactement 0, c'est-

à-dire, après division par un élément inversible de C{t}, de la forme

p tm -h P', P' eS(— 1); l'entier m est la «valuation» de P (ne pas
confondre avec l'ordre J'affirme alors qu'un élément P de J dont la

valuation est minimale engendre nécessairement cela résulte immédiatement

d'un théorème de division dans <^(0), qui nous dit que tout élément

de <^(0) peut être divisé par P, avec un reste de valuation strictement

inférieure.
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(Comme sous-produit du même théorème de division, nous obtenons

une propriété fondamentale, utilisée traditionnellement pour motiver
l'introduction des opérateurs microdifférentiels: un opérateur microdifférentiel est

inversible si et seulement si son symbole principal est non nul à l'origine).

Grâce à la proposition ci-dessus, notre problème devient le suivant:
oo

étudier les microsolutions d'un opérateur P — f1 -h X ak(t) dt~k.
k=l

1.1. Action de P sur les fonctions holomorphes
oo

A la série formelle X ak(t) dfk on associe le noyau intégral K(t,u)
k=i

CO

X ~Ti—TUT ' ^ êrâce à la condition de convergence ii) est holo-
k=l (k—1)1

morphe pour 111, \u \ assez petits. Soit donc D un disque ouvert assez
petit pour que K soit holomorphe dans un voisinage de D x D. Pour tout
ouvert simplement connexe U a D, et pour tout t0 e U, on définit Pt0 : (9(U)
->• (9(U) par la formule

(Pf>) (;t) « r^/(0 + j|o K(t, u) i(f(u) du

En particulier (dt~\ est l'opérateur qui à toute fonction holomorphe
associe sa primitive nulle en t0.

1.2. Microsolutions de P

Commençons par définir, sur D* - D\{0}, le faisceau SoP des solutions
mod. (9{D\ où (9(D) désigne désormais l'algèbre de Banach des fonctions
continues sur D et holomorphes sur D : pour tout ouvert simplement
connexe U a D* on pose

SolD(U) {\|/ e (9(U) | PtQ \(/ e (9(D) pour un t0e U};

remarquons que cette définition ne dépend pas du choix de t0, car

P,o*- P„*K(t, v|/(u) du

est holomorphe dans un voisinage du disque D.

Théorème :

i) Tout germe de solution mod. (9(D) se prolonge sur tout D* en
fonction analytique multiforme.
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ii) Le faisceau quotient So\d/(9(D), que nous noterons sol5, est un
système local d'espaces vectoriels de dimension m (l'espace des « microsolutions »

de P mod. (9(D)).

En fait, cet énoncé est valable dans une situation plus générale qui nous
sera utile au paragraphe suivant :

Situation « semi-locale » : dans la définition de l'opérateur P, tm peut être

remplacé par un polynôme unitaire p(t) de degré m, ayant toutes ses racines

Si dans le disque D (de multiplicités relatives ml9m/? avec mY +
4- mt m); on note alors D* Z>\{Si,..., St}.

Avant de démontrer le théorème (dans la situation semi-locale) énonçons
deux lemmes :

Lemme 1. Pour tout t0eD*, l'opérateur Pto: (9t0 - (9t0 est bijectif.

Preuve. PtQ — p(t) + ÇtQK, où p(t) est un isomorphisme et K une

perturbation de norme aussi petite qu'on veut dans l'espace de Banach des

fonctions holomorphes sur un disque assez petit de centre t0.

Lemme 2. Pour tout disque D0 a D (de centre t0 arbitraire),
l'opérateur de (9(D0) dans (9(D0) défini par

\|/(t) i— j|o K(t, w)v|/(w) du

est un opérateur compact.

Preuve. Appliquer le critère d'Ascoli.
s?

Preuve du théorème (d'après J. E. Björk [3]).

i) Soit v|/ un germe de solution mod. (9(D), admettant un prolongement
analytique dans un ouvert U c= Df, et soit D0 un disque de centre t0 g U,

non inclus dans U, mais d'adhérence D0 c= D*. Posant 0 PtQ\|/ e (9(D),

on va montrer que l'équation PtQy\f' 0 admet dans (9(D0) une solution

unique, qui sera donc le prolongement analytique de \|/. Il suffit pour cela

de remarquer que l'opérateur P de (9(D0) dans (9(D0) est d'une part injectif
(en vertu du lemme 1 et du principe de prolongement analytique), d'autre

part d'indice 0 car déduit de l'opérateur p (évidemment bijectif) par une

perturbation compacte (lemme 2).

ii) Comme opérateur de (9(D) dans (9(D), Pt0 se déduit par perturbation
compacte (lemme 2) de l'opérateur p qui est d'indice — m (injectif, de conoyau
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de dimension m). Pt0 est donc d'indice —m, et pour t0eD* il est injectif
en vertu du lemme 1 et du principe de prolongement analytique. Son

conoyau est donc de dimension m. Soit 0!,0m e (9(D) des fonctions
définissant une base de ce conoyau. D'après le lemme 1 les équations Pt0\|/i

0X,..., Ptov|/m 0m se résolvent de façon unique dans (9t0, et l'on vérifie

immédiatement que y\t1,..., v|/m définissent une base de Sol fJ(9(D).

1.3. Exemple: microsolutions au voisinage d'un point simple (m= 1)

Si P est de valuation m là l'origine, tout élément de <f(0) peut être
divisé par P avec un reste à coefficients constants (cf. par exemple [14]
Microloc. §3). En particulier, la division t QP -F R permet ainsi dé se

ramener au cas où le générateur de l'idéal est de la forme P t — R,
R e 8(— 1) à coefficients constants.

Ecrivant donc P t + a ô f1 -F (aeC), on peut démontrer le

Lemme. Il existe un opérateur d'ordre 0 à coefficients constants.

Q1 + Ci dr1+ c2 d~2 +

tel que PQ Q(t + adf1).

Corollaire. L'opérateur Q_1 transforme les microsolutions v|/ de P
en les microsolutions \[/ de (t-j-ad,-1) $ 0 (mod. (9).

Remarquons que l'action des opérateurs microdifférentiels sur les
microsolutions est bien définie, car l'ambiguité du choix du point t0 dans 1.1

disparaît quand on passe au quotient modulo 0.

Microsolutions de (t + adf1) $ 0 (mod. (9).

Si a ^ -1,-2,..., l'espace à 1 dimension des microsolutions est engendré
T

1 (~0~a_1
Par mod. 0;27il r(a)

si a — 1 —j, j e N, il est engendré par

T — 1 ri Log t
M'a ttt ——— mod. (9

2m j î

(les coefficients de normalisation sont choisis pour la commodité).
Dans un cas comme dans l'autre, nous noterons 5 g la microsolution

ainsi définie, ôg ô(0 est la « microfonction de Dirac », et" avec les
normalisations choisies dkt 5g ôg+fc) pour tout k e Z.

Microsolutions de (t + ocd,-1+ v|/ 0 (mod. (9)
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D'après le corollaire du lemme précédent l'espace des microsolutions est

engendré par la « microfonction » :

c'est-à-dire par la classe mod. (9 de la fonction analytique où \]/a a été

définie précédemment, et ga est le germe de fonction holomorphe définie par

(on a posé c0 1).

1.4. Comparaison des microsolutions « locales » et « semi-locales »

Dans la situation semi-locale 1.2, posons D' D\C1 u u Cu où les

« coupures » C1,..., Cx sont des demi-droites parallèles disjointes issues

respectivement des points singuliers Sx,..., Sx (disons, pour fixer les idées, les

demi-droites t — Sxe R+, en supposant Im St ^ Im Sj pour i ^ j). Pour
i 1,..., I soit Di un disque de centre Sif assez petit pour que D - DAQ

Q 5<?» + CiSfo"1' + Sj",-2' +

9«(t)

si öl — 1 —j, je N

si a / — 1, —2,...

c D' (cf. Fig. 3).

D

Figure 3
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On peut alors considérer les applications linéaires Sp£ (resp. spt) de

« spécialisation » des (micro)-solutions définies pour tout i 1, 2,/ par la

restriction des fonctions holomorphes :

(9(D) -

n

SoP(D') -

sing

solß(D') -

restriction

SPi

sp,

n

Soi'Hod

sing,-

solJ

où sing, sing; sont les applications qui à chaque solution associent la micro-

solution correspondante (« singularité » de cette solution).

Proposition.

paces vectoriels.

© sp; : solD(D')
i 1

© solöi(D 9
î i

est un isomorphisme cTes-

Preuve: Il s'agit d'espaces vectoriels de même dimension m ml +
+ mt d'après la partie ii) du théorème 1.2. Par ailleurs la partie i) du même

théorème implique immédiatement l'injectivité, car une détermination dans D'

de fonction analytique multiforme dans D* est évidemment holomorphe dans

tout D si elle l'est au voisinage des points Sx,..., St.

Remarques

i) Notons que la proposition implique en particulier que toute
microsolution locale cpf e soP'(D9 peut être représentée par une solution semi-

locale \|/ holomorphe non seulement dans D' mais dans D\Ct- (c'est-à-dire non
singulière aux points Sj, j ^ i

ii) Notons aussi que les applications de « spécialisation » qui définissent

î'isomorphisme de la proposition dépendent de façon cruciale de la direction
choisie pour les coupures (cela sera précisé un peu plus loin).

Monodromies. Etant section d'un système local d'espaces vectoriels sur
D*, so\d(D') est muni d'une action du groupe fondamental de D* (qui est

libre non commutatif à / générateurs) et il est naturel de se demander
comment cette action (la « monodromie » de sol0) se lit dans la somme directe
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© so\Di(D •). La seule donnée de la monodromie de chaque solDi(D)) (action
i

de Z, groupe fondamental de Df A\Si) est évidemment une information
beaucoup plus pauvre. En fait on récupère toute l'information en se donnant
les « variations » des microsolutions locales, définies ci-après :

Variations. Soit \|/£ g SoPl(D J) une solution locale, et soit 7) la
monodromie de SoP'XD'i) (action d'un lacet tournant une fois autour de S{ dans

le sens trigonométrique). Il est clair que la fonction var£\)/£ 7]v|/£ — \|/£ ne

dépend que de la microsolution sing£\(/£, ce qui définit une application

var£: soP'(Z)-) -> So1Ö,'(Z>'£)

appelée « variation locale autour de St ».

Comme en vertu de la remarque i) ci-dessus toute microsolution locale peut
être représentée par une fonction \|/£ g (9(Dr) (et même 0(Z>\C£)), on voit que
la variation locale varf se factorise à travers une « variation semi-locale »

Var£: sol^(D-) -» SoP(D') (et même So1Ö(Z)\C£)).

On en déduit des « microvariations »

var{ sing; o Sp7 ° Var^ so\Di(D[) -> so\Dj(Dj)

qui sont très utiles pour expliciter la façon dont l'isomorphisme de la

proposition dépend de la direction choisie pour les coupures.
De façon précise, si l'on fait tourner les coupures en faisant croître leur

argument 0, et si pour un certain argument 0O le point Sj est « balayé »

par une coupure Ck(k^ j) et par aucune autre, alors le spécialisé sp} pour
0 > 0O se déduit du spécialisé spj pour 0 < 0O par la formule

sp} v|/ spj- *j/ - var spfc \|/

(quant aux autres sp) \|/, ils sont tous égaux à sp£ \|/ si aucun autre St n'est

balayé par une coupure).

1.5. Transformées de Laplace locales et semi-locales

Dans la situation 1.4, supposons que les points Sx,..., soient à une

distance de l'origine inférieure à un nombre r égal à l/yfl fois le rayon
du disque D. Cela nous permettra de considérer dans D' des chemins

d'intégration y, yx, y2,Ji (cf. Fig. 4) dont l'origine et l'extrémité auront leurs

parties réelles supérieures à r.
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Pour \|/ g SolD(D'), définissons la « transformée de Laplace semi-locale »

par

(i?\|/) (t) |ye"T,vl

C'est une fonction holomorphe de t dans le demi-plan Re x > 0, vérifiant

une condition de croissance que nous noterons ainsi :

i?\|/ g sé\ espace vectoriel des fonctions cj) holomorphes dans Re x > 0

K
A

K •admettant dans tout secteur — — + e < Arg x < — — s une majoration du

type | <\> | < c£er\ En notant de même sé _r l'espace des .<$> admettant dans
TT K

tout secteur — — -h 8 < Arg x < — — 8 des majorations | § | < ce e rx (/ < r

arbitrairement proche de r), on déduit immédiatement du théorème de

Cauchy que la classe de ^f\)/ mod. sé -r ne change ni quand on déforme
le chemin y en astreignant son origine et son extrémité à rester dans la
lunule D' n {Ret > r}, ni quand on remplace \j/ par une fonction
équivalente mod. (9(D). Autrement dit, la transformée de Laplace semi-locale définit
une application linéaire

3? : soP(D') - j/7^_r.
Notons que cette application est injective (on adapte un argument de
Malgrange [11], qui définit la transformation de Laplace inverse en intégrant
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sur n'importe quelle demi-droite non verticale du demi-plan Re x > 0 dont
l'origine a une partie réelle > 0 arbitrairement petite).

Définissons maintenant les « transformations de Laplace locales » par les

formules

/) (x) e~"\\i(t)dt 1, 2,I.
Par le même raisonnement que plus haut, mais en utilisant de plus la

remarque 1.4 i), on voit que les Sft définissent des applications linéaires

sei\ sol^(DJ) _r (i 1, 2,/)
i

De plus, l'homologie y ~ £ yf (dans Z)7 mod. D' n {Ret > r}) implique
t i

i

SeAf £ ^ \J/, c'est-à-dire if Y^î° sPî-
i 1 i

Conclusion : On a le diagramme commutatif

solD(D')
se

© spf

0 X i

® sori(D-

par lequel l'espace vectoriel à m dimensions des microsolutions semi-locales

s'identifie à un sous-espace vectoriel de sérjsé_r, qui admet une décomposition

en somme directe de sous-espaces vectoriels de sér)sé_r, image de la

décomposition 1.4.

Exemple. Cas où tous les points St sont simples. Dans le cas où tous
les points St sont simples (m, l), on sait (n° 1.3) que les microsolutions
locales sont de la forme cpt- (cl0 + c\ df1 + ...)bifilSi], de sorte que leurs

transformées de Laplace admettent les développements asymptotiques formels

Se^i oc (c'o + c1! T~1 + ...)T*ie~xSi.

Les transformées de Laplace semi-locales admettront donc formellement des

développements asymptotiques (non convergents)

se^ oc Yu (c0 + cl T_1+...)Ta'fi"TS|
i 1
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tout-à-fait semblables aux développements « BKW complexes » des

physiciens. Tout le travail que nous venons de faire a pour effet de donner

une signification exacte mod. sé _r à de tels développements.

Remarque. Nos transformées de Laplace n'ont dû être tronquées

(mod. que parce que nous ne savons pas jusqu'où les fonctions considérées

peuvent être prolongées analytiquement en dehors de D. Mais
considérons l'hypothèse suivante :

Hypothèse. Pour tout i 1,..., I, la variation Var;cp de toute
microsolution se prolonge analytiquement dans E\C1 u u Cu où E est la bande

horizontale, union des demi-droites parallèles à R+ issues de D.

Sous cette hypothèse toutes les transformées de Laplace peuvent être

définies mod. sé -R pour tout R > 0, et même exactement (comme vraies

fonctions) si les Var,-cp sont à croissance modérée à (infini.
Par exemple pourra être définie par la formule suivante, à l'aide

des chemins yt et ßf de la figure 5 :

où \]/ est un représentant (analytique multiforme dans D*) de la
microsolution cp ; la demi-droite ßf et le « lacet » yt ont leur origine commune
dans D' un peu au-dessus de la coupure Q, et l'on a représenté en pointillé
sur la figure la partie de yt située dans le « 2e feuillet » (voir fig. 5).

(if» (t) x'\\i{t)dt-Jßi<? T!(Var,cp)

Figure 5
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2. Etude des microsolutions dans le cas général

2.0. Microlocalisation « verticale »

Nous noterons cô le feuilletage vertical de C" x C, et S^ Vanneau des

opérateurs microdifférentiels « verticaux », c'est-à-dire l'ensemble des séries

formelles P £ akdt, où les ak e C{x, t} ont un polydisque de convergence
k<= z

commun et vérifient les deux conditions suivantes :

i) ordre fini: ak — 0 pour k > m (« Vordre » de P);
Qfc

ii) «convergence de Borel»: la série Y u_fc(x, t)— est absolument
ten k

convergente pour || x ||, | 11, | 0 | assez petits.

On note l'espace des opérateurs microdifférentiels verticaux d'ordre

^ m. En particulier <^ö(0) est un sous-anneau de Sö, et la multiplication
à droite ou à gauche par d(meZ) établit une bijection entre <^ö(0) et

Soit maintenant ^ < dxi,..., dXn > l'anneau des opérateurs poly-
nomiaux en ôXl,..., dXn à coefficients dans Sö : on pourra convenir d'écrire
ces coefficients à gauche des ôx\ ôxnn, mais il faudra de toutes façons tenir

compte des relations de commutation [dx,, xj 1 au moment d'écrire la loi
de composition. Ainsi 01 contient 0) comme sous-anneau, dont il est en

quelque sorte le « microlocalisé vertical ». Tout comme etc., 01 est un
anneau noethérien. Tout comme eux il peut être considéré comme la fibre à

l'origine d'un faisceau cohérent d'anneaux sur C" x C.

2.1. Action de 01 sur les fonctions holomorphes
Se^ule l'action de pose problème, et comme tout élément de est

la somme d'un opérateur différentiel et d'un élément de <^ö(0), il nous suffira de

définir l'action de éVJO) ; Soit donc P e SJff) :

00

P p(x, t) +L ak<X> t) Y" •

k= 1

00

A la série formelle £ ak d fk on associera le noyau intégral
k i

oo U — u)*'1K{x;t,u) at)>

qui grâce à la condition de convergence ii) est holomorphe pour || x ||,

| 11, | u | assez petits. Soient donc B une boule de C" et D un disque de C,

assez petits pour que p [resp. K~\ soit holomorphe dans un voisinage de
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B x D [resp. SxDxD]. Pour tout ouvert V x U cz B x D, avec U

simplement connexe, et pour tout t0 e U, on définit Pto : 0(V x U) -> 6{V x (/)

par la formule

(P,0v|/) (x, t) p(x, t)\|/(x, f) + j('u ; u)y\i(x,

En particulier (dt~~ ')(0 est l'opérateur qui à toute fonction holomorphe associe

sa « primitive verticale » nulle sur l'hyperplan t t0.
On en déduit pour tout R e 01 un opérateur

Rto:(9{VxU) ^ (9(VxU)

bien défini pourvu que V x U soit assez petit (et U simplement connexe).

Remarque. Il sera parfois utile d'étendre l'action des opérateurs Rt0 aux
fonctions analytiques multiformes dans le complémentaire d'une hyper-
surface Sf. Mais on prendra garde que cette action n'est pas définie dans

les « feuilles singulières », c'est-à-dire les droites verticales où plusieurs points
de 9* viennent à confluer, risquant de pincer le contour d'intégration. Le
résultat d'une telle action sera donc une fonction analytique multiforme dans
le complémentaire de 9 u où l'hypersurface est l'union des droites
verticales « en position singulière par rapport à Sf ».

2.2. Microsolutions d'un idéal c= 01

On prend B, D assez petits pour que J admette des générateurs R±,..., Rv
dont l'action sur les fonctions holomorphes est bien définie dans B x D.

Solutions mod. &(- x D). Pour V x U c B x D comme au n°2.1, on
définit l'espace

SoP(K x U){4» g &(V x U) | (Rv|/e x X 1,v}
dont il convient de remarquer qu'il ne dépend pas du choix du point t0 e U.
Il ne dépend pas non plus du choix des générateurs de l'idéal J pourvu que
ceux-ci convergent dans VxD(on prendra garde en vérifiant ce point que
l'égalité R,0(R',0 *J/) (R R')„,ii n'est pas vraie ; toutefois elle l'est mod. &(V x D),
ce qui nous suffit).

Microsolutions. Pour V x U comme ci-dessus, on définit

sol°(F xU) SolD(K x x D).

En passant à la limite inductive sur les petits ouverts V x U nous avons
ainsi défini deux faisceaux Soi® et solD, que nous étudierons sur l'espace
(BxD)* B x D\ycomplémentaire du lieu singulier y du système
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M — 0tjJ. Ce dernier sera supposé holonome, non caractéristique pour le

feuilletage vertical (toutes les notions introduites au §0 se transfèrent sans

modification aux ^-modules, avec la simplification supplémentaire que la
variété caractéristique ne contient jamais la section nulle du fibré cotangent).

Le lieu singulier 0* est donc une hypersurface transverse au feuilletage (à

trace finie dans chaque feuille), et nous pouvons choisir B, D de telle sorte

que 0 n(BxD) ne rencontre pas B x dD (ôD bord du disque).

Théorème. Avec les hypothèses ci-dessus, et si B, D sont assez petits,

i) pour tout ouvert V x U c (B x D)* B x D\0, avec V, U
simplement connexes, toute \|/ g Solö(F xU) se prolonge en fonction analytique
multiforme sur (VxD)* V x D\0 ;

ii) le faisceau so\D des microsolutions est localement constant sur (B x D)*,
où il définit un système local d'espaces vectoriels de dimension finie.

Preuve de la partie i). Il s'agit d'un résultat de « prolongement analytique

vertical » dont la démonstration peut être ' calquée sur le cas n 0

(théorème 1.2 i)), après quelques préparatifs algébriques dont voici l'esquisse:

grâce à un théorème de division dans l'anneau des opérateurs micro-
différentiels (cf. par exemple [14] Microloc. §3), l'hypothèse non caractéristique

implique que M peut être considéré comme la fibre à l'origine d'un

^-Module cohérent de support 0 ; on en déduit l'existence dans 0 n <^ö(0)

d'un opérateur P dont le symbole principal p(x, t) est une équation (non
nécessairement réduite) de 0.

Alors un argument de « perturbation compacte » analogue à celui de 1.2

montre que P, tout comme p, est un isomorphisme sur tous les B0 x D0

a V x D\0, ce qui démontre l'existence du prolongement analytique multiforme

sur V x D\0 de toute solution de P mod. (9(V x D).

Quant à la partie ii) du théorème, nous en dirons quelques mots au n° 2.4,

où seront donnés des énoncés plus précis.

2.3. Microsolutions locales au voisinage d'un point générique de 0
Plaçons-nous maintenant au voisinage d'un point générique de 0, c'est-

à-dire un point S au voisinage duquel 0 est lisse et transverse aux feuilles

x Cte; prenons pour B x D un voisinage assez petit de S, dans lequel

0 sera donnée par l'équation t 0 (on peut toujours se ramener à ce cas

par un changement de coordonnées locales respectant le feuilletage). Pour
étudier la structure des microsolutions, on essaye de se ramener au cas d'une
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seule variable en cherchant un changement d'inconnue. \J/ ß\(/ qui mette le

système sous la forme

P{t,=0, dx$0.

En fait, cela n'est possible en général qu'en prenant Q dans un anneau plus

grand, l'anneau des opérateurs microdifférentiels d'ordre infini, qui heureusement

agit lui aussi sur les microfonctions. Le cas où l'on peut prendre Q

d'ordre fini est le cas où le système est « à singularité régulière » (Kashiwara-
Oshima [9]; une démonstration élémentaire est esquissée dans [15], et

détaillée dans [4]).

Conclusion. Le faisceau so\D (avec D comme ci-dessus) définit sur (B x D)*
un système local d'espaces vectoriels de dimension m « multiplicité » du

système microdifférentiel au point S valuation de l'opérateur P ci-dessus).

Cas particulier. S est un point « simple », c'est-à-dire que m 1.

C'est le cas le plus simple de singularité régulière. L'opérateur P peut alors
être mis sous la forme P t + ccôp1, comme au n° 1.3, et l'on en déduit

que l'espace des microsolutions est engendré par une « microfonction » de la
forme

Q(x, dr1) 8$ c0(x) 8$ + c±(x) Sgf1* + c2(x) 5fo"2) +

où 5 est la « dérivée a-ième » (aeC) de la microfonction de Dirac, définie
comme en 1.3 (indépendante de x).

2.4. Décomposition « de Stokes » des microsolutions
Reprenons maintenant B et D comme en 2.2, et posons (BxD)f
B x D\C, où C désigne la «coupure» C u S -h R+, en notant

Sey
S + R+ {x, s +1) | (x, s) S, t g R*}. Nous voulons définir une décomposition

de l'espace solD((BxD)f) en somme directe finie d'espaces de
microsolutions locales du type 2.3 :

sols sol Ds((BsxDs)'),

où S est un point générique de y (au sens 2.3), Bs x Ds est un voisinage
assez petit de S, et (BsxDs)' désigne ce même voisinage privé de la cou-
pure locale correspondante :

(Bsx Ds)'BsxDS\CS, u R+
SeS?n(Bs x Ds)

Notons que les espaces vectoriels sols ainsi définis ne dépendent pas de
la taille des voisinages (pourvu que ceux-ci soient assez petits: cf. lemme



76 F. PHAM

ci-après) et se recollent de façon évidente quand S parcourt Sf*, ensemble
des points génériques au sens 2.3, en un système local sur Sf* d'espaces
vectoriels de dimension finie (cf. 2.3).

Si de plus on prend S dans Sf', ouvert dense de Sf* formé des points
qui ne sont sur aucune demi-droite S' + R+ issue d'un autre point S'

de Sf, il est clair qu'on a comme en 1.4 une application linéaire de

« spécialisation »

sps : solD((B x D)') - sols

localement constante quand S parcourt Sf'.
Posons B* B\À, où À est l'hypersurface complexe « de bifurcation »

(projection de la partie non générique de Sf). Pour x e B*, Sfx Sf

n ({x} x D) consiste en l points distincts, d'où sont issues l coupures
St 4- R+(i= 1,...,/); nous noterons B' l'ouvert dense des x e B* pour
lesquelles ces / coupures sont disjointes. Les composantes connexes de B'

seront appelées « régions de Stokes ». Au-dessus de chaque région de Stokes,

Sf Sf' est un revêtement trivial à l feuillets (car en interdisant aux

coupures de se recouvrir on interdit à leurs origines de s'échanger). Soient

Sl9S2,... Si des points choisis sur chacun des / feuillets de ce revêtement

(pour une région de Stokes donnée).

i i

Proposition. L'application linéaire © sps. : solD((B x D)') -> © sols. est
i 1 i 1

un isomorphisme (constant sur chaque région de Stokes).

Preuve. L'injectivité est évidente, car une détermination sur (BxD)' de

fonction analytique multiforme sur (B x D)* (théorème 2.2 i)) se prolonge à

tout B x D si elle se prolonge au voisinage de chaque branche de Sf.

La preuve de la surjectivité peut se décomposer en deux étapes.

i
lre étape: surjectivité de l'application sold((FxD)')-> © sols. pour tout

i 1

ouvert V inclus dans une région de Stokes.

Elle découle immédiatement du lemme plus général suivant, qui montre dans

quelle mesure le faisceau soP des microsolutions est indépendant du choix
de D.

Lemme. Sous les hypothèses du théorème 2.2, soit D0 cz D un disquë

de centre arbitraire tel que Sf n (V x dD0) 0 (dD0 désigne le bord de

D0). Alors l'homomorphisme de spécialisation des microsolutions
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solD{(VxD0)')-+solD°((VxD0y)

est surjectif (et évidemment bijectif si ^ n (V x D0) ^ n(FxD).

Remarque préliminaire. Commençons par considérer les « variations »

d'une microsolution cp e sol^°o ro), c'est-à-dire les fonctions analytiques
multiformes dans (V x D0)*, différences de 2 déterminations d'un représentant \|/

de (p. On vérifie facilement que ces variations sont des solutions de

/ mod. 0(- x D), car si l'on compare au point (x0, t0) les germes de fonctions

PtQ\J/i et Pf0\|/2î où xj/i et \|/2 sont deux déterminations de \|/ en ce

point, on trouve (par exemple pour un opérateur P de la forme 2.1)

Pt<$i "" pt<$2 J K(x;t, u) \|/(x, u)du

(intégrale prise sur le lacet qui fait passer d'une détermination à l'autre),
et cette intégrale se prolonge en fonction holomorphe dans tout le domaine

d'holomorphie du noyau K.
Par conséquent, d'après la partie i) du théorème 2.2, les variations de

microsolutions mod. (9{- x D0) se prolongent en fonctions analytiques
multiformes dans (V x D)*.

Preuve du lemme. L'hypersurface ^ n (VxD) se décompose en deux

parties disjointes y0 et Sf ± avec ^0 SP n (V xD0) (et Sf ± éventuellement

vide). Nous noterons C0 + R+ et Ci $PX -h R+ les coupures
correspondantes. En prenant pour V une boule (par exemple), l'ouvert de Stein

(V x D0)' V x D0\^o sera l'intersection des deux ouverts de Stein
V x D\C0 et V x D0. Soit alors \[/0 e SolD°((F x D0)'). D'après Cousin, la
fonction \|/0 e 0((V x D0)') peut s'écrire v(/0 v|/ + 0, où \J/ e (9(V x D\C0) et
0 e (9(V x D0). Pour tout R e J la fonction RtQy\f sera donc, comme \|/,

holomorphe dans V x D\C0, et comme RtQy\f 0 holomorphe dans V x D0. Donc
Rt0\|/ est holomorphe dans V x D à l'exception peut-être de la partie C'0
de la coupure C0 située hors de F x D0.

Par ailleurs la remarque préliminaire nous dit que les variations de la
microsolution cp, c'est-à-dire les différences de déterminations de \|/ dans
(V x D0)\ se prolongent en fonctions analytiques multiformes dans (VxD)*.
On en déduit que les différences de déterminations de RtQ\\f sont analytiques
multiformes dans V x D\(Sf0u2T0), où 3T0 désigne l'union des droites
verticales en position singulière par rapport à ^0 (cf. remarque 2.1). Le fait
que l'une de ces déterminations soit holomorphe dans V x D\C'0 implique
alors qu'elle est holomorphe dans tout VxD.
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2e étape: surjectivité de l'application solD((B x D)') solö((L x D)').

Il s'agit là d'un problème de « prolongement .horizontal des microsolutions »,

dans lequel l'hypothèse non caractéristique doit jouer un rôle essentiel.

J'aimerais beaucoup en lire une démonstration élémentaire convaincante (une

possibilité est indiquée à la fin du n° 2.5). La démonstration de Kashiwara-
Kawai dans [6] (chap. III, §6, Prop. 4.6.1) fait appel aux outils sophistiqués

de Kashiwara et Schapira sur le problème de Cauchy « microhyperbolique

» [10].
Rappelons que modulo cette deuxième étape, nous avons achevé la

démonstration de la partie ii) du théorème 2.2.

2.5. Transformées de Laplace des microsolutions
On prend la boule B assez petite pour que Vx g B, ^x soit inclus dans

le disque de rayon r, en notant r yJl le rayon du disque D. La situation
est donc celle de 1.5 avec paramètres (avec confluences possibles de points
de x pour certaines valeurs des paramètres). On se reportera à la figure 4

de 1.5 pour y voir la définition du chemin y, qui maintenant dépend
continûment de x pour x g B, ainsi que la définition des chemins qui eux

ne peuvent tous dépendre continûment de x que sur une région de Stokes Ba,

et seront donc notés yf (l'indice a numérote les régions de Stokes, définies

en 1.4).

L'intégration sur y permet comme en 1.5 de définir la transformation
de Laplace

$£ : solD({B x D)') -+ sér(B)!sé _ r(B)

où sé\B) resp. sé _r(R) désigne l'espace des fonctions holomorphes dans

B x ÇT+ (où CT+ {TGC|Rex>0}) vérifiant localement au-dessus de B des conditions

de croissance analogues à celles introduites en 1.5.

On montre comme en 1.5 que i? est une application injective, qui
identifie l'espace des microsolutions à un sous-espace vectoriel Y de sér(B)l
sé -r(B). De même l'intégration sur les yf permet de définir des transformations

de Laplace locales iff: au-dessus d'une région de Stokes Bc, où

l'on a numéroté les feuillets de y, et noté solf(i= 1,...,/) les

espaces de microsolutions locales correspondant aux on pourra définir

pour tout cp g soif

(*) iff9 e~Th|/(x, t)dt mod ja/ _r(BCT)

où v|/ est n'importe quel représentant de (p holomorphe dans Ba x D\^. En

fait on peut même prendre \|/ holomorphe dans B° x D\^t (d'après le
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lemme 2.4), et dans ce cas le chemin d'intégration y,dans (*) peut être

remplacé par y (théorème de Cauchy). Une fois ce remplacement fait, 1 intégrale

ne dépend que de la classe de v|/ dans sol0((B0 x Z))'), ce qui permet de

se ramener au cas où xj/ est holomorphe dans (B x D) (grâce à la

résolution de la 2e étape de la proposition 2.4).

Conclusion. Les iffcp, pour (p e soif, admettent des représentants

holomorphes dans tout Bx Ct+ (vérifiant les conditions de croissance ^r{B)) et

définissent donc mod. ^-r{B)unsous-espace vectoriel ir1 de V.De plus

on a une décomposition de en somme directe

r =* © rji 1

qui au-dessus de la région de Stokes Ba n'est autre que l'image par
i i

if V iff de la décomposition solD((BaxD)') © soif (cf. la propo-
1=1 i= 1

sition 2.4, dont tout ce qui précède n'est qu'une paraphrase).

Exemple. Cas où le système est simple aux points génériques de iC
Dans ce cas les espaces iCf sont à 1 dimension, engendrés par des fonctions

4>f(x, t) qui dans la région de Stokes Ba admettent des développements

asymptotiques formels

(**) <i>?(x, x) oc

qui doivent se comprendre comme transformés de Laplace des développements

2.3 des microsolutions en un point simple (en prenant garde dans 2.3

de remplacer la microfonction de Dirac 5 par 8jf2sf(jc)), où t — Sf(x) est

l'équation de la branche i^f).
Rappelons encore que les fonctions c(> f sont holomorphes dans tout

B x CT+, bien que les coefficients cffc de leur développement asymptotique
(**) soient en général singuliers sur l'hypersurface de bifurcation A (et se

prolongent en fonctions analytiques multiformes dans le complémentaire de

cette hypersurface). En dehors de la région de Stokes Ba, le prolongement
analytique du 2nd membre de (**) ne peut en aucune façon être compris
comme un développement asymptotique formel de 4> f.

En fait, le développement asymptotique formel de cj>f dans une autre
région de Stokes B°' se calcule à l'aide de la « matrice de raccordement »

2 ,£01,(0):
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<i)?(x, x) X Cl'f 4)f(x, X),
j

qui ne fait qu'exprimer l'isomorphisme de « changement de décomposition »

© © tT?',
,i j

et ne dépend donc que du choix de la normalisation des générateurs 4)? des

espaces vectoriels

Remarquons que l'isomorphisme de changement de décomposition est

attaché de façon intrinsèque au système microdifférentiel, c'est-à-dire qu'il ne

dépend que du ^-module M et pas de la façon dont celui-ci est

présenté comme quotient de 0t (en effet l'espace vectoriel des microsolutions

peut être défini de façon intrinsèque : sol Hom^.J, microfonctions)). Ainsi

par exemple le cas d'un point tournant de type « pli », étudié au §6 de

l'article [17] de Voros, se réduit au cas de l'exemple iii) de notre §0 (ici M
est le système de Gauss-Manin de la catastrophe « pli », déploiement
universel de la fonction t z3).

Conclusion. Tout le travail qui précède peut être considéré comme une
méthode de resommation de développements asymptotiques formels du

type (**) — par exemple les développements BKW des physiciens — qui
acquièrent ainsi une signification exacte modulo un reste exponentiellement

petit en t, dont le taux de décroissance exponentielle est d'autant plus
fort que les microsolutions peuvent être prolongées loin à droite dans le plan
complexe des t ; comme indiqué à la fin de 1.5, on peut même obtenir une

resommation exacte (à reste nul) si les microsolutions ont des propriétés de

prolongement analytique global dans le plan des t avec croissance modérée à

l'infini, comme c'est le cas des « fonctions résurgentes » d'Ecalle [5], qui
justement apparaissent dans les modèles semi-classiques étudiés par Voros [17].

Mise en garde au lecteur. Les développements asymptotiques dont il est

question ici n'ont pas grand-chose à voir avec ceux qu'étudient Kashiwara

et Kawai dans [7] : ces derniers sont purement locaux, ce qui exclut la prise

en compte de termes exponentiellement petits, alors que les nôtres sont en

quelque sorte « semi-locaux ».

Remarque technique. Il serait intéressant, suivant une suggestion de

Malgrange, d'utiliser la transformation de Laplace comme outil technique pour
démontrer la proposition 2.4 (2e étape de la preuve) de façon plus
élémentaire que dans Kashiwara-Kawai [6]. L'idée consisterait à démontrer que
les intégrales de Laplace <|>(x, t), définies au départ seulement au-dessus des
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régions de Stokes, admettent des prolongements analytiques au-dessus de tout

B, avec contrôle uniforme en x du comportement asymptotique en x (ce qui

permet de repasser aux \J/(x, t) par « Laplace inverse »). L'article [11] de

Malgrange me semble contenir tout ce qu'il faut pour faire ce travail (on y

étudie, au voisinage de x ce, le système différentiel en (x, x) « transformée

de Laplace » du système microdifférentiel considéré.

2.6. Qu'est-ce qu'un «point tournant»?
Nous avons appelé « points de bifurcation » les projections des points

singuliers de (relativement au feuilletage vertical). Certains points singuliers

sont d'un type trivial, et ne donnent pas lieu à des singularités des

développements asymptotiques : ce sont les points où le système M est

localement somme directe de systèmes du type 2.3 (par exemple les points où
2 nappes lisses de se coupent transversalement).

Il me semble conforme à l'usage des physiciens d'appeler « points tournants

» les points de bifurcation qui sont projections de points singuliers
non triviaux de Sf.

Notons que la trivialité d'un point singulier ne dépend pas seulement de

la géométrie de 5^; par exemple, en un point où deux nappes lisses de

ont un contact quadratique en codimension 1, il existe deux types de

systèmes holonomes simples aux points génériques; celui de ces deux types qui
n'est pas trivial est connu des physiciens sous le nom d'« intersection effective
de deux singularités de Landau» (cf. [8] et [15] pour une étude
mathématique de cet exemple).

3. Appendice sur le cas réel:
solutions microfonctions de Sato

Considérant C x C comme le complexifié de R" x R, nous nous
proposons d'étudier les solutions de notre système microdifférentiel dans le
faisceau #RnxR des microfonctions de Sato. Rappelons [17] que #RnXR est un
faisceau sur le fibré S*{R" x R) des directions de demi-droites cotangentes à

R" x R, et que le support du faisceau des solutions dans #RnXR est inclus dans
la variété caractéristique réelle du système (considérée comme sous-ensemble
de S*(Rn x R)). Avec notre hypothèse non caractéristique, ce support est donc
propre à fibres finies au-dessus de R", de sorte que les solutions dans
^RnxR s'identifient aux solutions dans (#£, <^_), faisceau des familles
analytiques en xeR" de microfonctions d'une variable réelle t (cf. par
exemple [14], Microlocalisation, §2).
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Rappelons la définition de # + (celle de ^~ est analogue): c'est le

faisceau sur R" x R dont les sections sur un ouvert U sont définies comme
limites inductives

+(ï/) lim (9(Q+)/(9(Q+) n stf(U),

où srf{U) désigne l'espace des fonctions analytiques réelles sur U, et Ù+
parcourt la famille des « demi-voisinages imaginaires positifs » de U dans

R" x C, c'est-à-dire :

Q+ Qn C+ C+ {t g C | Im t > 0},
Q voisinage de U dans R" x C contenant U comme sous-ensemble fermé.

Il résulte facilement de notre étude 2.2 que les solutions dans + seA
CO

prolongent dans le domaine complexe, en microsolutions du type 2.2. Pour
éviter toute ambiguité dans les prolongements analytiques, il sera commode
de considérer que les coupures 2.4 ont été choisies dans la direction
imaginaire négative du plan des t (au lieu de la direction réelle positive), de

sorte que la transformation de Laplace de 2.5 deviendra une «

transformation de Fourier » au sens de ([13], n° 1.2).

Il est alors clair qu'une microsolution cp g solD((B x D)') provient d'une
solution dans ^ + si et seulement si les spécialisées sps(cp) sont nulles pour tout
S g Sf' n ((BnRn) x D) dont la composante t est de partie imaginaire positive.

Conclusion. L'espace des solutions dans s'identifie au sous-espace
vectoriel de sold((BxD)') défini par les équations sp^(cp) 0, où l'indice X

numérote les composantes connexes de Sf' n ((BnRn) x D+), avec D+ D

n C+ (cf. 2.4 pour la définition de £f'\

Exemples

ï) Ji système de Gauss-Manin de la catastrophe « pli » (exemple iii)
du §0).

y* est la « parabole semi-cubique » t2 — x3 0, et Sf' n (RxC +) a une
seule composante connexe {(t, x)\ x < 0, t i | x |3/2}. L'espace des solutions
microfonctions de Sato est donc donné par 1 équation dans l'espace à

2 dimensions des microsolutions. Il est donc à 1 dimension.

ii) Jî système de Gauss-Manin de la catastrophe « fronce » (déploiement
universel de la fonction t z4)

est la complexifiée de la « queue d'aronde » de R2 x R. La courbe de

bifurcation dans R2 a deux composantes dont l'une est la « caustique »

x\ — xl 0, l'autre étant le « lieu de Maxwell » x2 0. Au-dessus de l'in-
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térieur de la caustique (zone hachurée (1) sur la figure 6) les trois nappes

de sont réelles, alors qu'au-dessus de la zone non hachurée deux de ces

nappes deviennent imaginaires conjuguées, en s'échangeant entre elles à la

traversée du lieu de Maxwell

x2

(2) >//|

(2') ^w///

Figure 6

On voit ainsi que 9" n (R2 x C+) a deux composantes connexes (nappes

imaginaires positives au-dessus des zones (2) et (2'), se raccordant transversalement

le long de la courbe de self-intersection de la queue d'aronde).

L'espace des solutions microfonctions de Sato est donc donné par 2 équations

sp(2) 0 et sp(2 0 dans l'espace à 3 dimensions des microsolutions. Ces

deux équations sont linéairement indépendantes, car elles correspondent aux
deux composantes locales du système Jt au voisinage de la courbe de self-

intersection de la queue d'aronde (au voisinage de cette courbe M est une

somme directe de deux systèmes simples). Par conséquent l'espace des solutions

microfonctions de Sato est à une dimension.

Remarque : En fait les deux exemples ci-dessus sont des systèmes à

caractéristique simple (comme tous les systèmes de Gauss-Manin de déploiements
versels de fonctions: cf. [14] Microloc., §7), et l'on dispose d'arguments plus
élégants pour montrer que l'espace des solutions microfonctions de Sato est

toujours à 1 dimension pour de tels systèmes (une « transformation de contact
quantifiée » permet de ramener tous ces systèmes à la forme simple 2.3).

La méthode illustrée ci-dessus a cependant l'avantage de s'appliquer aussi
bien aux systèmes dont la variété caractéristique n'est pas lisse.
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